

Discovering the Runtime Structure of Software with Probabilistic Generative Models

Scott Richardson, Michael Otte, Michael Mozer, Amer Diwan, Dan Conners

Designing a better microprocessor

Accurate profiling tools, needed to design

- better microprocessors, are very slow.
- Particularly if the microarchitectural design is emulated.

- Benchmarking suites exist to profile a microprocessor (e.g., SPEC2000).
- Need to speed up microarchitectural analysis.

Simulation Points

- Perform cycle accurate emulation only for simulation points.
- A simulation point is an interval of program execution. Random Sampling of the CPI (Clock

Can we do better?

Strategically select simulation points.

- Don't choose simulation points at random.
- Exploit a program's phase behavior.
- A phase is a distinct pattern of program behavior (e.g., CPI over time).

Discovering phases

Infer phases from an executed basic block sequence. Basic block trace is cheap to collect.

- Procedure
- Periodically record Basic Block Vectors (BBV) as the program executes.
- A BBV is a histogram summarizing each period of basic blocks. Cluster BBVs into phases.

Related Work

- SimPoint (Sherwood, Perelman, Hamerly, et al.)
- k-means clustering of BBVs
- Multinomial mixture model (MMM)
- Probabilistic interpretation of BBV distribution

Limitation with current models

SimPoint

- Why treat a BBV as a continuous vector? A BBV is composed of discrete blocks. A better interpretation is multinomial.
- MMMs
- BBV is randomly projected in a way that disrupts its interpretation as a count vector. □ The BBV's temporal structure is ignored.

Why care about time?

- Current phase constrains next phase. ■ i.e., if the observation is ambiguous, the
- temporal constraint can achieve greater certainty about the phase.
- □ We use Hidden Markov Models to explicitly capture sequential structure of the BBVs.

Applying an HMM

- Observation at each time step corresponds to a BBV.
- Hidden state corresponds to a program's latent phase.
- Alternative HMM emission distributions: multinomial and a Gaussian.

	temporal	atemporal
ial	multinomial HMM	MMM
n	CDHMM	GMM

Our approach

Our space of models varies over 5 dimensions 1) HMM vs. mixture model

multinon

Gaussia

- Are temporal constraints beneficial?
- 2) Multinomial vs. Gaussian output
- □ What is the better interpretation of a BBV?
- 3) BBVs vs. Reduced Dimensionality BBVs
- Does random projection corrupt the data?
- 4) Techniques for selecting simulation points 5) Techniques for estimating runtime profile

Likelihood based model evaluation

The BBV sequence is not significantly more likely under the HMMs than the mixture models.

Model likelihood correlates with error in runtime profile estimates

Spearman correlation between the log likelihood and the relative error. A correlation of 1 indicates strong correlation. The model space is integrated over all dimensions except the model type

The simulation point selection technique MaxLikelihood is most strongly correlated.

Estimating the runtime profile: A comparison of the algorithms

Relative CPI estimate error averaged over the set of benchmarks as a function of the number of simulation points in a model. The multinomial and Gaussian models are trained with their respective data representations

The temporal structure of programs

The HMM's transition distribution allows us to analyze structure in programs.

Code vs. data dependent phases

Code dependent phases

- A given basic block is associated with a single phase. Data dependent phases
- A given basic block may behave differently based on the context in which it is invoked.
- □ 36% of the phases are
- heavily code dependent. □ However, a significant portion of the basic blocks can appear in multiple phases.

Conclusions

- SimPoint (k-means) does very well.
- To our surprise, the temporal constraints of the HMM did not improve the quality of the models.
- Dimensionality reduction does not have a significant impact on model performance.
- Phases are both code and data dependent.

Future work

□ If observations are made more quickly, the temporal context may become more important. Additionally, this requires that a smaller percentage of the program be functionally simulated.

No model outperforms SimPoint.

The phase must be unambiguous given the observation

There is temporal structure in the data HMMs transition to a different phase after

36% of the observations. □ The HMM predicts the next phase more accurately than an algorithm that assumes:

Next phase - Current phase Next phase - Most frequent

CONAMISSION
50 60 7