Designing a better microprocessor

0 Accurate profiling tools, needed to design
better microprocessors, are very slow.
m Particularly if the microarchitectural design is
emulated. ‘
m Benchmarking suites exist to profile a
microprocessor (e.g., SPEC2000).
0 Need to speed up microarchitectural analysis.

Simulation Points

Perform cycle accurate emulation only for
simulation points.
A simulation point is an interval of program

execution.
Random Sampling of the CPI (Clock

Cycles Per Instruction) trace for the program GZIP

08

ia 0

asimulation point

L.

&

, , , ,
703 w0 Bl 503 T 720
Sample Interval (time —>)

Can we do better?

0 Strategically select simulation points.
m Don't choose simulation points at random.
m Exploit a program’s phase behavior.
o A phase is a distinct pattern of program behavior

(e.g., CPIl over time).
Phases Detected for the program GZIP

" Phase 1mm Phase 2 mm Phase 3

oes Phase T + Phase T

CPI

osf 4

058 L
200 00 500 00 7000 1200

Sample Interval (time —)

Discovering phases

O Infer phases from an executed basic block sequence.

m Basic block trace is cheap to collect.
0 Procedure
m Periodically record Basic Block Vectors (BBV) as the
program executes.

0 ABBYV is a histogram summarizing each period of basic blocks.

m Cluster BBVs into phases.

Basicblock T35 7 37 7 27 2 7]

sequence

Associated
phase

BBV
sequence
723

Discovering the Runtime Structure of Software

with Probabilistic Generative Models
® Scott Richardson, Michael Otte, Michael Mozer, Amer Diwan, Dan Conners ®

Related Work

0 SimPoint (Sherwood, Perelman, Hamerly, et al.)
B k-means clustering of BBVs

0 Multinomial mixture model (MMM)
m Probabilistic interpretation of BBV distribution

Limitation with current models

0O SimPoint

B Why treat a BBV as a continuous vector?

A BBV is composed of discrete blocks.

B A better interpretation is multinomial.
o MMMs

B BBV is randomly projected in a way that

disrupts its interpretation as a count vector.

OThe BBV's temporal structure is ignored.

Why care about time?

Likelihood based model evaluation

The BBV sequence is not significantly more ||ke|y
under the HMMs than the mixture models.

Model likelihood correlates with error

The temporal structure of programs

in runtime profile estimates

O Current phase constrains next phase.

m i.e., if the observation is ambiguous, the
temporal constraint can achieve greater
certainty about the phase.

OWe use Hidden Markov Models to explicitly
capture sequential structure of the BBVs.

v 4’

Applying an HMM

0 Observation at each time step corresponds
to a BBV.

O Hidden state corresponds to a program’s

latent phase.
O Alternative HMM emission distributions:

Spearman correlation between the log likelihood and the relative error. A correlation
of 1 indicates strong correlation. The model space is integrated over all dimensions

except the model type.

The simulation point selection technique
MaxLikelihood is most strongly correlated.

Estimating the runtime profile:
A comparison of the algorithms

multinomial and a Gaussian. Po——
muttinomial | ™SIOMREL | v
Our approaCh Gaussian CDHMM GMM

Our space of models varies over 5 dimensions
1) HMM vs. mixture model
0 Are temporal constraints beneficial?
2) Multinomial vs. Gaussian output
0 What is the better interpretation of a BBV?
3) BBVs vs. Reduced Dimensionality BBVs
0 Does random projection corrupt the data?
4) Techniques for selecting simulation points
5) Techniques for estimating runtime profile

Relative CPI estimate error,
averaged over the set of
benchmarks, as a function of
the number of simulation points
in @ model. The multinomial
and Gaussian models are
trained with thelr respective

data rep

E) % W0 %
Number of Simulation Points.

No model outperforms SimPoint.

The phase must be unambiguous

given the observation

There is temporal structure in

the data

O HMMs transition to a different phase after

36% of the observations.

0 The HMM predicts the next phase more
accurately than an algorithm that assumes:

Next phase «<— Current phase..
Next phase «—— Most frequent

0O The HMM'’s transition distribution allows us to

analyze structure in programs.

GzZIP VPR

8 phases

16 phases

32 phases

Code vs. data dependent phases

U Code dependent phases
B A given basic block is associated with a single phase.

O Data dependent phases
W A given basic block may behave differently based on

the context in which it is invoked. ..

[1 36% of the phases are
heavily code dependent.

[0 However, a significant portion
of the basic blocks can
appear in multiple phases.

Histogram of block condltwonal phase
entropy for all COHMM models.

Conclusions

0 SimPoint (k-means) does very well.

0 To our surprise, the temporal constraints of the
HMM did not improve the quality of the models.

0 Dimensionality reduction does not have a
significant impact on model performance.

O Phases are both code and data dependent.

Future work

O 1f observations are made more quickly, the
temporal context may become more important.
B Additionally, this requires that a smaller percentage of the

program be functionally simulated.

