
Model likelihood correlates with error
in runtime profile estimates

The simulation point selection technique
MaxLikelihood is most strongly correlated.

CDHMM GMM MHMM MMM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n

t

8.54 8.56 8.58 8.6 8.62 8.64 8.66 8.68

x 10
6

0.01

0.015

0.02

0.025

0.03

0.035

0.04

R
e
la

ti
v
e
 E

rr
o
r

Negative Log Likelihood

4 phases

8 phases

16 phases

32 phases

64 phases

Related Work
SimPoint (Sherwood, Perelman, Hamerly, et al.)

k-means clustering of BBVs
Multinomial mixture model (MMM)

Probabilistic interpretation of BBV distribution

Limitation with current models
SimPoint

Why treat a BBV as a continuous vector?
A BBV is composed of discrete blocks.

A better interpretation is multinomial.
MMMs

BBV is randomly projected in a way that
disrupts its interpretation as a count vector.

The BBV's temporal structure is ignored.

Why care about time?
Current phase constrains next phase.

i.e., if the observation is ambiguous, the
temporal constraint can achieve greater
certainty about the phase.

We use Hidden Markov Models to explicitly
capture sequential structure of the BBVs.

S
t-1

S
t

S
t+1

O
t-1

O
t

O
t+1

Applying an HMM
Observation at each time step corresponds
to a BBV.
Hidden state corresponds to a programʼs
latent phase.
Alternative HMM emission distributions:
multinomial and a Gaussian.

Our approach
Our space of models varies over 5 dimensions

1) HMM vs. mixture model
Are temporal constraints beneficial?

2) Multinomial vs. Gaussian output
What is the better interpretation of a BBV?

3) BBVs vs. Reduced Dimensionality BBVs
Does random projection corrupt the data?

4) Techniques for selecting simulation points
5) Techniques for estimating runtime profile

multinomial MMM

atemporal

multinomial
HMM

Gaussian

temporal

CDHMM GMM

Likelihood based model evaluation

The BBV sequence is not significantly more likely
under the HMMs than the mixture models.

FullDim
0

500

1000

1500

2000

2500

3000

N
e

g
a

ti
v
e

 L
o

g
 L

ik
e

lih
o

o
d

MHMM MMM

ProjReweight ProjRand
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

N
e

g
a

ti
v
e

 L
o

g
 L

ik
e

lih
o

o
d

Spearman correlation between the log likelihood and the relative error. A correlation
of 1 indicates strong correlation. The model space is integrated over all dimensions
except the model type.

Estimating the runtime profile:
A comparison of the algorithms

No model outperforms SimPoint.

Relative CPI estimate error,
averaged over the set of
benchmarks, as a function of
the number of simulation points
in a model. The multinomial
and Gaussian models are
trained with their respective
data representations.

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Simulation Points

R
el

at
iv

e
Er

ro
r

MHMM FullDim
MHMM ProjReweight
MHMM ProjRand
MMM FullDim
MMM ProjReweight
MMM ProjRand
CDHMM SimPoint
CDHMM ProjOrtho
CDHMM ProjAproxOrtho
GMM SimPoint
GMM ProjOrtho
GMM ProjAproxOrtho
SimPoint FullDim
SimPoint ProjSimPoint

The phase must be unambiguous
given the observation
There is temporal structure in the data

HMMs transition to a different phase after
36% of the observations.
The HMM predicts the next phase more
accurately than an algorithm that assumes:
Next phase Current phase
Next phase Most frequent

The temporal structure of programs
The HMM’s transition distribution allows us to
analyze structure in programs.

GZIP VPR

8 phases

16 phases

32 phases

Code vs. data dependent phases
Code dependent phases

A given basic block is associated with a single phase.
Data dependent phases

A given basic block may behave differently based on
the context in which it is invoked.

Conclusions
SimPoint (k-means) does very well.
To our surprise, the temporal constraints of the
HMM did not improve the quality of the models.
Dimensionality reduction does not have a
significant impact on model performance.
Phases are both code and data dependent.

Future work
If observations are made more quickly, the
temporal context may become more important.

Additionally, this requires that a smaller percentage of the
program be functionally simulated.

Discovering the Runtime Structure of Software
with Probabilistic Generative Models

Scott Richardson, Michael Otte, Michael Mozer, Amer Diwan, Dan Conners

36% of the phases are
heavily code dependent.
However, a significant portion
of the basic blocks can
appear in multiple phases.

Designing a better microprocessor
Accurate profiling tools, needed to design
better microprocessors, are very slow.

Particularly if the microarchitectural design is
emulated.
Benchmarking suites exist to profile a
microprocessor (e.g., SPEC2000).

Need to speed up microarchitectural analysis.

Simulation Points
Perform cycle accurate emulation only for
simulation points.

A simulation point is an interval of program
execution.

Can we do better?
Strategically select simulation points.

Don't choose simulation points at random.
Exploit a program’s phase behavior.

A phase is a distinct pattern of program behavior
(e.g., CPI over time).

Discovering phases
Infer phases from an executed basic block sequence.

Basic block trace is cheap to collect.
Procedure

Periodically record Basic Block Vectors (BBV) as the
program executes.

A BBV is a histogram summarizing each period of basic blocks.
Cluster BBVs into phases.

}}

 c += b;
 if(c < a) goto head2
 else {

 int c = 0;
 if(a > 1)

 c = a;
 a = b;
 b = c;

foobar(int a, int b) {

head:
1

3

Histogram of block-conditional phase
entropy for all CDHMM models.

3 1 1 1 1 3 2 1 3 1 2 2

BBV
sequence

Associated
phase

A A B C

2 312 312 312 31

Basic block
sequence

2 31

2 2 2

C

CDHMM GMM

ProjSimPoint ProjOrtho ProjAproxOrtho

N
e
g
a
ti
v
e
 L

o
g
 L

ik
e
lih

o
o
d

16 -

14 -

12 -

10 -

8 -

6 -

4 -

2 -

0 - - - -

