
Model likelihood correlates with error 
in runtime profile estimates

The simulation point selection technique 
MaxLikelihood is most strongly correlated.
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Related Work
SimPoint (Sherwood, Perelman, Hamerly, et al.)

k-means clustering of BBVs
Multinomial mixture model (MMM)

Probabilistic interpretation of BBV distribution

Limitation with current models
SimPoint

Why treat a BBV as a continuous vector?
A BBV is composed of discrete blocks.

A better interpretation is multinomial.
MMMs

BBV is randomly projected in a way that 
disrupts its interpretation as a count vector.

The BBV's temporal structure is ignored. 

Why care about time?
Current phase constrains next phase.

i.e., if the observation is ambiguous, the 
temporal constraint can achieve greater 
certainty about the phase. 

We use Hidden Markov Models to explicitly 
capture sequential structure of the BBVs.
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Applying an HMM
Observation at each time step corresponds 
to a BBV.
Hidden state corresponds to a programʼs 
latent phase. 
Alternative HMM emission distributions: 
multinomial and a Gaussian. 

Our approach
Our space of models varies over 5 dimensions

1) HMM vs. mixture model
Are temporal constraints beneficial?

2) Multinomial vs. Gaussian output
What is the better interpretation of a BBV?

3) BBVs vs. Reduced Dimensionality BBVs
Does random projection corrupt the data?

4) Techniques for selecting simulation points
5) Techniques for estimating runtime profile

multinomial MMM

atemporal

multinomial 
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temporal
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Likelihood based model evaluation

The BBV sequence is not significantly more likely 
under the HMMs than the mixture models. 
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Spearman correlation between the log likelihood and the relative error. A correlation 
of 1 indicates strong correlation. The model space is integrated over all dimensions 
except the model type.

Estimating the runtime profile: 
A comparison of the algorithms

No model outperforms SimPoint.

Relative CPI estimate error, 
averaged over the set of 
benchmarks, as a function of 
the number of simulation points 
in a model. The multinomial 
and Gaussian models are 
trained with their respective 
data representations.
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The phase must be unambiguous
given the observation
There is temporal structure in the data

HMMs transition to a different phase after 
36% of the observations.
The HMM predicts the next phase more 
accurately than an algorithm that assumes:
Next phase      Current phase
Next phase      Most frequent

The temporal structure of programs
The HMM’s transition distribution allows us to 
analyze structure in programs.

GZIP VPR
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Code vs. data dependent phases
Code dependent phases

A given basic block is associated with a single phase.
Data dependent phases

A given basic block may behave differently based on 
the context in which it is invoked.

Conclusions
SimPoint (k-means) does very well.
To our surprise, the temporal constraints of the 
HMM did not improve the quality of the models.
Dimensionality reduction does not have a 
significant impact on model performance.
Phases are both code and data dependent.

Future work
If observations are made more quickly, the 
temporal context may become more important.

Additionally, this requires that a smaller percentage of the 
program be functionally simulated. 

Discovering the Runtime Structure of Software 
with Probabilistic Generative Models

Scott Richardson, Michael Otte, Michael Mozer, Amer Diwan, Dan Conners

36% of the phases are 
heavily code dependent. 
However, a significant portion 
of the basic blocks can 
appear in multiple phases.

Designing a better microprocessor
Accurate profiling tools, needed to design 
better microprocessors, are very slow.

Particularly if the microarchitectural design is 
emulated.
Benchmarking suites exist to profile a 
microprocessor (e.g., SPEC2000).  

Need to speed up microarchitectural analysis.

Simulation Points
Perform cycle accurate emulation only for 
simulation points.

A simulation point is an interval of program 
execution.

Can we do better?
Strategically select simulation points.

Don't choose simulation points at random.
Exploit a program’s phase behavior.

A phase is a distinct pattern of program behavior 
(e.g., CPI over time).

Discovering phases
Infer phases from an executed basic block sequence.

Basic block trace is cheap to collect.
Procedure

Periodically record Basic Block Vectors (BBV) as the 
program executes.

A BBV is a histogram summarizing each period of basic blocks.
Cluster BBVs into phases.

}}

      c += b;
      if(c < a) goto head2
  else {

  int c = 0;
  if(a > 1)

    c = a;
    a = b;
    b = c;

foobar(int a, int b) {

head:
1

3

Histogram of block-conditional phase 
entropy for all CDHMM models.
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