
Optimizing Multiagent Area Coverage Using
Dynamic Global Potential Fields

Rahul Rajan
U.S. Naval Research Laboratory

Washington, DC, USA
rahul.rajan@nrl.navy.mil

Michael Otte
University of Maryland

College Park, MD, USA
otte@umd.edu

Donald Sofge
U.S. Naval Research Laboratory

Washington, DC, USA
donald.sofge@nrl.navy.mil

Abstract—Multiagent coverage algorithms have been used in
the context of search and rescue operations to determine optimal
search patterns for a team of robots. Many solutions to the
problem of area coverage have been discussed in the literature.
Our approach covers a physics-inspired technique for global
control of agents in a search space. However, more importantly
we adopt an evolutionary approach to evolve a policy for
dynamically changing the global control rules driving a team of
agents. We implement this algorithm using the Robot Operating
System and the Gazebo simulation platform.

Index Terms—swarm, physicomimetics, search and rescue,
coverage, potential fields, evolutionary algorithm

I. INTRODUCTION

The need for more accurate, versatile, and inexpensive
solutions for search and rescue has increased significantly
over the years. As more and more natural disasters occur in
populated areas and developing countries, we need affordable
solutions that can be quickly deployed in any scenario to
search for survivors and quickly alert human responders. The
goal here is not to replace humans, but instead to assist them in
their search. Increasingly, robots, specifically automated aerial
vehicles aided with specialized sensors, have shown promise
in recent years. While human rescuers extract survivors and
get them to safety, aerial vehicles are used to search the area of
interest and alert responders if they find something that could
be a potential victim needing rescue.

Researchers are now looking into grouping these aerial
robots together into teams and finding algorithms that enable
them to collaborate or search in a way to optimize overall area
coverage. Some approaches are top-down where computation
is more centralized, while others are primarily bottom-up,
where the agents themselves are more reactionary and rely
on some form of communication with other agents and/or
the environment to make decisions. Our approach can be
implemented as either a bottom-up or top-down approach
in principle, but we chose to implement the algorithm in a
centralized manner as a proof of concept. Future work will
cover a decentralized version of this approach.

II. PREVIOUS WORK

A. Potential Fields

Potential field based methods have been used in robotics
research for a long time. Typically, they’ve been used for

obstacle avoidance tasks. The basic idea is that the search
space is modeled as a potential field. Obstacles have high
potential, which repel robots away, while targets or unexplored
space may have lower potential. Khatib’s team [1] discusses
the idea of a time-varying potential field that changes based on
the position of obstacles in the environment. This is especially
useful in dynamic environments when obstacles or targets
could be moving.

In the case of area coverage, potential field methods have
emerged as a popular solution, especially for problems in-
volving multiple agents. We define area coverage as the
amount of area the team of agents has searched in a given
amount of time. Many approaches have looked into modeling
agents themselves as potential field generators that can repel
other agents near them [2]. Howard and his team specifically
designed a potential field that repelled mobile sensors (robots)
from each other and the wall. Sydney implemented a technique
that creates a temperature map, with an associated temperature
gradient, across the search space [3]. The “heat” of different
regions of the space changes based on the information gathered
from that region, and the local temperature gradient determines
the direction of the search agents. Thus, in this model, it is
the search area itself moving the agents in different areas of
the environment. A Lennard-Jones potential is combined with
a temperature gradient to determine the resulting motions of
the multi-agent system.

B. Stigmergy

Another important idea in the field of multi-agent area
coverage is stigmergy via virtual pheromones. Stigmergy is
the idea that agents can communicate with each other through
the environment by dropping information and embedding it
in the search space. We borrowed this idea in our previous
paper where we combined ideas from stigmergy and force
laws [4]. In this approach, agents dropped virtual pheromones
in the environment with time-decaying weights. The current
weight of a pheromone determines the repulsive force it places
on nearby agents. Other work in stigmergy has looked into
treating these virtual pheromones like trails [5] that serve as
repellent regions which discourages agents from exploring the
areas covered by the trails. Our approach aims for a similar
concept, but our hope is that an evolutionary learning approach
can learn this behavior over several generations. Some papers

actually use these trails more directly to guide exactly how
agents move in the search space. Ranjbar-Sahraei discusses an
algorithm StiCo where agents move in fixed circles, marking
their paths with a pheromone trail [6]. When an agent detects
another agent’s trail, it immediately switches directions to form
a new circular path. Thus, this algorithm uses an approach
where pheromones have very limited range and are only
detectable when an agent goes over it. This is different from
our previous approach with PherPhys where the pheromones
exert a force with a much longer range that tapers off with
distance.

C. Neuroevolution
The idea of neuroevolution has been around for over 20

years, but it became very popular with the invention of NEAT
(Neuroevolution of Augmented Topologies) [7]. This seminal
work by Stanley introduced a novel way to use a fairly
simple evolutionary algorithm to evolve both the topology
and weights of a network simultaneously. This algorithm
has been used in several fields as a viable alternative to
traditional reinforcement learning approaches like Q-Learning.
Since neuroevolution techniques like NEAT rely on a simple
evolutionary algorithm under the hood, it is significantly
less computationally intensive and is naturally parallelizable.
Algorithms like NEAT have found success in tasks including
walking and playing Atari games [8].

In terms of multi-agent systems, NEAT has shown promise
in both homogeneous and heterogeneous swarms. Typically,
heterogeneous swarms are evolved through a slightly modified
version of NEAT that allows for co-evolution. This means
agents are evolved using NEAT independently, but with the
same fitness function. In many implementations, the agents
will share their rewards equally. Thus, the members of the
population are incentivized to develop their own independent
strategies, but also to communicate with other agents in order
to maximize their own reward [9]. In homogeneous situations,
it is possible to evolve a single controller that is used by every
agent in the population. Every genome is tested on all the
agents simultaneously and the reward for the entire population
is noted. Homogeneous neuroevolution has found success in
a variety of swarm tasks, including foraging and searching.
Ericksen and his team introduced an approach based on NEAT
for evolving a general controller for a population of agents and
showed that it outperforms popular foraging techniques [10].

III. METHODOLOGY

Our approach involves using a continuously changing global
potential field to guide a multi-agent system to perform
surveillance over a given search area. The agents themselves
simply follow the gradient created by potential field generators
distributed across the search space.

The remainder of the paper will delve deeper into how the
algorithm works and what remains.

A. Features
The PhysField algorithm has 3 main parts — the global

potential field, the agent, and the training node.

0 1 2

2

1

0

50

45

36

24 37

Figure 1. Potential Field Setup

The global potential field (GPF) consists of generators
distributed at equally spaced intervals across the search space.
Each generator has a different weight or strength which
controls how the agents move through the space. A high
positive weight would keep agents away, while a high negative
weight would attract agents towards that area. Figure 1 shows
an initial setup for the search space with the potential field
generators laid on top. The diamonds enclosing a number
represent the generators, while the red triangles represent the
agents in the search space. The initial weights of the gener-
ators are randomly generated at the start of each experiment.
Internally, these weights are saved in an array on a separate
node that all agents can access simultaneously. The agents in
the search space are represented as red triangles.

The Agent is responsible for following the field produced
by the GPF, while also checking for collisions with obstacles,
walls, and other agents. To prevent collisions with other agents,
we employ a simple repulsive force between agents. This
force follows the same inverse r-squared relationship found in
Coulomb’s law. When agents get a certain distance apart, the
Agent will automatically employ this virtual force and adjust
its velocity appropriately.

Finally, the training node serves to both monitor the ex-
periment and change the potential field. This node utilizes
a neuroevolution approach to train a neural network. This
neural network is then used to change the distribution of
potential field weights in the search space. The network inputs
are the average distance to other agents, the previous weight
(equivalent to the previous network output), and the (x, y)
position of the potential generator. The output of the network
is the new weight for that position in the search space. This

Neural Network

avg-distance to agents

x, y location

new weightprev_weight

Figure 2. Potential Field Setup

setup is shown in Figure 2. The agents can then “call” this
neural network to obtain the real-time weights of the search
space and calculate the resulting velocity based on a potential
formula.

B. Training

Neuroevolution has shown remarkable results in recent
years, especially in evolving human-like behaviors such as
walking, in simple robots. It has emerged as a promising
alternative to reinforcement learning and is starting to show
promise in multi-agent systems as well.

The basic premise of neuroevolution is to use a genetic
or evolutionary algorithm to evolve a neural network. NEAT
evolves both topology and weights for a feed-forward neural
network simultaneously. This has been shown to be beneficial
for complex problems such as walking or evolving a controller
to play a game. In our case, we used a fairly simple fixed
topology with 1 input layer, 1 hidden layer containing 3 nodes,
and 1 output layer, and used an evolutionary algorithm to
optimize the network weights. A sigmoid activation function
was used to model nonlinearlity for all layers. Each individual
in the evolutionary algorithm is modeled as a vector of weights
(including bias bits). In subsequent generations crossover and
mutations are incorporated to evolve a new population.

To record the fitness of each individual, or neural network,
the overall area coverage of the agent team is recorded. The
highest scoring individual would be the neural network that
uses the previous field strength, average distance to agents, and
an (x, y) position to determine a new potential field strength
that optimizes coverage in the team. The goal is to evolve
a neural network that adjusts the potential field such that
agents are drawn towards unexplored regions before revisiting
previous ones.

C. Functionality

The algorithm is based on an inverse r potential function.
We slightly modified it to cap the maxima of the function at
the weight determined by the neural network. We can then
define the velocity at a given location by taking the gradient
of the potential function f(x, y) where k is a constant and x
& y represent the x-distances and y-distances respectively.

f(x, y) =
k

x2 + y2 + 1
(1)

|∇f(x, y)| = (
2xk

(x2 + y2 + 1)2
,

2yk

(x2 + y2 + 1)2
) (2)

These equations define the motion of the agents according to
the potential field generators and the field they generate. Each
agent accesses the global map to get updated information on
the state of the potential field. It then sums up the potential
at its current location and calculates a resulting velocity
in the direction of the gradient. The GPF will update all
the generators in the search space with new weights at a
fixed interval ∆t. For our experiments we used 2 seconds.
Additionally, to prevent erratic behavior, we limit the weight
of a field generator between -100 and 100.

The agents themselves follow a set of rules to determine the
safest path. First, they check if any other agents are a certain
distance away. If there is anpther agent, it will immediately
enable the Coulombic repulsive force and move away from
the neighboring agent. If there are no obstacles, the agent will
calculate its velocity according to the potential field and move
in that direction.

D. Solutions to Key Issues

There are a number of key issues that needed to be
addressed before the algorithm was viable. The first was
keeping the agents confined in the search space. Without any
special considerations, there is nothing keeping the agents
from leaving the desired search space. To solve this problem,
we added extremely high weight potential field generators
around the search space to keep agents from crossing the
boundaries. Another problem was the classic local minima
problem. Because we use potential fields to guide agent
motion, occasionally agents will fall into “traps”, or areas with
0 potential. This is dangerous because it causes the agent to
get stuck in a local minimum and thus it won’t be able to
keep searching. To get around this issue, we added a random
vector to an agent’s existing velocity to keep it moving within
the search area.

IV. IMPLEMENTATION

We used Robot Operating System to handle the agent logic,
including the behavior of the potential field, motion and mod-
eling of the agents (with the hector quadrotor package), and
communication between the training algorithm and simulation
code. We also used Gazebo for simulating the agents and
modeling the environment. Gazebo blended seamlessly with
ROS, providing an easy and flexible way to interface our code.
The Gazebo environment is shown in Figure 3.

Additionally, we used Keras [11], a popular machine learn-
ing toolkit, with our own evolutionary algorithm implemen-
tation to run our neuroevolution approach for optimizing the
PhysField algorithm. The training node works separately from
the actual simulation. Our goal was for the training to serve as
an “observer” that tests different neural networks and observes
how they perform on the multi-agent simulation. As the
observer gathers results, it will apply evolutionary operators
like crossover and mutation to generate the next generation of
individuals to evaluate.

Figure 3. Model of NRL LASR’s Prototyping High Bay in Gazebo, originally
published in [4]

A. Distributed Simulation

For tests with experiments involving a large number of
agents, we employed a Distributed Simulation framework
which was first introduced in our previous paper [4]. This
technique essentially allowed for several Gazebo instances to
run in parallel on several machines. Each instance was respon-
sible for keeping track of physics for a small number of agents
and the framework used wired network connections between
computers to merge the individual simulations together.

B. Agent Communication

We used Lightweight Communication and Marshalling
(LCM), a UDP-based communication protocol, for any com-
munication occurring globally such as position updates from
the simulator. We also used LCM to communicate between
machines for the distributed simulation framework.

Algorithm 1 Agent Movement Algorithm
0: function PHYSFIELD(P ,quadx, quady)
1: dt← 0.001
2: px← 0
3: px← 0
4: for i← 0 to Rows do
5: for j ← 0 to Columns do
6: dx← quadx − i
7: dy ← quady − j
8: dP mag ← ((dxˆ2 + dyˆ2 + 1)ˆ2)
9: px← px+ ((2 ∗ k ∗ pher weight)/(dP mag)) ∗ dx

10: py ← py + ((2 ∗ k ∗ pher weight)/(dP mag)) ∗ dy
11: end for
12: end for
13: vx← (px ∗ s + rand())
14: vy ← (py ∗ s + rand())
15: Publish(vx, vy)

C. Agent Control

The velocity of an individual agent is determined by the
gradient of the potential function. We scale the x and y
components to a safe and realistic UAV velocity. In this
pseudocode, k represents the weight of the potential field
generator at the location (i, j). We sum the resultant ’forces’
from all the field generators in the search space to calculate
the final velocity vector given to the agent. The algorithm that
controls the velocity of the agents is shown in Algorithm 1.
This function is called at a fixed interval by all agents in the
environment. As described previously, it iterates over the grid
space and calculates the distance between each cell and the
agent. Using this distance and the current weight value in the
cell, it will determine a force on the agent. The final force
vector is converted into a velocity. The random component
is added in at this point to keep agents in motion. This final
vector is then published to the Gazebo simulation.

The Gazebo simulation and underlying physics engine takes
in this velocity and automatically applies position updates to
the agent model. Abrupt velocity changes are not possible in
the simulation as the physics engine applies friction, gravity,
and aerodynamics to the agent which keep the motion as
smooth and realistic as possible.

V. OPTIMIZATION

In order to optimize average coverage, we evolved a neural
network mapping environmental inputs to key parameters in
the PhysF ield algorithm. This allowed agents to dynami-
cally change their behavior based on the current state of the
environment. The goal of the network was to choose a set
of parameter values that would maximize the area coverage
potential of the team.

A. Evolving a Network

We trained a fixed topology feed-forward neural network
using an evolutionary algorithm where the chromosomes are
represented as weight vectors. Thus, the individuals being eval-
uated during each generation, represents a different network,
and thus a different policy.

The environmental inputs into our network are the mean
distance of a field generator to the other agents along with the
previous strength and position of the generator. The output
was next field strength that the generator should “produce”.

Our evolutionary algorithm was trained with 50 individuals
and run over 20 generations. The selectivity rate was 0.05 and
the mutation rate was 0.01. Crossovers between individuals
were incorporated as well with individuals being paired up
using a Russian roulette approach. The fitness of each indi-
vidual was evaluated by running a 2 minute simulation and
recording the overall area coverage achieved by the team. The
coverage by the entire team is used as the fitness value for
each individual in a generation.

We are still working on improving this approach and con-
ducting experiments to demonstrate its effectiveness in opti-
mizing area coverage and potential target detection, especially
in dynamic environments.

Figure 4. Coverage: 21

Figure 5. Coverage: 54

VI. EXPERIMENTS

Due to the very lengthy training required to evolve a
network with neuroevolution, in this paper we present pre-
liminary results as well as initial neuroevolution data. The
key relationship the neural network is designed to model is
between agent distance and potential field weight. We tested
different neural net weights, obtained a number of different
types of functions modeling the relationship between average
agent distance (X-axis) and the resulting weight (Y-axis) , and
noted the resulting coverage obtained by the agents. Coverage
in our experiments are defined as the total area (m2) covered
by all agents over a 2 minute period in a 20m x 20m search
grid. In general, we found minor changes in the concavity and
other features of the function caused significant changes to the
overall coverage of the team, which makes training an optimal
model very difficult.

Each of these graphs represent a different mapping between

Figure 6. Coverage: 128

Figure 7. Coverage: 100

average agent distance and weight.
After looking at large number of networks, we found that on

average weights which correspond to a downward correlation
between agent distance and weight, as shown in Figures 7, 8,
and 9, result in a higher overall area coverage. This makes
sense as we want the repulsiveness of a certain region to
decrease as an agent moves away and increase as the agent
moves closer. Interestingly, we found that in some cases
functions that decrease and increase at certain points like
Figure 6 obtain a higher average are coverage compared to
a normal decreasing graph like Figure 8.

When evolving the neural network itself, we had great
difficulty determining the right set of parameters to obtain a
progressive learning curve. Our best run involved 50 individu-
als/candidate neural networks, 20 generations, and 30 second
fitness evaluations per individual. We ran this on a 5 agent
Gazebo simulation and collected results on area coverage for

Figure 8. Coverage: 102

Figure 9. Coverage: 56

each candidate network every 30 seconds. The training began
with an average coverage of 23.86m2 at generation 1 and
ended with an average fitness/coverage of 31.9 m2 over a 30
second evaluation period. We are still working on obtaining
on a more optimal set of parameters for both the evolutionary
algorithm as well as the potential field itself. However, we are
confident in the progress of the learning process so far and will
compare our approach against other area-coverage approaches
in the near future.

VII. CONCLUSION

In this work we introduce both a new approach for achieving
effective, dynamic area coverage in an unknown environment,
and a learning method to optimize our approach using neu-
roevolution. Although our experiments are still ongoing due to
the lengthy time needed for training, preliminary observations
and data indicate that this research has promise and could per-
form extremely well after a sufficient number of generations.

We believe our approach provides a unique perspective on the
problem of multi-agent searching by allowing the environment
itself to directly influence the motion of the agents in the space.

In the future, we will continue gathering data and statistics
on our algorithm to prove that it is both effective and robust.
Moreover, we will train the algorithm on different types of
environments, with varying obstacle conditions in order to
learn a more generalized solution to the area coverage problem
using a time-varying potential field.

REFERENCES

[1] O. Khatib, Real-Time Obstacle Avoidance for Manipula-
tors and Mobile Robots, pp. 396–404. New York, NY:
Springer New York, 1990.

[2] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile
sensor network deployment using potential fields: A dis-
tributed, scalable solution to the area coverage problem,”
in Distributed Autonomous Robotic Systems 5 (H. Asama,
T. Arai, T. Fukuda, and T. Hasegawa, eds.), (Tokyo),
pp. 299–308, Springer Japan, 2002.

[3] N. Sydney, D. A. Paley, and D. Sofge, “Physics-inspired
motion planning for information-theoretic target detec-
tion using multiple aerial robots,” Autonomous Robots,
vol. 41, pp. 231–241, Jan 2017.

[4] R. Rajan, M. Otte, and D. Sofge, “Novel physicomimetic
bio-inspired algorithm for search and rescue applica-
tions,” in 2017 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 1–8, Nov 2017.

[5] J. L. Pearce, P. E. Rybski, S. A. Stoeter, and N. Pa-
panikolopoulos, “Dispersion behaviors for a team of
multiple miniature robots,” in 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 1, pp. 1158–1163 vol.1, Sept 2003.

[6] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee, “A multi-
robot coverage approach based on stigmergic communi-
cation,” in Multiagent System Technologies (I. J. Timm
and C. Guttmann, eds.), (Berlin, Heidelberg), pp. 126–
138, Springer Berlin Heidelberg, 2012.

[7] K. O. Stanley and R. Miikkulainen, “Evolving neural net-
works through augmenting topologies,” Evol. Comput.,
vol. 10, pp. 99–127, June 2002.

[8] M. J. Hausknecht, J. Lehman, R. Miikkulainen, and
P. Stone, “A neuroevolution approach to general atari
game playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, pp. 355–366, 2014.

[9] R. Miikkulainen, E. Feasley, L. Johnson, I. Karpov,
P. Rajagopalan, A. Rawal, and W. Tansey, “Multiagent
learning through neuroevolution,” in Advances in Com-
putational Intelligence (J. L. et al., ed.), vol. LNCS 7311,
pp. 24–46, Berlin, Heidelberg:: Springer, 2012.

[10] J. Ericksen, M. Moses, and S. Forrest, “Automatically
evolving a general controller for robot swarms,” in 2017
IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, Nov 2017.

[11] F. Chollet et al., “Keras.” https://keras.io, 2015.

