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Abstract—Decentralized algorithms are often used for multi-
agent search in scenarios in which it is difficult or computation-
ally intractable to use a centralized control strategy. “Bottom-up”
multi-agent search techniques, or algorithms that are based on
local interactions between agents and their environment, allow for
highly scalable and fault tolerant systems. Moreover, they often
demonstrate remarkable emergent properties, such as foraging
behavior and emulated states of matter, which can be found
in bio-inspired swarm algorithms and physics-inspired methods.
However, it is often difficult to control these systems, especially
when area coverage and target localization are the primary goals.
In this paper we propose using stigmergic techniques combined
with physicomimetic force laws to guide a multi-agent system
toward efficiently exploring a pre-defined search area. We found
that our method provides a reliable and effective method for de-
centralized area coverage by a multi-agent system. Furthermore,
we implemented our approach using Robot Operating System
(ROS) and the Gazebo simulation environment.

Index Terms—swarm, physicomimetics, stigmergy,
pheromones, bio-inspired, search and rescue, coverage,
bottom-up

I. INTRODUCTION

Mass market production of inexpensive unmanned areal
vehicles and lightweight cameras has increased the use of
autonomous aircraft in search and rescue missions. The 2011
earthquake that hit Japan resulted in more than 4,000 people
reported missing [1]. Hundreds of search and rescue workers
risked their lives working through extremely hazardous con-
ditions to rescue survivors and locate the missing. In 2017
multiple natural disasters including earthquakes in Mexico,
and hurricanes Harvey, Irma, and Maria causing widespread
destruction and flooding, left thousands stranded awaiting
rescue. Unmanned robotic systems may be used to locate
survivors while minimizing the risk to the lives of the search
and rescue workers. Research is currently underway into use
of low-cost UAV swarms for search and rescue, but efficient
methods for controlling these robot swarms are still lacking.
Key research is needed to develop algorithms that coordinate
swarms of agents (robots) to effectively locate targets, or
“survivors,” in a search and rescue scenario.

In disaster relief scenarios it is important for these multi-
agent systems to work in a decentralized system and to
handle changes in agent population. This is especially critical
in urban search and rescue where the probability of agents
getting damaged and going offline is high due to hazardous

conditions. In this paper we discuss a new bio-inspired and a
physics-inspired decentralized method for guiding multi-agent
systems towards high area coverage when communication and
agent membership may be erratic. More specifically, repellent
pheromones are used to guide agents toward unexplored
regions of a given search space in order to increase the chances
of locating a target. Agents employ specific rules that dictate
when a pheromone should be placed. Additionally, they are
repelled from previously laid pheromones using an inverse
square law. In situations where a target’s general location is
known, attractive pheromones can be used to “encourage” the
swarm to search the area where a target might be located.
Furthermore, the approach is novel because it combines the
versatility of physics-inspired solutions with the ability to
remember past team behavior using stigmergy.

A. Inspiration from Nature

a) Stigmergy: Stigmergy [2, p. 518] refers to techniques
that involve indirect communication between agents through
the environment. The strategy is inspired by ant behavior. Ants
drop attractive and repellent pheromone trails to communicate
with other ants. Optimization techniques such as Ant Colony
Optimization are heavily inspired by these pheromone trails.
The basic premise is that as ants or “agents” look for food or
“targets”, they drop pheromone trails. Over time the trail with
the highest scent ends up being the shortest path to the target,
and the path more agents take. Moreover, the pheromone trails
evaporate over time to prevent agents from converging on a
locally optimal solution.

In this paper we look at pheromones not as trails, but as
individual particles. Just as real pheromone trails decay in
scent, our pheromones exhibit a similar evaporation model.

b) Physicomimetics: Physicomimetics refers to a class
of swarm based algorithms that rely on using virtual forces
to control multi-agent systems. This approach, sometimes
referred to as “Artificial Physics” (AP) was introduced by
William Spears and Diana F. Gordon in 1999 [3]. In their
model, they used AP to create multi-agent formations solely
using force laws between agents. Formations are typically
achieved by having both repulsive and attractive zones around
agents. This causes agents to maintain a fixed distance away
from neighbors while still behaving as a group. Moreover,
this rule allows swarms to form into geometric shapes such as



squares and hexagons. The forces are also restricted to act over
a fixed radius around each agent, thereby ensuring locality and
therefore scalability of the method with respect to the number
of agents. Physicomimetics has since been applied to several
different problem domains including path-planning [4], obsta-
cle avoidance [5], surveillance [5], and search-and-rescue [6]
tasks. Slightly changing the forces between agents can result in
remarkably different behaviors, which may be useful for very
different applications. For instance, in simulating swarms as
states of matter, solids are useful in tasks that require a team
formation, while gases can be useful in coverage tasks [7].

The key advantage of AP techniques is that the force only
needs to be calculated at a given robot’s position. As a result, it
is not necessary to calculate the gradient of an entire potential
field, allowing for significantly lower computational overhead.
Spears and Gordon [3] cite this as the primary advantage of
AP over previous potential field methods.

II. PREVIOUS WORK

Multi-agent control has long been studied across a wide
variety of fields, yet remains an active area of research. While
centralized algorithms provide provably optimal solutions to
many problems, the computational complexity of centralized
methods limits their use to small numbers of robots and as-
sume the existence reliable global communication. In contrast,
decentralized algorithms can often scale beyond thousands of
robots and only require intermittent local communication.

Decentralized coverage algorithms often rely on some form
of a leader-follower paradigm for maintaining team formations
[8, 9]. The use of pheromones or physicomimetics techniques
to guide multi-agent systems is a popular technique for achiev-
ing distributed control. A number of papers in the last decade
have investigated how stigmergy can be used to improve cov-
erage and solve optimization problems. Specifically, the use
of attractive and/or repellent pheromones to achieve coverage
or target localization behavior in a team. Additionally, other
research has built on the original work by [3] and developed
AP-based algorithms for the purpose of surveillance. However,
research into combinations of bio-inspired and physicomimetic
techniques has been limited.

A. Pheromone Research

Research into using stigmergic techniques for multi-agent
coverage typically uses repellent pheromones, and sometimes
attractive pheromones to guide agents towards unexplored
regions. Typically pheromones are used more as a heuristic
to optimize another algorithm. For instance, [10] modeled the
search space as a set of zones connected through a Markov
model. Each zone then consists of connected “nodes”- as
agents explore the zone they drop repulsive pheromones on
explored regions and attractive pheromones on found targets.
A probabilistic model based on pheromone concentrations
in each node determines how an agent moves within the
zone. However, this algorithm works concurrently with a
Markov transition model, which uses transition probabilities
obtained from a generational genetic algorithm to define agent

mobility between zones. This approach makes a couple of key
assumptions. First, a pre-processing step is necessary to divide
the search area into zones and generate a Markov model.
Second, it primarily relies on a global pheromone map updated
and shared amongst all agents. Although a local map is used
if the global map is not available, the algorithm is designed
to work with global pheromone data.

Using probabilistic models based on pheromone concentra-
tions is not a new concept. Other works have relied on agents
preferring and moving towards regions with lower repellent
pheromone count [11, 12, 13]. Other papers use pheromones
to form attractive or repellent gradients or “trails” to move
agents towards unexplored regions and away from explored,
or currently being explored, regions [14]. We borrow and
extend several ideas introduced in these papers to optimize
our algorithm. For example, we place high weight repellent
pheromones on the boundaries of the search space to keep
agents inside, similar to a method described in [11]. Our
use of repellent pheromones to prevent agents from exploring
previously explored regions is discussed as a core aspect of
many stigmergic coverage algorithms [10, 11, 12, 14]. The
key difference in these algorithms is how these pheromones
are stored and detected. Some use global pheromone maps to
keep track of all dropped pheromones [10]. This approach may
have an advantage over local map approaches [14, 11] in cases
where the swarm has low connectivity, but a global map in-
troduces the issue of a central point of failure and necessitates
long range network connectivity that might not be available
in a real scenario. Some papers also discuss using stigmergy
in a more literal sense and dropping “real” pheromones in the
environment [12]. Although this may advantageous due to its
true bio-inspired nature, it is important to note that in a real
implementation of their algorithm, a global pheromone map
would likely be required.

Attractive pheromones, on the other hand, have often been
used in target localization tasks [13]. When an agent locates
a target, an attractive pheromone is placed to allow the team
to move towards the target location. Although our algorithm
could have incorporated this “feature” as well, it was outside
the scope of our task, which was optimizing area coverage.

Pheromone based search methods tend to have a number
of common limitations. For instance, they often exhibit poor
control over individual agents. Simple pheromone approaches
focus on overall swarm behavior, making it difficult to control
or manage agent-agent interactions. This is especially impor-
tant in tasks such as formation-keeping and new trajectory
generation for exploration.

B. Physicomimetics Research

Research in physicomimetics algorithms for area coverage
or surveillance tasks tends to revolve around modeling agents
as gas particles. Some papers discuss using gas models because
they allow swarms to achieve uniform coverage, even in
obstacle laden areas [15]. Gas models allow for dispersion and
can be useful in situations where accurate agent localization is
not available [7]. Although gas models can guarantee coverage



Figure 1. Low Energy Configuration for 7 Agents

in most environments, they are highly unpredictable and
there’s nothing preventing agents from revisiting previously
explored regions. In [16] an approach is detailed combining
gas dynamics through a Lennard-Jones potential with a tem-
perature gradient model. When agents cover areas with no
target present, the “temperature” below increases causing them
to move down the temperature gradient toward colder regions.

Physicomimetics-based optimization techniques often run
into the problem of agents not remembering past behavior. In
an exploration scenario this can cause agents to unnecessarily
cover the same area multiple times. Additionally, most AP
algorithms work by minimizing the total potential energy of
the system [7]. Thus, once this low energy state is achieved,
it is difficult to “restart” the algorithm. Figure 1 shows one
low energy configuration for 7 agents. For a gas-based model,
external energy must be injected into the system.

III. METHODOLOGY

Our approach relies on combining ideas from typical stig-
mergic approaches with artificial force laws often found in
multi-agent coverage solutions. Our goal is to show that
combining physicomimetic and biomimetic techniques can be
effective in area-coverage and target localization problems.

In the following sections, we describe the PherPhys algo-
rithm, its features, and why it works.

A. Features

Our algorithm exhibits several features apparent in many
similar decentralized, multi-agent search algorithms. For one,
there is no global communication. All interactions occur
between nearby agents. Pheromones placed by an agent in the
environment are not immediately known to the entire team.
Instead, this information spreads incrementally through local
communication and as robots move through the environment.
This allows for our approach to be scalable and robust to
changes in agent membership. Second, this approach relies on
virtual stigmergy, meaning pheromone locations and weights
are updated on a virtual map, or in this case a grid repre-
senting the search area, that can be shared with other agents.

This map is maintained locally by each agent and is shared
with nearby neighbors, thus removing the need for global
communication. Third, in order to prevent agents from being
unable to access certain parts of the environment due to a
high concentration of pheromones, a decay policy is used.
After a predefined amount of time, all agents decay all of
their “known” pheromones according to an exponential decay
function. “Known” pheromones refers to pheromones stored
in an agent’s local pheromone map. In cases where complete
connectivity is not possible, some agents may not have an
updated map of pheromones.

w = w · e−δ Repeat every ∆t seconds

The decay constant δ and the update interval ∆t are
especially important because together they define how long
it takes for a given agent to revisit a certain area.

B. Functionality

The heart of the algorithm is inspired by Coulomb’s law.
The premise is that both pheromones and agents exhibit a
charge. The agents’ charge is left as a constant, while the
pheromones’ charge is defined as its “weight”. The charge thus
decreases over time according to the above decay function.
Pheromones placed in the environment thus exhibit a charge
on the agents in the environment. Thus, these forces can
be summed vectorially to define the motion of the agents.
The following equations define the motion of an agent as a
result of a Coulombic force with total force FT , number of
particles/agents N , particle charge qi, Coulomb’s constant k,
position vector ~ri, acceleration vector ~a, particle/agent mass
m, velocity vector ~v, and time step ∆t:

~FT =

N∑
i=2

kq1q2

‖~ri − ~r1‖3
· (~ri − ~r1) (1)

~a =
~FT
m

(2)

~v = ~a ·∆t (3)

As shown, the acceleration vector obtained from the summed
Coulombic force is converted into a velocity vector by mul-
tiplying by a time step size defined in the simulation envi-
ronment. The rule for dropping pheromones is based on area
covered. More specifically, an agent drops a pheromone every
time it covers a certain amount of area. This number is directly
correlated with the density of pheromones in the search space
and thus how long it takes an agent to revisit a region of the
search area. Moreover, this constant together with δ and ∆t
must be set appropriately depending on the target detection
model and topology of the search space. If the sensor model
is defined by a high false negative rate, it is important that
agents can come back to previously visited areas more quickly.
However, if the sensor model has a low false negative rate, it is
important that agents visit new areas more often. Nevertheless,
a decay is still necessary to prevent agents from getting stuck
in regions of the search space.



Figure 2. Finite State Machine

The actions of an agent are defined by a Finite State
Machine with 3 states: explore, avoid, and drop pheromone.
The transitions between these states are shown in Figure 2. It
is important to note that the avoid state is given the highest
priority as it prevents agents from colliding with other agents
and leaving the search space. The “pheromone rule” is defined
by the amount of area covered before a pheromone is dropped.

C. Solutions to Key Issues

There are a couple of key issues that had to be ac-
knowledged and resolved in order for our approach to work
effectively. The most important one was getting stuck in local
minima. This primarily occurs when agents are located at the
intersection of two potential fields from nearby pheromones.
This results in agents oscillating between two pheromones for
a long duration of time.

This is a very common problem and often mentioned in lit-
erature on physicomimetics and pheromone-based algorithms.
For example, some research has been looking into using agents
as “rescuers” when an agent is stuck in a local minimum
[17]. The premise is that a rescuer would use a local force
interaction to push an agent out of a local minimum. We
adopted a similar policy to get agents out of local minima.
However, most of the strategies we implemented involved
directly changing the velocity of a stuck agent instead of the
force acting on it. This allowed us to get agents “unstuck”
fairly quickly. The methods we used to force agents out of
local minima were:

• Add a small random velocity vector to each agent.
• Incorporate a “minimum distance” rule that only adds

forces from pheromones that are at least a certain distance
away from an agent.

• Implement a check to see if agents are exhibiting oscilla-
tory behavior. If the check is true, we temporarily remove

Figure 3. Model of NRL LASR’s Prototyping High Bay in Gazebo

the effect of the pheromones and add a random velocity
vector towards the center of the world for a small duration
of time.

Together these approaches effectively resolved the issue
of agents getting stuck in local minima without sacrificing
exploration time.

Another issue we faced was keeping agents inside the
search area. To resolve this we added permanent high-weight
pheromones around the boundaries of the search area. This
effectively kept agents in the search space and allowed them
to continue exploration. Agents were still able to cover areas
near the boundaries because the wall pheromones were only
sensed when an agent was very close to an edge.

IV. IMPLEMENTATION

We employed ROS (Robot Operating System) to control
the behavior of the agents and Gazebo for simulation. ROS
is an established framework for writing robot software. It
provides models, tools, and libraries that make it ideal for
quickly testing algorithms in simulation and on real hardware.
In this effort we used the hector quadrotor package to model
and control a simple quadrotor. The quadrotors or “agents”
were simulated in the Gazebo simulation software because
it provides a robust simulation platform and easily interfaces
with ROS. Using a realistic simulation is important when
testing multi-agent algorithms because we need to be able
to simulate how they work in the real world. This is espe-
cially crucial when dealing with agent-agent interactions and
ensuring possible collisions are eliminated. Figure 3 displays
the simulation environment and model we used to test our
algorithm.

A. Distributed Simulation

Simulating multi-agent systems can be extremely com-
putationally expensive. To account for this we designed a
distributed simulation framework that can merge multiple
Gazebo instances running on different computers into a single
simulation using an open source UDP Multicast Protocol. We



implemented this technique on an isolated network with wired
connections to reduce network latency. Thus, this allowed us
to effectively test our algorithm with high fidelity on a large
number of agents. Further detail on this framework is left out
as it is beyond the scope of this paper.

B. Agent Communication

Because agents resided on different computers, we em-
ployed a UDP protocol called Lightweight Communications
and Marshalling (LCM) [18] to allow for local communica-
tion between nearby robots. Moreover, for the purposes of
simulation, each agent knows the location of the other agents
only to detect nearby agents. In a real scenario, proximity
sensors would be employed for this task. As agents explore
the search space and drop pheromones, they keep an internal
map of their known pheromone locations. Each pheromone
can be represented as a vector:

Pher =< x, y, w > (4)

Where x and y define the location of the pheromone and w
defines the weight. Agents store pheromones in a vector and
can append new ones or remove existing ones. When agents
need to merge their pheromones Algorithm 1 is employed
where P and M are the pheromone vectors to be merged,
and Add() appends an item to a vector. In this approach, if
both agents have copies of the same pheromone, the algorithm
will choose the pheromone with a lower weight when merging.

Algorithm 1 Pheromone Map Merging Algorithm
0: function MERGEPHER(P ,M )
1: for i← 0 to M.Length do
2: match← −1
3: for j ← 0 to P.Length do
4: if M [i][0] = P [j][0] AND M [i][1] = P [j][1] then
5: if P [j][2] > M [i][2] then

P [j][2]←M [i][2]
6: end if
7: match← 1
8: end if
9: end for

10: if match = −1 then
P.Add(M [i])

11: end if
12: end for
13: return P

Although Algorithm 1 is O(n2), which may be compu-
tationally expensive when dealing with large numbers of
pheromones, it is only used when agents are in close proximity,
and pheromones with 0 weight are automatically removed.

C. Agent Control

The algorithm for calculating the velocity of an agent is
much less expensive, with a complexity of O(n). Algorithm
2 describes how the forces are summed and the resulting
velocity is calculated where P is an agent’s vector of known

Algorithm 2 Agent Movement Algorithm
0: function PHERPHYS(P ,quad)
my x← getX(quad)

2: my y ← getY (quad)
dt← 0.001

4: for i← 0 to P.Length do
pher x← P [i][0]

6: pher y ← P [i][1]
pher weight← P [i][2]

8: dx← my x− pher x
dx← my y − pher y

10: if Distance(pher x, pher y,my x,my y) < 4 then
dP mag ← ((dxˆ2 + dyˆ2)ˆ0.5)ˆ3

12: fx← ((k ∗ q ∗ pher weight)/(dP mag)) ∗ dx
fy ← ((k ∗ q ∗ pher weight)/(dP mag)) ∗ dy

14: Ft x← Ft x+ fx
Ft y ← Ft y + fy

16: end if
end for

18: ax← Ft x/quad.mass
ay ← Ft y/quad.mass

20: vx← (ax ∗ dt+ getRandom())
vy ← (ay ∗ dt+ getRandom())

22: Publish(vx, vy)

pheromones, quad represents the agent, my x and my y
define the current location of the agent, pher x and pher y
define the location of a pheromone, pher weight defines
the weight of a pheromone, ax, ay, vx, and vy define the
calculated acceleration and velocity. Note the addition of
a random component getRandom() to keep agents from
becoming stuck in local minima.

The logic used in Algorithm 2 is also employed when
agents come near each other to prevent collisions. To keep
the vector math simple, the heading or yaw of all the agents
is kept constant. Agents are moved by controlling their linear
velocities in the x, y, and z directions.

Agent mobility is handled primarily by the Gazebo physics
engine. Our algorithm publishes velocities for each agent to the
simulation server and Gazebo automatically determines a way
to change the agent’s velocity realistically. This is important
because abrupt changes in velocity are not possible in a real
world situation and may lead to unrealistic results.

V. EXPERIMENTS

We compared our PherPhys algorithm to that of a ran-
dom walk. We performed repeated trials in simulation, and
recorded area coverage over time as well as number of targets
detected. We experimented with 3 team sizes: 3, 5, and 7. We
performed 20 trials for each algorithm and team size, with 1
randomized target location per trial. The parameters used for
each algorithm are shown in Table I.

In each case the PherPhys algorithm performed at least
10% better than a pure random search. Our implementation
of a random walk involved agents changing their velocities



Algorithm Decay Factor Grid Size Velocity Limit
PherPhys 0.3 20m x 20m 0.6 m/s
Random N/A 20m x 20m 0.6 m/s

Table I
EXPERIMENTAL PARAMETERS

3 Agent Statistics
Group PherPhys Random
Mean 310.20 267.00
SD 22.21 18.31
SEM 7.02 5.52
N 20 20

Table II
STATISTICS FROM 3 AGENT COVERAGE FOR PHERPHYSAND RANDOM

by a small amount at every time step. To ensure agents stay
inside the search space and don’t collide with other agents,
Coulombic forces are used only between agents and walls.
The force is kept small to ensure we had a proper baseline to
compare our algorithm against. The results show that agents
in the PherPhys algorithm have a higher chance of visiting
new search areas. We found the difference between the overall
coverage in all team sizes was statistically significant with
better than 95% confidence and p-value < 0.0001. Moreover,
the standard deviation of final coverage is much lower in the
PherPhys compared to random, indicating high consistency
in area coverage. Tables II, III, and IV show the statistical
results for 3, 5, and 7 agents respectively. We proved statistical
significance using an unpaired t-test.

The results for target detection are shown in Table V.
Overall our algorithm detects more targets compared to Ran-
dom. Although the difference may not seem significant, it
is important to note that in a search and rescue scenario,
finding just 1 survivor is significant. That being said, further
experiments will have to be conducted to measure how much
better our algorithm is compared to other approaches.

When comparing agent sizes on our algorithm, we notice
that increasing team size has a noticeable and significant

5 Agent Statistics
Group PherPhys Random
Mean 338.87 290.8
SD 16.23 18.13
SEM 4.19 4.05
N 20 20

Table III
STATISTICS FROM 5 AGENT COVERAGE FOR PHERPHYSAND RANDOM

7 Agent Statistics
Group PherPhys Random
Mean 356.10 293.85
SD 4.31 14.92
SEM 1.36 3.34
N 20 20

Table IV
STATISTICS FROM 7 AGENT COVERAGE FOR PHERPHYSAND RANDOM
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Figure 4. Area Covered vs. Team Size Using PherPhys Algorithm
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Figure 5. PherPhys vs. Random Algorithm with 3 Agents (300 Steps. 2
seconds/step)
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Figure 6. PherPhys vs. Random Algorithm with 5 Agents (300 Steps. 2
seconds/step)



Agents PherPhys Random
3 19 15
5 18 18
7 20 18

Table V
STATISTICS FOR TARGET DETECTION
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Figure 7. PherPhys vs. Random Algorithm with 7 Agents (300 Steps. 2
seconds/step)

impact on the area coverage. The results show a clear ad-
vantage for the PherPhys over a pure random walk. We
used a random walk as an equivalent to the gas-model in
a physicomimetics-based exploration strategy. To serve as a
baseline, we also implemented a pheromone-only algorithm.
In this approach, each agent checks the pheromone density
in 4 locations: up-left, up-right, down-left, down-right. The
agent then moves towards the quadrant with the least density.
However, even though this is a pheromone-only approach, we
still included the physicomimetic repulsion between agents
for the sole purpose of collision avoidance. We also kept
a repulsive force from the pheromones on the edges of the
search space to keep agents in. Experiments evaluating this
model are still ongoing but preliminary results indicate that
our pheromone-only model fails to reach optimal coverage.
Future experiments will test a more accurate version of this
model. Based on these results, it can be concluded that a
combination of physicomimetic and stigmergic techniques is
a viable solution for the coverage problem. Future work will
compare our approach to centralized approaches such as lawn-
mower paths and Boustrophedon coverage algorithms.

VI. CONCLUSION

In this paper we presented a new distributed, bio-inspired,
and physics-inspired search algorithm for solving the classic
area coverage or surveillance problem, specifically focusing on
applications in search and rescue scenarios. The PherPhys
algorithm was both scalable and robust due to its highly decen-

tralized nature. We were able to demonstrate that the algorithm
performs better than a baseline random walk. Moreover, we
showed that the algorithm performs better in terms of area
coverage with more agents.

In future work we will incorporate an attractive pheromone
model that can be used when the general location of a target
is known. A possible application of this would be in a
search and rescue scenario where a human operator knows
the approximate location of a survivor and can guide the
robot team towards that area. We will use machine learning
and evolutionary techniques to optimize starting pheromone
weight, decay factor, and a policy for dropping a pheromone
to optimize area coverage.
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