
Any-Com Multi-Robot Path Planning

by

Michael Wilson Otte

B.S. Computer Science, Clarkson University, 2005

B.S. Aeronautical Engineering, Clarkson University, 2005

M.S. Computer Science, University of Colorado at Boulder, 2007

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2011

This thesis entitled:
Any-Com Multi-Robot Path Planning

written by Michael Wilson Otte
has been approved for the Department of Computer Science

Prof. Nikolaus Correll

Prof. Michael Mozer

Prof. Richard Han

Prof. Jason Marden

Prof. Eric Frew

Prof. Gaurav Sukhatme

Prof. Richard Voyles

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Otte, Michael Wilson (Ph.D., Computer Science)

Any-Com Multi-Robot Path Planning

Thesis directed by Prof. Nikolaus Correll

Robust autonomous robotic systems must use complete or probabilistically complete path

planning algorithms when less expensive methods fail (where completeness is the algorithmic prop-

erty of being able to find a solution to a problem when one exists). However, these methods are

sometimes so computationally complex that a solution cannot be found within a reasonable amount

of time. Communication between robots tends to increase completeness and reduce computational

complexity; however, communication quality is environmentally dependent and often beyond con-

trol of the user or system. Previous approaches to the multi-robot path planning problem have

each been tailored to a single point within the completeness vs. computational vs. communication

state space, and are often ill-equipped to solve problems outside their design envelope. In contrast,

I believe that truly robust multi-robot navigation can only be achieved by algorithms that auto-

matically tune their performance within this state space to maximize performance vs. each problem

the system faces.

My personal bias is to maximize algorithmic completeness while respecting the computational

resource and communication quality that is currently available. In order to be useful, the resulting

solutions must be calculated within a reasonable amount of time. I also believe that it makes sense to

divide the computational effort of finding multi-robot path planning solutions among all robots that

the solution will benefit. This can be accomplished by recasting a networked team of robots as an

ad-hoc distributed computer—allowing the team’s computational resources to be pooled increases

the complexity of problems that can be solved within a particular amount of time. However,

distributed computation in an ad-hoc framework must respect the fact that communication between

computational nodes (i.e., robots) is usually unreliable.

I propose the thesis “Sharing Any-Time search progress over an ad-hoc distributed computer

iv

that is created from a dynamic team of robots enables probabilistically complete, centralized, multi-

robot path-planning across a broad class of instances with varied complexity, communication quality,

and computational resources.” The work presented in this dissertation in support of my thesis can

be divided into three related areas of focus. (1) I propose a new distributed planning concept

called Coupled Forests Of Random Engrafting Search Trees (C-FOREST), and demonstrate that

it has parallelization efficiency greater than 1 for many problems. (2) I propose using a robotic

team as an ad-hoc distributed computing cluster, and demonstrate that when C-FOREST is run

on this type of architecture it is able to exploit perfect communication when it exists, but also has

graceful performance declines as communication quality deteriorates. I coin the term “Any-Com”

to describe algorithms with the latter property. (3) I propose a dynamic team version of Any-Com

C-FOREST that allows multiple robotic teams to form and then re-form as robots move about

the environment. Each team acts as an ad-hoc distributed computer to solve its composite robots’

communal path planning problem. Limiting teams to include only conflicting robots improves algo-

rithmic performance because it significantly reduces the computational complexity of the problem

that each team must solve. Replanning through only the subset of the configuration space in which

conflicts occurs has similar computational benefits.

Dedication

This thesis is dedicated to my mechanical pets—on account of their integral role in its creation:

Scooter (#1)

Theodore “Teddy” (#2)

Bill (#3)

Jeeves (#4)

Johny (#5)

Geoffery (#6)

As well as my flesh and blood pets:

Luna

Jewels

Stormey

And old friends:

Roger (#22)

Marven (#42)

vi

Acknowledgements

I would like to thank the residents of Andrew’s Hall for allowing me to conduce experiments

in their home. I would also like to thank Sam Edwards for helping map Andrew’s Hall, Erik

Komendera for helping run the Large Andrew’s Hall Experiment, my advisor Nikolaus Correll

and all of the other members of my thesis committee for the valuable feedback and advice that

they have provided, as well as Dustin Reishus for his feedback. Finally, I would like to thank the

members of the Andrews Hall Robotics Initiative who helped me instrument the building with

infrared localization tags.

vii

Contents

Chapter

1 Introduction 1

1.1 Overview . 6

1.1.1 Top-down motivation . 6

1.1.2 Bottom-up motivation . 9

1.2 Nomenclature . 10

2 Related work 13

2.1 Multi-robot path planning . 13

2.1.1 Cocktail party . 14

2.1.2 Traffic rules . 14

2.1.3 Prioritized planning . 15

2.1.4 Decoupled planning . 15

2.1.5 Centralized planning . 15

2.1.6 Dynamic teams . 16

2.1.7 Any-Com . 16

2.2 Single-query path planning . 17

2.2.1 Single-query vs. multi-query algorithms . 17

2.2.2 Distributed single-query algorithms . 18

2.2.3 Other forest based algorithms . 20

2.3 Contributions of this dissertation . 20

viii

3 C-FOREST: distributed path planning with super linear speedup 22

3.1 Parallel C-FOREST . 24

3.1.1 Algorithm description . 24

3.1.2 Sampling analysis . 27

3.2 Super linear speedup analysis . 28

3.3 Sequential C-FOREST . 39

3.4 C-FOREST experiments . 40

3.4.1 Seven degree of freedom manipulator arm . 41

3.4.2 Centralized multi-robot planning: toy problem 43

3.4.3 Centralized multi-robot planning: office environment 45

3.5 Discussion of C-FOREST results . 47

3.6 C-FOREST conclusions . 51

4 Any-Com C-FOREST: path planning with an ad-hoc distributed computer created over a

networked robotic team 53

4.1 Any-Com C-FOREST methodology . 54

4.2 Any-Com C-FOREST experiments . 60

4.2.1 Simulated office experiment . 62

4.2.2 Real robot office experiment . 62

4.2.3 Faraday cage experiment . 64

4.3 Discussion of Any-Com C-FOREST results . 64

4.4 Any-Com C-FOREST conclusions . 67

5 Dynamic-Team Any-Com C-FOREST: centralized multi robot path planning with dynamic

teams 70

5.1 Dynamic-Team Any-Com C-FOREST methodology 74

5.1.1 Maintaining completeness . 79

5.1.2 Modifications . 83

ix

5.2 Dynamic-Team Any-Com C-FOREST experiments 84

5.2.1 Large Andrews Hall experiment . 84

5.2.2 Small Andrews Hall experiment . 86

5.2.3 Large Andrews Hall experiment with conflict region selection 88

5.2.4 Six robot experiment with dynamic-teams . 89

5.2.5 Six robot experiment without dynamic-teams 91

5.3 Discussion of Dynamic-Team Any-Com C-FOREST results 91

5.4 Dynamic-Team Any-Com C-FOREST conclusions 92

6 Conclusions 94

Bibliography 98

Appendix

A Path planning background 107

A.1 Conceptual overview . 107

A.1.1 Planning, paths, and navigation . 107

A.1.2 Configuration-space vs. work-space . 109

A.1.3 Completeness . 110

A.1.4 Any-Time algorithms . 110

A.2 Single-robot navigation . 110

A.2.1 Reactive algorithms and potential field methods 111

A.2.2 Rule based navigation (bug algorithms) . 111

A.2.3 Graph based methods . 112

A.3 High-dimensional path-planners . 114

A.3.1 Multi-query path-planners . 115

A.3.2 Single-query planners . 115

x

B The Any-Time Shortest Path Random Tree path planning algorithm (Any-Time SPRT) 117

B.1 SPRT methodology . 120

B.1.1 Basic Any-Time RRT . 120

B.1.2 Any-Time SPRT (shortest path random tree) 123

B.2 Runtime, theory, and proofs . 124

B.2.1 Runtime . 125

B.2.2 Path wandering phenomenon . 126

B.2.3 Path-length proofs . 128

B.3 SPRT experiments . 129

B.4 Discussion of SPRT results . 133

B.5 SPRT conclusions . 135

C On the expected length of greedy paths through random graphs 138

C.0.1 Related Work . 139

C.1 Random path problem formulation . 140

C.2 Random path nomenclature . 141

C.3 Outline of technique . 143

C.4 Expected quantities of simple algorithms . 144

C.4.1 Expected angle to a desired heading Eφ∗ . 145

C.4.2 Expected secant of angle to a desired heading Esec(φ∗) 149

C.4.3 Expected cosine of angle to a desired heading Ecos(φ∗) 151

C.4.4 Minimum bound on expected path length with 2 edges 153

C.4.5 Checking our work . 158

C.5 Bounds on more complex algorithms . 158

C.5.1 Lower bound on greedy algorithm from point to plane in an obstacle free

environment . 160

C.5.2 Lower bound on greedy algorithm from point to point 163

xi

C.5.3 Lower bounds with obstacles . 164

C.6 Applications and implications . 167

C.6.1 Estimation of optimal path length . 167

C.6.2 Evaluation of algorithmic performance vs. D 168

C.6.3 Evaluation of algorithmic performance vs. time and r 172

C.7 Random path experiments . 177

C.8 Random path discussion and conclusions . 177

xii

Tables

Table

5.1 Small Andrews Hall experiment statistics . 87

5.2 Large Andrews Hall experiment (with conflict region selection) statistics 88

5.3 Six robot experiment (with dynamic-teams) statistics 89

5.4 Six robot experiment (without dynamic-teams) statistics 90

C.1 Special cases of Eφ∗ , Esec(φ∗), and Ecos(φ∗) . 148

xiii

Figures

Figure

3.1 Tree with path . 25

3.2 Parallel C-FOREST . 26

3.3 Subspaces . 29

3.4 f(n) super linear speedup range . 36

3.5 Sequential C-FOREST . 39

3.6 Manipulator arm . 41

3.7 Arm, Sequential C-FOREST . 42

3.8 Toy and office environments . 43

3.9 Toy, Parallel C-FOREST . 44

3.10 Toy, Sequential C-FOREST . 45

3.11 Office, Parallel C-FOREST . 46

3.12 Office, Sequential C-FOREST . 47

3.13 Office, Parallel C-FOREST variants . 48

3.14 Office, Sequential C-FOREST variants . 49

4.1 Any-Com C-FOREST . 56

4.2 Example paths and the Prairiedog platform . 61

4.3 Simulated office experiment, path lengths . 61

4.4 Simulated office experiment, average agreement times 61

xiv

4.5 Real robot office experiment, path lengths and agreement times 62

4.6 Faraday cage experiment, path lengths and agreement times 63

5.1 Dynamic-Team Any-Com C-FOREST graphic . 71

5.2 Dynamic-Team Any-Com C-FOREST with conflict region graphic 72

5.3 Dynamic-Team Any-Com C-FOREST . 75

5.4 Dynamic Team Any-Com C-FOREST (2) . 76

5.5 Andrew’s Hall paths, top down . 85

5.6 Andrew’s Hall paths vs. time (large environment) . 85

5.7 Andrew’s Hall Paths vs. time (small environment) 87

5.8 Andrew’s Hall paths vs. time (large environment with conflict region selection) . . . 88

5.9 Six robot experiment (with dynamic teams) . 89

5.10 Six robot experiment (without dynamic teams) . 90

A.1 Example of a path . 108

A.2 Route resulting from Bug1 . 112

A.3 Example of a grid-based path . 113

B.1 Search-trees . 118

B.2 Any-Time RRT algorithm . 121

B.3 Any-Time SPRT algorithm . 123

B.4 Possible locations for p . 126

B.5 SPRT experiment workspaces . 130

B.6 SPRT experiment 1, single run . 131

B.7 SPRT experiment 1, mean over 100 runs . 131

B.8 SPRT experiment 2, mean over 100 runs . 132

B.9 SPRT experiment 2, number of robots that have found first solution 132

B.10 SPRT experiment 3 . 133

xv

C.1 Random graph . 144

C.2 D-ball B and related quantities . 145

C.3 Hypersector φ . 146

C.4 Eφ∗ , the expected angle to desired heading . 149

C.5 Esec(φ∗), the expected secant of angle to desired heading 151

C.6 1/Ecos(φ∗), the inverse of the expected cosine to desired heading 153

C.7 Post process . 153

C.8 Ψ, the intersection of B1/2 with region in ellipsoid 155

C.9 Ec∗ , the expected length of a greedy 2-node path . 157

C.10 Monte Carlo estimation of Eφ∗ , Esec(φ∗), Ecos(φ∗), and Ec∗ 159

C.11 Point to plane . 160

C.12 Overlap . 162

C.13 Path transformation . 163

C.14 Greedy algorithm . 178

Chapter 1

Introduction

The proliferation of inexpensive computers, high-resolution depth-sensing devices, and ac-

curate localization systems has significantly shifted the economics of using robotics. It has both

increased the number of applications where robotic solutions are affordable and reduced the barrier-

to-entry of the robotic research field. Thus, the demand for mainstream robotic products is growing

in parallel with the wealth of expertise and knowledgeable that is necessary to deliver them. This

suggests a significant increase in robotic deployment in the near future. Autonomous navigation

is a key capability for enabling both industrial and consumer robotics to perform their work ef-

fectively [31]. As robot traffic becomes more congested, tomorrow’s systems must be capable of

coordinated interaction within a multi-robot society. This imposes a need for multi-robot naviga-

tion solutions that can plan efficient, coordinated, and collision-free paths for all robots operating

within a common environment.

The multi-robot navigation problem is to find a coordinated set of collision-free paths for all

robots moving within a common area. It is an instance of the piano mover’s problem—for which

complete solutions are exponentially difficult to calculate in the number of robots involved [113].

For instance, centralized multi-robot path-planning algorithms view individual robots as separate

pieces of a single conglomerate robot. These algorithms provide the best completeness guarantees of

any tool in the multi-robot navigation toolbox; however, they are also the most expensive to use—

sometimes prohibitively so. Many less-expensive incomplete methods have proven to be extremely

useful for all but the most challenging navigation instances (see Chapter 2). However, challenging

2

problem instances do exist, and robust autonomous systems must use complete algorithms when

less expensive methods fail. I believe that multi-robot navigation algorithms should automatically

adjust their level of completeness to maintain tractability vs. the particular problem they are

currently facing.

Communication between robots tends to increase completeness and reduce computational

complexity. For example, teams without communication may fail to solve simple bottleneck prob-

lems, and it is much easier to learn about other robots’ intentions via messages than to infer

them from sensor observations and/or behavior models. Unfortunately, communication quality is

environmentally dependent and often beyond control of the user or system. I believe that multi-

robot navigation algorithms should adjust to use whatever communication is available, while also

attempting to maximize completeness and maintain tractability .

Previous approaches to the multi-robot path planning problem have each been tailored to

a single point within the completeness vs. computational vs. communication state space, and are

often ill-equipped to solve problems outside their design envelope. In contrast, I believe that truly

robust multi-robot navigation can only be achieved by algorithms that automatically tune their

performance within this state space to maximize performance vs. each problem the system faces.

I believe that if each robot is equipped with its own computer and the ability to communicate,

then it makes sense to divide computational effort of finding a centralized path planning solution

among all robots that the solution will benefit. In particular, a networked team of robots can be

re-cast as a distributed computer to solve the path planning problem encountered by its composite

robots. While the focus of this dissertation is on path planning, I believe that the general idea

of ad-hoc distributed computing should generalize well to other multi-robot problems. Solving

communal problems in this manner is, arguably, elegant on a philosophical level because it enables

the composite robots to become a single entity in both body and mind.

Any distributed computation over a robotic team must respect the fact that wireless band-

width is environment dependent, and often beyond the control of the user or system. Current

algorithms for coordinating networked robot systems usually rely on a minimum quality of service

3

and fail otherwise. I am interested in distributed algorithms that maximize the utility of unre-

liable communication channels, but also take full advantage of high-quality networks. I use the

term “Any-Com” to describe this type of algorithm. Any-Com algorithms should exploit perfect

communication and have gracefully performance declines otherwise.

I propose the thesis “Sharing Any-Time search progress over an ad-hoc distributed computer

that is created from a dynamic team of robots enables probabilistically complete, centralized, multi-

robot path-planning across a broad class of instances with varied complexity, communication quality,

and computational resources.” The central idea explored in my research is to have a robotic team

find a sub-optimal solution as quickly as possible, then refine that solution subject to both com-

munication and time constraints. The idea is inspired by previous work on Any-Time algorithms

by [15] and [43]. However, the use of distributed computation over an unreliable dynamic net-

work presents unique challenges that require new solutions. In general, the work presented in this

dissertation can be divided into three related and progressing areas of focus.

(1) I propose a new distributed planning concept called Coupled Forests Of Random En-

grafting Search Trees (C-FOREST). Although C-FOREST was designed with the multi-robot path

planning problem and ad-hoc distributed computing in mind, it has proven remarkably useful for a

variety of path planning applications (e.g., manipulator arm problems) and distributed computing

architectures. Indeed, parallelization efficiencies significantly greater than 1 (e.g., 20) have been

demonstrated using a traditional distributed computing cluster.

(2) I explore the concept of using a robotic team as an ad-hoc distributed computing cluster,

and demonstrate that when C-FOREST is run on this type of architecture it is able to exploit perfect

communication when it exists, but also has graceful performance declines as communication quality

deteriorates. I coin the term “Any-Com” to describe algorithms with the latter property, and call

the resulting algorithm Any-Com C-FOREST.

(3) I extend Any-Com C-FOREST to accommodate dynamic teams of robots, where teams are

formed and re-formed to accommodate path conflicts as robots move about the environment. Each

team acts as an ad-hoc distributed computer to solve the communal path planning problem of its

4

composite robots. Limiting teams to include only conflicting robots improves performance because

it significantly reduces the computational complexity of the problems that each team must face.

Replanning through only the subset of the configuration space in which conflicts occur has similar

computational benefits. The resulting algorithm is called Dynamic-Team Any-Com C-FOREST.

In the current version of this work I assume that some mechanism exists a priori with the

ability to propagate information throughout whatever distributed architecture is being used (e.g.,

a message passing protocol). I also assume that the time it takes to propagate information from

one CPU to all others is small compared to the time required to solve the centralized multi-robot

path planning problem. I believe that in (1) it is a fair assumption for the majority of standard

distributed architectures that are used in practice; however it may not apply in extreme cases. In

the case of the ad-hoc distributed computing clusters that I investigate in (2) and (3), teams are

encouraged to form in ways that are conducive to communication, and I experimentally investigate

the effect that dropped messages have on the algorithm (e.g., due to data corruption and/or sending

conflicts). That said, I do not explicitly investigate the effects that different underlying message

passing protocols have on the algorithms’ performance.

The contributions of the work presented in this dissertation can be summarized as follows:

(1) Proposal of a new method for distributed single-query path planning called C-FOREST.

• Theoretical proof that C-FOREST can have super linear speedup vs. number of CPUs.

• Experimental validation that C-FOREST can have super linear speedup in practice.

• Proposal of a modified Sequential C-FOREST for use on a single CPU.

• Experimental validation that Sequential C-FOREST is beneficial on a single CPU.

• Experimental validation that C-FOREST and Sequential C-FOREST can be used with

a variety of distance metrics, configuration spaces, robots, and random search-trees.

(2) Proposal of the Any-Com C-FOREST algorithm for use on an ad-hoc distributed computer.

5

• Coinage of the term “Any-Com” to describe distributed and/or multi-agent algorithms

that have graceful performance declines vs. decreasing communication quality.

• Demonstration that a team of robots can be used as an ad-hoc distributed computer.

• Experimental validation that Any-Com C-FOREST performs well in practice, even

when communication is relatively poor.

(3) Proposal of Dynamic-Team Any-Com C-FOREST algorithm, in which robots form teams

and re-plan in sub-regions of the configuration space as necessary to avoid collisions.

• Observation that increasing team size can cause practical planning failure due to

increased problem complexity.

• Theoretical insight into how the size of the configuration space can be reduced while

maintaining probabilistic completeness.

• Experimental validation that Dynamic-Team Any-Com C-FOREST allows more dif-

ficult planning instances to be solved than Any-Com C-FOREST, with respect to

planning time.

• Experimental validation that both team size and configuration space diameter inde-

pendently contribute to problem complexity.

The rest of this dissertation is organized as follows: The second half of this chapter contains

a high level overview of the work presented in the rest of the thesis (Section 1.1), as well as a

nomenclature reference (Section 1.2). Related work is presented in Chapter 2. The meat of the

dissertation, in which I defend my thesis, is presented in Chapters 3 through 5, where each chapter

includes the technical details, experiments, and discussion pertaining to one of the three major

focuses mentioned above. Chapter 3 is on the C-FOREST distributed path planning algorithm.

Chapter 4 explores the concept of using a robotic team as an ad-hoc distributed computer, and the

Any-Com properties exhibited when C-FOREST is used on this type of architecture. The dynamic

team extension to Any-Com C-FOREST is presented in Chapter 5. Final thoughts and conclusions

6

are presented in Chapter 6.

There are also three appendices containing additional content that I consider relevant, but

that is noncritical to the defense of my thesis. Appendix A includes a brief introduction to path

planning concepts that is intended to provide enough background information to make the rest

of the dissertation accessible to non-experts. Appendix B describes the Shortest-Path Random

Tree algorithm—one of the underlying random-tree algorithms that is tested with C-FOREST, and

the particular random tree algorithm used in the Any-Com C-FOREST and Dynamic Team C-

FOREST experiments. Appendix C contains preliminary work I have done on the expected lengths

of greedy paths through random graphs. This theoretical work has guided the parameter selection

used for the underlying random trees in C-FOREST.

1.1 Overview

I believe there are two different ways to motivate the multi-robot path planning algorithms

presented in this dissertation. One is top-down argument, while the other uses a bottom-up line

of reasoning. Both ways of thinking have played an important role in shaping how I personally

approach the multi-robot problem, and therefore provide two different lenses through which my

work can be viewed. While neither is inherently better than the other, it is likely that certain

readers will prefer one over the other. I personally believe that the full value of my work can only

be understood by considering both, and I now summarize each in turn.

1.1.1 Top-down motivation

A vast number of approaches to solve the multi-robot planning have previously been proposed

(see Chapter 2). One reason that so many ideas have been suggested is that none is capable of solv-

ing every multi-robot planning problem that exists. The trade-off between algorithmic completeness

and computational complexity is painfully present in the multi-robot path planning domain. Fast

algorithms tend to work well in most cases, but they are unable to deduce when a solution does not

exist—and occasionally leave entire robot populations crippled in dead-lock traffic-jams even when

7

a solution does exist. On the other hand, more powerful algorithms exist that do not suffer from

the latter two problems; however, they are so computationally complex that calculating a solution

may be impossible within a practical amount of time—allowing entire robot populations to rust

into dirt before a movement plan can even be devised.

While these two caricatures represent opposite ends of the completeness vs. computation

spectrum, there are a multitude of other algorithms located somewhere in the middle that attempt

to find an ‘optimal’ trade-off between the two (where optimality is usually defined by the person

that came up with a particular algorithm—hopefully due to the constraints imposed by whatever

application domain they were working in at the time).

I believe that truly robust multi-robot planning algorithms must be able to automatically

adjust their operation along the completeness vs. computation spectrum based on the requirements

of the current problem they are faced with. This will allow inexpensive incomplete methods to be

used when it is advantageous to do so, and more expensive algorithms to be used when they are

necessary and/or tractable.

In real world environments there is another axes to the algorithmic state-space that I have

been considering—namely, communication. Another reason that so many different multi-robot

planning algorithms exist is that it is also possible to optimize different algorithms for different

levels of robot-robot or robot-environment communication. There are obvious trade-offs between

computation and communication (it is easier for robots to exchange information about each-other’s

locations and intentions over a wireless network then to deduce these things from environmental

sensors and/or abstract behavioral models). Likewise, there are trade-offs between communication

and completeness (robots without communication may not even solve a simple bottleneck problem).

Multi-robot planning algorithms will be more useful if they can automatically adjust their

performance within the completeness vs. computation vs. communication space to handle whatever

situations arise. The work presented in this dissertation is a step in that direction, and to the

best of my knowledge it is the first multi-robot planning algorithm that attempts to automatically

tune itself vs. computation, completeness, and communication. In general, the algorithms I present

8

attempt to find actionable solutions within a reasonable amount of time while doing their best to

maximize completeness given the available computational resources and communication quality.

Given these goals, it makes sense to distribute the computational load of solving the problem.

On the incomplete side of the spectrum this has traditionally been done passively (e.g., by having

desirable distributed behavior emerge as a function of each robot following its own agenda). While it

is usually done actively on the complete side of the spectrum (e.g., by having robots explicitly share

data and agree on a mutual plan). Since sharing information raises the upper limits of completeness

without inherently increasing computation (at least, substantially), it seems desirable that planning

algorithms maximize the utility of whatever communication is available.

Assuming that some communication is available, it makes sense to design algorithms that

enable all robots to contribute their computational resources to solving a mutual problem. I believe

that this can be accomplish by creating an ad-hoc distributed computer from the networked robotic

team, and then designing planning algorithms that can take advantage of an ad-hoc distributed

computing framework. This idea is investigated in Chapter 4.

It is well known that problem complexity is dependent on both the size of the robotic team,

and also on the size of the environment in which the team must operate. Therefore, I believe that

it (1) makes sense to keep teams as small as possible, and (2) have teams plan in the smallest

portion of the environment necessary to find a solution. Both (1) and (2) should be done while

simultaneously attempting to maintain algorithmic completeness. Chapter 5 is devoted to exploring

this concept using a dynamic-team approach. All robots start in their own team, and teams are

combined (only) when doing so is necessary to guarantee safety. The combined team plans through

the smallest subset of the environment necessary to safely avoid the conflict. I call the subset of

the environment used for team planning the conflict region. All robots can use their original plans

to move to and from the conflict region, while navigational coordination within the conflict region

is given by the combined solution.

9

1.1.2 Bottom-up motivation

Centralized multi-robot path planning is the most complete and computationally expensive

type of multi-robot path planning algorithm. In centralized planning all robots are viewed as

component pieces of a single robot. Given infinite computational and communication resources,

centralized algorithms would always be used—since they provide the best solutions available. How-

ever, practical use is limited by finite computation time and communication resources. Increasing

speed and decreasing dependence on communication will increase the number of problems for which

centralized algorithms can be used. Further, the same algorithms are also used to solve other high-

dimensional path-planning problems—in fact, one can argue a strong case that they are actually

used more frequently to solve single-robot manipulator-arm problems than multi-robot problems.

Therefore, increasing the speed of centralized algorithms will benefit many other high-dimensional

planning problems beyond multi-robot navigation.

I believe that one of the best ways the speed of centralized algorithms can be increased is by

harnessing the power of distributed computation. In Chapter 3 I present a new high-dimensional

path planning framework called C-FOREST that uses distributed computation. C-FOREST has

proven to be both very powerful and very general. I prove that it has super linear speedup—that

is, with n CPUs it is possible to find a similar solution in less than 1/n the time required by a single

CPU. In fact, I observe speedups an order of magnitude higher than any previously observed in

the robotic path planning domain. Further, C-FOREST can be extended to use any random tree

algorithm that has optimal convergence, and any planning space that obeys the triangle inequality.

As discussed in the previous section, it is possible to view a networked robotic team as an

ad-hoc distributed computer. Given that powerful distributed centralized path-planning algorithms

exists, it seems natural to employ them on an ad-hoc distributed computer to solve the multi-robot

path planning problem faced by its composite robots (nodes). Chapter 4 focuses on the modifica-

tions that are necessary to adapt C-FOREST to an architecture that has unreliable communication

between its computational nodes.

10

Finally, forming an ad-hoc distributed computer only makes sense when doing so is necessary

to avoid collisions. If non-overlapping sub-problems exist, then multiple ad-hoc distributed com-

puters should be used to minimize computational complexity faced by each team. As previously

discussed, it is also important to have each computer select an appropriately sized chunk of the

environment to plan through. These ideas are addressed in Chapter 5.

1.2 Nomenclature

The purpose of this section is to provide a reference for the many variables used in Chapters 3-

6. All variables presented here are also described as they are introduced later in the dissertation. I

anticipate that the casual reader will skip this section on an initial read-through—but then use is

as an occasional reference to lookup variable definitions.

Let time1 and timeT be the computation time required to solve a particular problem with 1 or

T CPUs, respectively. Speedup is defined as S = time1/timeT , and measures the benefit derived

from using T CPUs in parallel. Parallelization efficiency is defined as E= S/T and measures

the amount of speedup per CPU. Efficiency is inversely proportional to the power that must be

consumed to solve a problem.

A tree t is a directed, acyclic, connected graph consisting of nodes (way-points) and edges

(path segments). It is standard practice to ‘grow’ a tree from a root node out toward leaf nodes

such that edges are always directed away from the root and toward the leaves. Each node in the tree

has exactly one incoming edge—except for the root, which has no incoming edges. By construction

it is possible to reach the root node from any other node in the tree by iteratively moving counter

to edge direction.

A forest T is a set of T = |T| trees (t ∈ T). A forest containing only one tree (i.e, a stand-

alone tree) is denoted t′. The prefix ‘t.’ (note the dot) is used to indicate association with the

particular tree t. A particular state (or point) in the configuration space is denoted v. Let s and

g represent the start and the goal states, respectively. A solution (or path) P ⊆ t is composed of

a sequence of states beginning at s and ending at g. By construction it is safe for the system to

11

move from the i-th state to the (i+ 1)-th state of a particular solution. The current best solution

is denoted Pbst and contains |Pbst| points labeled Pbst,i for 1 ≤ i ≤ |Pbst|. I assume that a distance

metric ‖ · ‖ is defined over the configuration space, and that it obeys the triangle inequality. Lbst

is the measure of Pbst with respect to this metric, Lbst = ‖Pbst‖. For example, Lbst may represent

the distance traveled by a robot following Pbst.

h(v1, v2) is admissible heuristic function that returns an (under) estimate of the distance

between two states v1 and v2 (in the case of multiple goal states h(v1, g) is assumed to be admissible

over the entire set of goals). hs(v) = h(s, v) and hg(v) = h(v, g). The actual distance from the start

to v through tree t is t.ds(v). The tree that discovered Pbst is tbst and L = tbst.ds(g). Geometrically,

hs(v) + hg(v) = L describes an enclosed region AL in the search space, in Euclidean space AL is

bounded by an ellipsoid.

The Lebesgue measure of a space is denoted ‖ · ‖l. If the space contains 1,2, or 3, dimensions

then ‖ · ‖l corresponds to the length, area, and volume of that space, in higher dimensions ‖ · ‖l

measures the hyper-volume of that space. The workspace and configuration spaces are denoted W

and C, respectively. When different numbers of robots are used, a configuration space containing

R robots is denoted CR.

When message passing is explicitly used r is used to denote the particular robot with ID r,

and t.r holds the id of the robot that is building tree t. The set of all robots is denoted R, and the

number of robots is R = |R|. The portions of the combined start and goal vector associated with

robot r are denoted sr and gr, respectively. All robots keep track of what they believe to be the

current state of the team. The following data is defined with respect to the current belief of the

robot on which it is located (host robot). D is a set of data fields, where each data field dr ∈ D

contains data about a particular robot r that the host robot knows about, including its start (or

current location) dr.s and goal dr.g. If the host robot does not know about a particular robot r

then dr 6∈ D. the ID of the agent that created Pbst is rbst. The list V contains robots that the host

robot believes also support Pbst as the best solution. The list F contains all robots, known to the

host robot, that have submitted a final solution (i.e., have finished planning). m.M is a movement

12

flag that is true if the host robot has started moving. B is the amount of time that the host robot

is behind schedule, with respect to movement along the solution.

When dynamic teams are used, a particular dynamic team is denoted ∆, and contains

∆ = |∆| robots. Also, dr.Pnav contains the entire path between the current location dr.s and

the goal dr.g that robot r is currently using to navigate—including its time parameterization, and

dr.ε contains the current planning epoch of robot r.

A message is denoted m and its subfields are denoted by the prefix ‘m.’. The subfields

reflect the sending robot’s current belief about the state of its team and are analogous to the values

described in the previous paragraph. They include m.D, m.Pbst, m.Lbst, m.rbst, m.Pbst, m.V,

m.F, m.M and m.B. If dynamic teams are being used then m.∆ is also included.

The rate at which messages are sent is 1/ω (i.e., the amount of time between each outgoing

message is ω). The amount of planning time allotted during the planning phase is µ. The probability

that a message is successfully transmitted is denoted τ .

Chapter 2

Related work

The major focus of this dissertation is on the distributed implementation of centralized single-

query multi-robot path planning algorithms. However, the C-FOREST algorithm that provides the

path planning foundation of my work can also be used for other single-query high dimensional path

planing problems that are neither multi-robot nor Any-Com in nature (e.g., manipulator arms).

This chapter is broken into two major sections in order to address the diverse body of related work.

The first is concerned with multi-robot path planning in general, and the second surveys single

query path planning algorithms with a bias toward those that use distributed computation and/or

some notion of a forest.

2.1 Multi-robot path planning

Here I briefly discuss a few multi-robot algorithms located along the communication, compu-

tation, and completeness spectra. Recall that a complete algorithm is guaranteed to find a solution

when one exists and will also report failure in finite time if a solution does not exist. A resolution

complete algorithm is an algorithm that is complete to within a predefined granularity of the world

representation. A probabilistically complete algorithm is an algorithm that will find a solution, if

one exists, in finite time with probability approaching 1.

14

2.1.1 Cocktail party

At the low end of the communication and completeness spectra lie reactive algorithms, in

which all robots are relatively ignorant of other agents’ intentions. In the multi robot context ‘re-

active’ means that robots react to the movements of each-other by planning new paths (as opposed

to single-robot ‘reactive’ algorithms that may not use paths at all). This idea is often called the

cocktail party model because it resembles the navigation method used by guests at a cocktail party

[84]. Each agent maintains its own world-view, goals, and navigation function. Other robots are

viewed as obstacles. Each agent alternates between sensing, planning, and movement. The control

loop is assumed to run fast enough to prevent collisions. There is no direct coordination between

robots, but nothing prevents them from using passive sensors to detect each other. When robots

use the same algorithm (and can be differentiated them from other moving bodies) the estimated

movement of other robots can be refined [123, 128]. Cocktail party algorithms are incomplete (e.g.

they can fail when two robots must move in opposite directions through a narrow corridor), but

they are popular due to their simplicity, scalability, and communication free architecture.

2.1.2 Traffic rules

Often a strict set of traffic rules is used to facilitate multi-robot navigation similar to the

way automobiles (theoretically) interact via traffic laws [1, 2, 65, 106, 107]. These methods assume

each robot knows the rules, agrees to follow them, and can sense required environmental cues

(e.g. stoplights). A robot is allowed to use any planning method that respects the rules, so world

knowledge can often be restricted to a local subset of the environment. Traffic rules are relatively

simple, distributed, and scalable. However, they assume highly structured environments, and may

contain rules that prohibit optimal solutions from being found (e.g. taking a short-cut by going the

wrong way down a one-way street). Most research in this area is focused on designing the rules

and/or the environment to guarantee minimum performance. In a game theoretic context, this

problem is known as game design [85].

15

2.1.3 Prioritized planning

Prioritized planning forces robots to respect the movement constraints imposed by higher

priority robots [22, 37, 40, 126]. The highest priority robot plans first, then the next-highest, and

so forth. Priorities may be assigned a priori or on-line via a bidding mechanism or other process.

Robots can use whatever underlying path-planning method they want, but it is assumed they can

communicate an environmental space-time reservation to lower priority robots. On-line versions

exist that alternate sensing, planning, and movement [26, 27, 49, 50, 129]. Prioritized methods are

greedy and inherently incomplete. Higher priority robots follow optimal to near-optimal trajectories

while lower priority robots may be unable to find a solution. Prioritized planning has also been used

to periodically create a line-of-sight communication chain while performing the somewhat related

coverage task [53].

2.1.4 Decoupled planning

Decoupled planning works in two phases [6, 48, 62, 63, 79, 117]. In phase-1, each robot

calculates its own path to the goal. In phase-2, the space-time positions of the robots along these

paths are calculated such that no collisions occur. Usually either a descendant of A* [52] and/or

PRM [95] is used as the underlying search algorithm. Priorities may be assigned for the phase-2

calculation [8, 13], and special cases for two robots exist [24, 77, 89, 116]. Phase-1 is completely

distributable, but phase-2 must be performed on a single agent (or in parallel on each robot)—

and communication with that agent must exist. Although decoupled planning can be distance-

optimal, it is incomplete because each robot’s path is completely determined after phase-1 (and

may pathologically conflict) [109]. That said, decoupled planning is arguably more complete than

cocktail party, traffic rule, or prioritized methods.

2.1.5 Centralized planning

In Centralized planning all robots are considered to be individual pieces of a single composite

robot. Paths are calculated in the resulting high dimensional composite configuration space [16,

16

17, 28, 29, 38, 39, 97, 102, 108, 109, 113, 115, 127]. The high dimensional solution is then projected

down into the relevant subspaces for each robot. In previous research, the path has been calculated

on a single agent or at the same time on each robot independently. It is assumed robots can

communicate with this agent or each other, respectively. Centralized planning is theoretically

optimal and complete, but practical algorithms are usually probabilistically or resolution complete

and optimal [55, 102]. Regardless, centralized planning provides the best solution quality of any

multi-robot planning method, but is also the most computationally expensive.

2.1.6 Dynamic teams

A dynamic team is a temporary confederation of robots formed as a result of environmental

or other factors [28]. Dynamic teams are often used to solve robotic problems that require (or can

benefit from) using multiple coordinating agents. For example, coverage (e.g., for search-and-rescue)

[7, 124], surveillance [56], remote sensing [3], exploration [125], and maintaining a communication

link [35, 36].

The most closely related previous work on using dynamic teams for path planning is [28], in

which teams are encouraged to form as soon as robots are within communication range. In contrast,

I investigate using dynamic teams to solve non-overlapping sub-problems—such that robots with

conflicting solutions are placed in the same team in order to find a non-conflicting solution, but

non-conflicting robots/teams remain separate.

2.1.7 Any-Com

I coin the term “Any-Com” (along with my advisor, Nikolaus Correll) in [90, 91, 92], to refer

to the class of distributed algorithms that are able to maximize the utility of perfect communication

and have graceful performance declines as communication deteriorates. However, many other Any-

Com algorithms exits. For instance, in [105] and [5] Any-Com properties are observed in coverage

algorithms, and in [54] algorithms with Any-Com properties are used for search.

One reason that the Any-Com idea was not previously labeled is that most practical net-

17

working algorithms (e.g., algorithms for data transmission) must have Any-Com properties in order

to be useful [61]. While these are undoubtedly important (indeed, one could argue that any other

type of Any-Com algorithm must rely on at least one Any-Com communication algorithm as a

subroutine), listing all of them would require hundreds of citations. As a result, it may not make

sense to use the term “Any-Com” in the networking domain; however, I believe that the term is

useful for distinguishing algorithms in other domains that are capable of utilizing unreliable and/or

shifting network quality for explicit distributed computation or coordinated multi-agent tasks.

2.2 Single-query path planning

While efficient grid-based methods exist for 2- and 3-dimensional problems [34, 44, 52, 68,

118], the PSPACE-hardness of complete planning causes complete algorithms to be impractical in

higher dimensions [55, 103]. State-of-the-art higher-dimensional algorithms randomly sample the

environment to create a graph that is then searched using standard graph techniques. In gen-

eral, these algorithms are probabilistically complete. Unlike low-dimensional grid-based methods

that spend most of their time searching the graph, randomized search algorithms use the bulk

of their computational effort building the graph itself. Depending on the intended application,

high-dimensional sampling based planners tend to come in one of two flavors: multi-query and

single-query.

2.2.1 Single-query vs. multi-query algorithms

Multi-query planners are used when many searches are expected to be performed in the same

environment. A detailed graph through the configuration space is created, stored, and possibly

improved over time. Paths are calculated by connecting start and goal states to the graph and then

searching for a path between them [28, 69, 95, 108, 109].

Single-query planners are used when a different environment is encountered every time a

system plans [121]. A detailed graph is not saved, since each graph is only used once, so the

planner builds the best graph possible within the allotted planning time. Single-query planners

18

usually take the form of random tree algorithms that fuse graph creation and search. Newly

sampled random points are immediately inserted into the tree if they can be connected to the

existing graph. Points that cannot be connected to the current graph are forgotten. C-FOREST

builds directly on single-query random trees.

One of the earliest and most widely used single-query planners is the Rapidly Exploring

Random Tree or RRT [75, 76]. Re-planning versions also exist [41, 45]. While RRT provides

probabilistic coverage guarantees, the resulting paths tend to wander—for instance, [64] prove

that RRT will almost surly converge to a sub-optimal solution. In contrast, RRT* attaches new

nodes in a way that minimizes cost with respect to a carefully choose subset of old nodes such

that the resulting algorithm almost surly converges to the optimal solution [64]. The tree in [91] is

similar, except that the set of potential neighbors always includes all nodes, and random remodeling

guarantees optimal convergence.

2.2.2 Distributed single-query algorithms

This dissertation pulls a significant amount of material from my previous papers on Any-

Com [90, 91, 92] and C-FOREST [93]. [90] is a preliminary look at the Any-Com concept, and also

investigates using Any-Com for coverage problems. [91] outlines a multi-robot search algorithm

that is solved in a distributed manner by a six robot team. [92] extends this work to include

dynamic teams. The algorithm used in both [91] and [92] is similar to C-FOREST presented in

[93], except that the underlying trees are only assumed to be SPRT trees (SPRT trees are described

in Appendix B). Although super-linear speedup was observed in [91], there was no theoretical

explanation for why it existed. Proving that the super linear speedup is algorithmically based is a

main contribution of [93]. Without such a proof, skeptics may attribute such speedup to the well

known hardware phenomena encountered when using multiple CPUs (better cache alignment, less

communal overhead per tree, etc. [112]), or even chance. [93] also investigates using distributed

path planning for manipulator arm problems and in non ad-hoc architectures.

A closely related work is [23], where a cluster of CPUs is used, and each CPU independently

19

builds a random tree. However, a major difference is that no data is exchanged between CPUs

during the search. Although super-linear speedup is observed (E = 1.2) on clusters of two CPUs,

larger clusters have E < 1. In contrast, C-FOREST exchanges data during the search process,

achieves super-linear speedup for much larger clusters (e.g., 64 CPUs), and the efficiency observed

is an order of magnitude larger (E > 9).

Probabilistic Road-Map (PRM), a popular multi-query planning algorithm, has been shown

to be ‘embarrassingly’ parallel [4, 120]. Parallelization is achieved by having each CPU randomly

sample and connect new points to the graph. Results show approximately linear speedup vs. the

number of CPUs. While single-query planners can be parallelized in the same way, doing so requires

each CPU to have memory access to the graph. In contrast, in C-FOREST each CPU maintains

its own memory footprint, and knowledge transfer is achieved via message passing. This allows

C-FOREST to be distributed between processes that do not necessarily have access to shared global

memory (e.g., a networked computing cluster).

The PRM and Expansive Space Tree (EST) algorithms have also been parallelized in a

message passing architecture by [100, 101]. Here a multi-query planner grows multiple trees at

different locations in the configuration space, and trees are connected if they grow close together.

Master CPUs pick the root node of each tree and check for tree combinations. Slave CPUs each

grow a single tree rooted at a different place in the configuration space. Although the use of

multiple trees is similar to C-FOREST, a fundamental difference is that each tree only spans a

small portion of the environment—i.e. a path from start to goal will necessarily move through

multiple trees that have been connected. In general, the idea in [100, 101] achieves powerful but

usually sub-linear speedup. While super linear speedup is observed on a few trials (up to E = 1.12),

no theoretical explanation is given as to why it occurs. In contrast, a main contribution of our

work is the theoretical justification for super linear speedup. Further, C-FOREST trees are rooted

at the same location, and so 1 to T − 1 of T CPUs can simultaneously fail (e.g., power off), and

C-FOREST will still find a solution (although not as quickly). Other differences include the fact

that C-FOREST is a single-query algorithm, C-FOREST CPUs are homogeneous with one phase

20

of operation, and we observed efficiencies up to an order of magnitude larger (E > 9).

2.2.3 Other forest based algorithms

The Reconfigurable Random Forest algorithm or RRF [81] also uses multiple random trees.

RRF is a replanning algorithm where old trees, disconnected by obstacle movement, are saved

and tested for connection vs. the current tree. The assumption is that most free-space remains

unchanged, and so nodes from old trees will be useful if they can be reconnected to the current

tree. Updated versions of the idea are explored by [46] and [130] and called “Lazy Reconfiguration

forest” and “Multipartite RRTs,” respectively. The two major distinctions between all of these

ideas and C-FOREST are: (1) previous work only grows one tree at a time, and (2) previous work

has not used a parallel architecture.

The closest work to sequential C-FOREST is Any-Time RRT, which builds new trees while

time remains, such that each new tree is guaranteed to be better than its predecessor [43, 45].

However, the algorithm runs on a single CPU and the next tree is not started until after the previous

tree has been completed and destroyed. In contrast, C-FOREST builds all trees simultaneously.

Since multiple trees exist at one time, cooperation between them contributes to search progress.

It is also worth mentioning that, in the field of machine learning, forests of decision trees have

proven to be much more powerful than a single decision tree for the problems of classification and

regression [21]. While the tasks of regression and classification are quite different from the path

planning problem I am concerned with, this body of work is an interesting analogue.

2.3 Contributions of this dissertation

A major difference between my work and previous work is that previous algorithms have been

targeted at a single point in the completeness vs. computation vs. communication algorithm-space.

The algorithms explored in this dissertation automatically adjust their location within that space to

accommodate the problem that the system is currently solving and the resources that are available.

Another important difference is that the algorithms in my work leverage the distributed-computing

21

power of the robotic team to help find better solutions more quickly. In contrast, the vast majority

of previous work that uses a team has required each agent to calculate an entire solution completely

on its own. For instance, in prioritized planning each robot can calculate its own path (assuming it

respects robots of higher priority), and in decoupled planning each robot can individually calculate

its own phase-1 solution (although these must be assembled by a single agent in phase-2). However,

both prioritized planning and decoupled planning are incomplete, while the algorithms I present

are probabilistically complete.

With respect to dynamic teams, I delay team formation/combination until it becomes nec-

essary to prevent collisions. By keeping team sizes small, I hope to minimize problem complexity

per team. I also perform experiments in a much larger workspace that subjects robots to actual

(i.e., not simulated) wireless communication disturbances.

In general, the C-FOREST component of this dissertation differs from previous work on

single-query path planning in the following ways: C-FOREST has provably super linear speedup

vs. the number of CPUs. C-FOREST uses trees that have identical root and goal, grow concur-

rently, and span the entire configuration space. The trees in C-FOREST actively cooperate to help

one other find better solutions, including the engrafting of beneficial branches onto other actively

planning trees in the forest. C-FOREST has 1 phase of operation, 1 tunable parameter (beyond

those of the underlying tree), and no dedicated scheduler or master node(s). C-FOREST has

relatively little overhead (e.g., no pre-calculation of the partitioning problem).

This differs from previous ideas that place roots at different locations in the c-space then

connect trees [100, 101], sample from deleted trees [46, 81, 130], delete old trees and regrow new

trees from scratch [43], use multiple cores that require shared memory [4, 120], or have no theoretical

explanation for the observed super linear speedup [23, 100].

Chapter 3

C-FOREST: distributed path planning with super linear speedup

Path planning algorithms calculate a sequence of actions that cause a system to transition

from an initial state to a goal state. By abstracting the task of maneuvering a robotic system (e.g.,

manipulator arm, single rover, or robotic team), path planning provides basic functionality that

facilitates many autonomous or semi-autonomous robotic applications.

As robots become integrated into everyday life, they must perform increasingly complex

real-time path planning tasks, in order to ensure safe and efficient operation. Practical real-time

solutions to simple problems are found using Any-Time algorithms that find a suboptimal actionable

solution quickly, then refine it as time remains. Recent breakthroughs have provided algorithms

with almost surly optimal convergence [64, 91]. However, the rate of convergence is dependent on

problem complexity. Increasing the convergence rate will allow harder problems to be solved in real-

time and facilitate the transition of autonomous robots from industrial technology to mainstream

consumer goods. In addition to enabling movement that is intuitive and predictable to nearby

humans, better path quality will decrease power consumption, decrease task time, and increase

safety.

Meanwhile, parallelization is becoming established in computer hardware. As current man-

ufacturing technologies reach their physical limitations with respect to clock-speed, computational

power is increased by adding more processing cores to a computational unit (CPU), adding more

CPUs to a computer, and linking computers in high performance clusters. Algorithms that leverage

the power of parallel processing will have a significant advantage over those designed to run on a

23

single CPU.

I present a parallel algorithm for single-query high-dimensional path planning called Coupled

Forest Of Random Engrafting Search Trees (C-FOREST). C-FOREST is designed to be run on

T CPUs that communicate (e.g., a distributed computer with T CPUs, a networked cluster of T

computers, or even a T -core processor). In the basic version, each CPU builds a probabilistically

independent search tree between the same start and goal states. Message passing enables new

exploration and pruning (of all trees) to be a function of the current best solution known to any

tree in the forest. Solution branches are also exchanged so they can be engrafted onto and improved

by other trees.

I assume that some mechanism exists a priori with the ability to propagate information

throughout whatever distributed architecture is being used (e.g., a message passing protocol). I

also assume that the time it takes to propagate information from one CPU to all others is small

compared to the time required to solve the centralized multi-robot path planning problem. While

this assumption may not apply in extreme cases, I believe that it is a fair assumption for the

majority of standard distributed architectures that are used in practice.

I prove that parallel C-FOREST can have super linear speedup vs. the number of CPUs (i.e.,

trees). That is, S > T , and E > 1. Given the potential for super linear speedup, C-FOREST

can also benefit non-parallel path planning. I propose a modified version that sequentially divides

computation between trees on a single CPU. Although I believe that parallel algorithms represent

the future of path planning, sequential C-FOREST provides a simple way to increases the power

of existing hardware—it also highlights the power of the C-FOREST framework.

C-FOREST can utilize any underlying random tree algorithm and configuration space, as

long as two conditions are met: (1) the configuration space obeys the triangle inequality, (2) the

underlying tree is expected to converge to an optimal solution given infinite time.

24

3.1 Parallel C-FOREST

In the parallel version of C-FOREST each CPU builds a single probabilistically independent

search tree between the same start and goal states. Message passing enables random exploration

and pruning (of all trees) to be a function of the current best solution known to any tree. Thus,

all trees avoid exploring regions of the configuration space that cannot produce globally better

solutions, and all trees prune themselves of globally outdated nodes. This significantly reduces

the time required to insert new nodes because node insertion time is dependent on the number of

nodes already in a tree. Message passing also allows the current best solution to be engrafted onto

and then improved by any other tree. This increases the chance that new exploration will yield

better solutions by expanding the tree into regions of the configuration space that are known to be

beneficial.

3.1.1 Algorithm description

Let h(v1, v2) be an admissible heuristic function that returns an estimate of the distance

between two states v1 and v2. Because the function is admissible, it will never overestimate the

distance between v1 and v2. In the case of multiple goal states h(v1, g) is assumed to be admissible

over the entire set of goals. In other words, the distance returned is less than or equal to the

distance to any member of the goal set. More accurate distance estimates returned by h(v1, v2)

will tend to increase algorithmic performance. However, if no suitable heuristic can be found then

it is possible to define h(v1, v2) ≡ 0.

Let hs(v) = h(s, v) and hg(v) = h(v, g). Let t.ds(v) be the actual distance from the start

to v through tree t. The tree that discovered Pbst is tbst and L = tbst.ds(g). Assuming that at

least one path to the goal has been found, any point v for which hs(v)+hg(v) ≥ L cannot possibly

lead to a better Pbst. Geometrically, hs(v) + hg(v) = L describes an enclosed region in the search

space (see Figure 3.1). Let the space within this region be denoted AL. In Euclidean space AL is

bounded by an ellipsoid.

25

sta
rt

goal

P

hs(v)

hg(v)

AL

v

Figure 3.1: Boundary beyond which new points cannot lead to better solutions (dashed-blue). The space
within the region is denoted AL and its boundary is defined by hs(v) + hg(v) = L, where L is the length of
the current best path Pbst (red).

The parallel C-FOREST algorithm is displayed in Figure 3.2-Left-Top. Pbst is initialized to

the empty set and its length to ∞ (lines 1-2). Next, T trees are started, each on their own CPU

(lines 3-4). Each tree is a separate, probabilistically independent, version of a random search tree

(e.g., RRT*). The subroutine TimeLeft() returns true while planning time remains, otherwise it

returns false. Once the allotted planning time has been exhausted, the best solution is returned

(lines 5-7).

The bulk of the algorithm takes place within each individual tree t in RandomTree(t) (Fig-

ure 3.2-Right-Top). RandomTree(t) initializes t.Pbst to the empty set and t.L to ∞ (lines 1-2).

Search happens by picking a random point v from the configuration space using RandomPoint(L)

and then inserting it into t with t.Insert(v) (lines 4-5). RandomPoint(L) and Insert(v) are as-

sumed to incorporate any specific logic required by the underlying tree and/or configuration space.

If adding v leads to a (globally) better path, then the new solution is distributed to the other trees

(lines 7-8). This can be accomplished in shared memory or via messaging passing. If a better

solution is found by another tree, then it is added to the local tree using AddPath(Pbst) (lines

11-15). The local tree is pruned based on the global value of L using t.Prune(L) (lines 9 and 14),

26
ParallelCFOREST()

1: L = ∞
2: Pbst = ∅
3: for ∀t ∈ T do
4: RandomTree(t)

on its own CPU
5: while TimeLeft() do
6: sleep
7: Return (L,Pbst)

t.AddPath(Pbst)

1: for i = 2 to |Pbst| do
2: if not t.InTree(Pbst,i) then
3: t.Insert(Pbst,i,Pbst,i−1)

v = RandomPoint(L)

1: repeat
2: v = (Rand(0, 1) ∗ (c− b)) + b
3: until hs(v) + hg(v) < L

t.Prune(L)

1: for ∀ nodes n ∈ t do
2: if hs(n) + hg(n) ≥ L then
3: remove n and its descendants

SetSampleBounds(L)

1: a = (L− |s− g|)/2
2: b = max {min{s, g} − a,MinBounds()}
3: c = min {max{s, g}+ a,MaxBounds()}

RandomTree(t)

1: t.L = ∞
2: t.Pbst = ∅
3: while TimeLeft() do
4: v = RandomPoint(L)
5: t.Insert(v)
6: if t.L < L then
7: Pbst = t.Pbst

8: L = t.L
9: t.Prune(L)

10: t.SetSampleBounds(L)
11: else if L < t.L then
12: t.AddPath(Pbst)
13: t.L = L
14: t.Prune(L)
15: t.SetSampleBounds(L)

t.Insert(v)

1: pv = prospective parent of v according to the ran-
dom tree algorithm being used

2: if t.ds(pv) + h(pv, v) + hg(v) < L then
3: insert v according to the random tree algorithm

t.Insert(v, pbst)

1: pv = prospective parent of v according to the ran-
dom tree algorithm being used

2: if t.ds(pv)+h(pv, v) < t.ds(pbst)+h(pbst, v) then
3: if t.ds(pv) + h(pv, v) + hg(v) < L then
4: insert v according to the random tree algo-

rithm
5: else if t.ds(pbst) + h(pbst, v) + hg(v) < L then
6: insert v according to the random tree algorithm

with pbst as its parent

Figure 3.2: Algorithm for parallel C-FOREST (Left-Top), and forest tree (Right-Top), and selected sub-
routines. Note that any random tree algorithm can be used, as long as it provides the necessary subroutines.
MinBounds() and MaxBounds() return the minimum and maximum coordinates of the configuration
space along each dimension.

and the sampling bounds are updated using t.SetSampleBounds(L) (lines 10 and 15).

The subroutine AddPath(Pbst) is shown in Figure 3.2-Left-Center. Line 1 iterates over

nodes in Pbst from start to goal (the start node does not need to be inserted, since it is guaranteed

to exist in t). The subroutine t.InTree(Pbst,i) checks if Pbst,i is already in t to avoid duplicating

points (line 2). If Pbst,i does not exist in t then it is inserted on line 3. Insert(v,Pbst,i−1) is a

modified version of Insert(v) that explicitly includes Pbst,i−1 in the possible neighbor set, but is

27

otherwise identical. This ensures that Pbst,i−1 can be the parent of Pbst,i, but allows better nodes

to be used if they exist.

Points not inAL can be ignored for random sampling (RandomPoint(L), line 6, Figure 3.2).

Nodes not in AL can also be pruned (as is done in prune(L), line 2). Sampling directly from AL

can be difficult in practice. Instead, an initial sampling is taken from the hypercube described by

hs(v) + hg(v) ≤ L per each dimension (SetSampleBounds(L), lines 1-3), and then points are

disregarded if they are outside AL (RandomPoint(L), lines 1-3).

I have also found it useful to disregard any points for which t.ds(v) + hg(v) ≥ L (Insert(v),

line 2). That is, points that cannot lead to a better solution given their current distance-to-root

through the tree plus the heuristic estimate of the distance to goal. This is a greedy strategy, since

it does not account for the fact that future tree-remodeling may decrease t.ds(v), and is similar to

the priority heap weight used in the A* algorithm. in a similar greedy approach, the descendants

of pruned nodes are also themselves pruned (prune(L), line 3).

Coupling the sampling and pruning mechanisms of all trees enables the entire forest to grow

based on the best solution found so far. Sharing the current best solution gives all trees a chance

to improve it.

3.1.2 Sampling analysis

The rational for growing T trees in parallel relies on the assumption that trees are proba-

bilistically independent—since it is desirable that each CPU grow a unique tree. I now formally

address this issue.

Theorem 3.1: Assuming trees are probabilistically independent and built over a continuous con-

figuration space, a C-FOREST almost surly does not suffer from repeated exploration by multiple

trees.

Proof. The space is continuous, so the chance any two trees sample the same point is 0. Thus, the

probability different trees generate identical paths is also 0.

28

3.2 Super linear speedup analysis

I now prove that C-FOREST can have super linear speedup due to its design. I begin by

calculating the probability a newly sampled point immediately leads to a better solution in a single

tree. The time required to insert a new node into a tree is dependent on the number of nodes

already in the tree (e.g., O(f(n)) if the tree contains n nodes). Assuming we know the runtime of

the node insertion function f(n), it is possible to calculate the expected time until a better solution

is found using a single tree. Similar analysis can be used to calculate a bound on the expected time

to find a better solution using a T tree parallel C-FOREST. Comparing the expectations shows

when super linear speedup can occur for the specific task of finding a better solution. The rest of

the proof follows using induction over the task of finding each additional better solution. Super

linear speedup can only occur after the first solution has been found—therefore, the task of finding

the first solution does not have super linear speedup. However, efficiency > 1 after the first solution

will eventually cause efficiency > 1 for the entire run.

It is important to note that I assume information sharing between trees is instantaneous.

In future work I hope to investigate the effects of variable message transmission time. However, I

believe that the current analysis can be used to predict performance in many practical situations

for a number of reasons. First, data sharing is practically instantaneous in distributed architectures

that use shared memory. Second, in most standard message based distributed architectures that

are currently used, the time required to find a better solution to a multi-dimensional path-planning

problem is likely to be much greater (by orders of magnitude) than the time required to propagate

a message from one node to the rest of the architecture. Finally, in the following analysis I make a

number of assumptions that tend to underestimate the performance of C-FOREST with respect to

practical vs. the theoretical performance and, while it is technically incorrect to make any claims

based on this, they tend to mitigate the assumption of perfect communication.

Consider the search of t′, a single stand-alone tree. APnow is the union of all points not in t′

that would immediately result in a better solution if added, APnow ⊆ AL, where AL is described

29

sta
rt

goal

P

AL
APfuture

APnow

As

Figure 3.3: Subspaces APnow
(dashed-green), APfuture

(dashed-red), AL (dashed-blue), and As (dashed-
black).

in Section 1.2. Points in APnow are visible to t′ (e.g., not blocked by collisions) and fulfill all other

requirements necessary to be connected to t′ (or cause some other point v2 to be connected).1

Verification of v ∈ APnow is trivial, assuming we are alerted when better solutions are found.

The subspace APfuture
is the union of all points not in the tree that, if eventually added,

1 In some algorithms sampling v will cause a different point v2 to be added to t
′ (e.g., in RRT if v is more than δ

away from t
′ then v2 is the point δ away from t

′ along the line from v to the closest node in t
′). For the purposes of

this proof, I assume that v is the point sampled from the configuration space, even if v2 is added to t
′.

30

would enable a better path to eventually be found. APnow ⊆ APfuture
and APfuture

⊆ AL. APfuture

can be broken into two disjoint subspaces: APfuture,see
contains points visible to the current

tree, and APfuture,blind
contains points not visible due to obstacle collisions. By construction

APnow ⊆ APfuture,see
. I assume APfuture,see

cannot be calculated in practical time. This is a rea-

sonable assumption assuming the dimensionality of the configuration space is greater than three.

Note that if APfuture,see
can be calculated quickly, then non-randomized algorithms such as gradient

descent should be used instead.

Let As denote the sample space. Ideally As = AL; however, in practice As ⊇ AL. Figure

3.3 depicts the relationship between APnow , APfuture
, AL, and As. Let the Lebesgue measure (i.e.,

volume) of a subspace be denoted ‖ · ‖ℓ.

Lemma 3.1: Using a single search tree, the probability a point sampled uniformly at random leads

to a better solution is given by: P(v ∈ APnow) =
‖APnow‖ℓ

‖As‖ℓ .

Proof. Assuming points are sampled uniformly at random from As, and a subspace A ⊆ As, it is

possible to express the probability of choosing a point in A as P(v ∈ A) = ‖A‖ℓ/‖As‖ℓ. Replacing

A with APnow finishes the proof.

Lemma 3.2: Using a single tree and sampling uniformly at random from As, the probability of

picking a point in APnow will not decrease until a better path is found.

Proof. If APnow changes due to a node insertion that does not result in a better path being found,

then it will not get smaller (and may get bigger). Thus, APnow will not get smaller until a better

path is found. Applying Lemma 1 finishes the proof.

Let pj be the probability that the j-th sampled point immediately results in a better solution

after the algorithm has sampled j−1 nodes (either successfully or unsuccessfully) pj = P(v ∈ APnow).

Assuming a better solution can actually be found, 0 < pj ≤ 1. Let f(n) represent the insertion time

required to add a new node to a tree, assuming n nodes are already in the tree (e.g., f(n) = log(n)

31

or f(n) = n). In all non-trivial random trees f(n) = Ω(c), for a constant c, since attaching new

nodes in a useful way requires performing a search over the set of nodes already in the tree.

Assuption 3.1: The runtime of f(n) is less than exponential in n.

The reason assumption 3.1 is introduced will become clear later. This is a valid assumption

given that, for all popular randomized search algorithms that I am aware of, f(n) = O(n) or

f(n) = O(log(n)).

Lemma 3.3: Using a single stand-alone tree t′, the expected time to find a better solution is:

Et′ =
∞
∑

j=1

[

(1− pj)
j−1pj

(

j−1
∑

i=0

f(n+ i)

)]

(3.1)

Proof. Assuming every sampled point is added to the tree, the expected time to insert j nodes is

given by the cumulative insertion time of nodes 1 through j. This is given by
∑j−1

i=0 f(n+ i). The

probability the j-th node yields the first better solution is (1 − pj)
j−1pj . The expected time Et′

required to find a better solution is calculated by summing over the total time until each node j is

inserted, weighted by the probability that j yields the first better solution.

Now assume that a C-FOREST T contains T random trees, such that all trees simultaneously

search for a path between the same start and goal locations in the configuration space. Let pt,j

denote the probability the j-th new insertion into tree t ∈ T leads to a better solution. If all trees

simultaneously add a new point, then the probability that at least one tree immediately finds a

better solution is:

PT,j = 1−
T
∏

t=1

(1− pt,j) (3.2)

An upper bound on the expected time for C-FOREST to find a better solution can be calculated

using a similar process to the one employed in Lemma 3.

Lemma 3.4: Using a C-FOREST T, an upper bound on the expected time to find a better solution

is:

ET≤
∞
∑

j=1

[

(1− PT,j)
j−1PT,j

(

j−1
∑

i=0

f(nmax + i)

)]

(3.3)

32

Proof. If all trees require the same amount of time to insert a new node (i.e., they are all the same

size n), then the expected number of iterations until a better path is found is 1/PT,j . In practice,

different trees may have different n and different values for f(n). An upper bound on the expected

time to find a new better path can be calculated using the maximum f(n) of any t ∈ T per each

iteration. Assuming the insertion function is non-decreasing, f(n+ 1) ≥ f(n) for all n > 0, then it

follows that f(maxt∈T (nt) + i) = maxt∈T f(nt + i). Substituting nmax = maxt∈T (nt) finishes the

proof.

Comparing Lemmas 3.3 and 3.4 demonstrates how a single search tree is expected to per-

form vs. parallel C-FOREST, respectively. We would like to know what conditions, if any, allow

super linear speedup. This is also of interest because it shows when sequential C-FOREST will

theoretically outperform a single tree (e.g., using a single processor and splitting computation time

between each tree). In particular, we want to see when Equation 3.3 holds for popular search-tree

algorithms (e.g., when f(n) is linear, logarithmic, etc.). Let pmin,j = mint∈T (pt,j).

Lemma 3.5: Assuming nmax ≤ n and pmin,j ≥ p, the expected time required to find a better path

is less for C-FOREST T than for a single tree t′.

Proof. This follows directly from Lemmas 3 and 4, since 0 < pmin,j ≤ 1 and 0 < pj ≤ 1, and

T > 1.

Assuming the probability a new node leads to a better path is the same for all C-FOREST

trees and the single stand-alone tree gives the following:

Lemma 3.6: Assuming nmax ≤ n and pt,j = pj for all t ∈ T, parallel C-FOREST with T > 1 is

expected to find a better path before a single tree t′.

Proof. pt,j = pmin,j because all pt are the same. The rest follows from Lemma 5.

Both Lemmas 3.5 and 3.6 make intuitive sense, since drawing more samples from a random

distribution increases the probability of finding what we are looking for. Note that

33

limT→∞ 1−∏T
t=1 (1− pmin,j) = 1, and as a result, the expected time to a new solution approaches

0 as T approaches infinity.

Substituting nmax = n in Lemma 3.5 shows that the expected time to a solution is less

for parallel C-FOREST than for a stand alone tree, regardless of super linear speedup or not.

Therefore, the number of nodes in a C-FOREST tree t ∈ T is likely to be less than that in a

stand-alone tree t′ (i.e., nmax ≤ n)—especially after a few solutions have already been found—due

to pruning and reduced sample space caused by decreasing L. Smaller tree size translates into a

smaller insertion time per new node, which reinforces a reduced expected time until the next better

path is found by t ∈ T vs. t′. It is desirable to know how large C-FOREST trees can get (nmax),

relative to a stand-alone tree (n), while still facilitating super linear speedup.

The basic idea is to compare Equations 3.1 and 3.3, assume that all trees are equally likely to

find a solution, and then solve for a bound on nmax in terms of n. In order to reduce mathematical

complexity I will make a couple of assumptions that favor the expected runtime of the stand-alone

tree vs. C-FOREST. Therefore, the resulting bound on nmax will be looser than what one might

expect in practice. For notational ease, let q = 1− p, where 0 ≤ q < 1.

Theorem 3.2: C-FOREST will have super linear speedup for finding the next best solution when:

∞
∑

i=0

qT if (nmax + i) <
1

T

∞
∑

i=0

qif (n+ i) (3.4)

Proof. By definition, speedup is super linear when ET < Et′/T . Substituting Equations 3.1 and

3.3 yields:

∞
∑

j=1

[

(1− Pmin,j)
j−1Pmin,j

(

j−1
∑

i=0

f(nmax + i)

)]

<
1

T

∞
∑

j=1

[

(1− pj)
j−1pj

(

j−1
∑

i=0

f(n+ i)

)]

I assume that for insertion j all trees are equally likely to find a better solution, pj = pt,j = pmin,j .

This favors the stand-alone tree vs. C-FOREST—in practice we expect pt,j > pj for some t ∈ T—

and so the inequality is maintained. Using the definition of Pt,j from Equation 3.2 and substituting

pt,j = pj gives:

34

∞
∑

j=1

(

T
∏

t=1

(1− pj)

)j−1(

1−

T
∏

t=1

(1− pj)

)(

j−1
∑

i=0

f(nmax + i)

)

 <
1

T

∞
∑

j=1

[

(1− pj)
j−1

pj

(

j−1
∑

i=0

f(n+ i)

)]

The dependency of pj on j is mathematically challenging. Observe that pj is expected to increase

as a function of j as the search tree grows into the configuration space. If pj were to remain fixed

at its j = 1 value until the next best solution was found, then C-FOREST would suffer a greater

hit to its expected time than a stand-alone tree. This is because the increased sampling power of

T trees gives C-FOREST a greater chance of increasing pj vs. the stand alone tree. Therefore, the

inequality continues to be maintained if we substitute p = pj = p1. Performing this substitution

and then simplifying gives:

∞
∑

j=1

[

(1− p)
T (j−1) (

1− (1− p)T
)

(

j−1
∑

i=0

f(nmax + i)

)]

<
1

T

∞
∑

j=1

[

(1− p)j−1p

(

j−1
∑

i=0

f(n+ i)

)]

Assumption 3.1 implies f(n) = o(cn), note the little ‘o’. Thus, limm→∞ (1− p)mf(n+m− 1) = 0

and limm→∞ (1− p)Tmf(n+m− 1) = 0. Using these facts to simplify the previous equation, and

then substituting 1− q = p finishes the proof.

Theorem 3.2 leads to the following corollaries about linear and logarithmic insertion functions,

respectively:

Corollary 3.1: Parallel C-FOREST with trees using a linear insertion function will have super

linear speedup finding a better solution when:

nmax <
(1− qT)(pn+ q)

Tp2
− qT

1− qT
(3.5)

Proof. With a linear insertion function f(n) = c1n, where c1 is a constant greater than 0. Substi-

tuting into Equation 3.4, c1 cancels from either side:

∞
∑

i=0

qT i (nmax + i) <
1

T

∞
∑

i=0

qi (n+ i) (3.6)

Solving for the limit of the sum as the number of terms approaches infinity finishes the proof.

35

Corollary 3.2: Parallel C-FOREST with trees using a logarithmic insertion function will have

super linear speedup finding a better solution when:

∞
∑

i=0

qT i log2 (nmax + i) <
1

T

∞
∑

i=0

qi log2 (n+ i) (3.7)

Proof. With a logarithmic insertion function f(n) = c2 log2(n), where c2 is a constant greater than

0. Substituting into Equation 3.4, c2 cancels from either side. Although I am unable to find a

more elegant closed-form solution, it is still possible to evaluate the inequality numerically using

partial summations to obtain an estimate that is arbitrarily accurate. Note that the size of the

terms rapidly decreases due to the exponentiation qi vs. the slow growth of log2(n+ i).

The final insertion function I examine is the insertion function used by RRT*.

Lemma 3.7: Parallel C-FOREST with RRT* trees will have super linear speedup finding a better

solution when:
∞
∑

i=0

qT i log2 (nmax + i) <
1

T

∞
∑

i=0

qi log2 (n+ i)

Proof. In RRT* all nodes within a particular d-ball are evaluated for possible connection to a new

node, where d is the dimensionality of the configuration space. The radius of the d-ball is calculated

as min
{

c3((log n)/n)
1/d, c4

}

, where c3 and c4 are constants defined in terms of d (see [64] for more

details). The volume of the d-ball is Aball = min {c5((log2 n)/n), c6}, where c5 and c6 are constants

dependent on d. Assuming nodes are evenly distributed in As, then the expected number of nodes

evaluated per insertion is nr‖Aball‖ℓ/‖As‖ℓ, where r is the ratio between the number of nodes in

As and the number of nodes in the tree. We can assume r is a constant if most nodes are in As, and

r = 1 if the tree is pruned as described in Figure 3.2. This gives an expected node insertion time

of f(n) = min {c7 log2(n), c8n}, where c7 and c8 are constants. While it is possible to substitute

this result into Equation 3.4 and then solve numerically as before, it should be noted that the

logarithmic case wins out whenever log2(n) < c9n and log2(nmax) < c9nmax, where c9 = c8/c7.

Therefore, Corollary 2 can be used for RRT*, assuming trees are sufficiently large.

36

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

n m
ax

/n

T = 10

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

T = 100

10

102

103

104

105

106

∞

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

n m
ax

/n

T = 10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

T = 100

10

102

103

104

105

106

Figure 3.4: Maximum ratio nmax/n that allows super linear speedup of parallel C-FOREST vs. a single
tree for various values of n, T , p, and f(n). Linear and logarithmic f(n) (Top and Bottom, respectively)
for T = 10 and T = 100. Color indicates n. Super linear speedup occurs when environment and insertion
function cause the performance of C-FOREST vs. a single tree to be beneath the curve.

Figure 3.4 displays the maximum ratio of nmax/n per p that will allow super linear speedup,

given various values of n, T , p = 1−q, and f(n). The area beneath this curve represents the region

in which the expected speedup of C-FOREST is super linear. For example, given T = 10 trees and

p = 10−1, if a single tree would have n = 103 nodes given a particular L, then super linear speedup

is expected when C-FOREST trees have less than about 0.6n nodes. Recall that C-FOREST trees

37

require fewer nodes per L because they are expected to find solutions faster—regardless of super

linear speedup or not. For linear f(n) the ratio nmax/n approaches (1− qT)/(Tp) as n approaches

infinity (represented by the black dashed line). Logarithmic f(n) do not appear to have a (non-

zero) limiting function as n approaches infinity. This means that, in the logarithmic case, it is

possible C-FOREST trees may get too large for a particular p. Fortunately, if trees get this big, it

is a good indication that p is relatively small. Also, the chances that a tree gets too large may be

practically unlikely, since each order of magnitude larger n only reduces the super linear speedup

range of p by a relatively small amount.

Theorem 3.2, Corollaries 3.1 and 3.2, and Lemma 3.7 show that C-FOREST can have super

linear speedup with respect to the task of finding a better solution. However I have neglected the

case of finding the initial solution. Estimating the time to initial solution is less straightforward

than estimating the time to an improved solution because planning in nontrivial environments

requires discovering paths that necessarily contain a minimum number of points (i.e., to avoid

obstacles). Therefore, the probability a search tree finds an initial solution before the minimum

number of points have been sampled is 0. Further complications arise due to the fact that both

n and nmax start at 0 and will grow at the same rate—so it is too early to capitalize on the

advantages provided by coupled pruning and sampling in C-FOREST. On the other hand, there is

still a significant statistical advantage to using multiple trees in parallel—although definitely not

super linear. Let the expected time to initial solution for a single stand-alone tree and C-FOREST

to be defined as Et′,0 and ET,0, respectively. We know that Et′,0 ≥ ET,0 (since t′ and T draw 1

and T samples from the distribution of all trees, respectively), and that the inequality increases

with T .

Lemma 3.8: If C-FOREST has super linear performance while finding better solutions and runs

long enough, then it will eventually exhibit super-linear performance over its entire run.

Proof. Theorem 3.2, Corollaries 3.1 and 3.2, and Lemma 3.7 show that C-FOREST can have

efficiency > 1 finding better solutions. If efficiency remains greater than 1 long enough, then it will

38

eventually compensate for the sub-linear performance of the initial solution.

Corollary 3.3: C-FOREST may not exhibit super-linear performance if it does not run long

enough.

Proof. If efficiency is not greater than 1 long enough, then it cannot compensate for the sub-linear

performance of the initial solution.

Theorem 3.3: C-FOREST can have super linear speedup over its entire run due to algorithmic

properties.

Proof. This is proved by induction. Lemma 8 implies that as long as Inequalities 3.5 or 3.7 hold

for long enough, then there will eventually be a time at which performance becomes super linear

with respect to the entire run. Let this improvement iteration be denoted τ0 and represent the base

case. The inductive step is given by the fact that for any improvement iteration τb beyond this, the

algorithm will be super linear as long as the algorithm was super linear at τb−1 and Inequalities 3.5

or 3.7 continue to hold (assuming their respective insertion functions are being used).

It is important to note that Theorem 3.3 is merely an existence proof, it does not guarantee

performance will be super linear. However, it is significant because it is the first proof demonstrating

that super linear speedup in parallelized path planning can be attributed to algorithmic properties

(i.e., instead of the hardware phenomena that sometimes enable super linear speedup for small

numbers of CPUs—such as better cache alignment, etc.). It also highlights the specific properties

responsible for super linear speedup in C-FOREST, and suggests the super linear speedup in C-

FOREST may be applicable to large clusters.

Theorem 3.4: Sharing Pbst can increase the chances that C-FOREST finds a better solution rel-

ative to only sharing L.

Proof. Sharing L allows all trees in the forest to have identical AL and As. However, they still

have different APnow . Sharing the points in Pbst may increase APnow and will never decrease it.

39
SequentialCFOREST()

1: L = ∞
2: Pbst = ∅
3: for ∀t ∈ T do
4: t.L = ∞
5: t.Pbst = ∅
6: while TimeLeft() do
7: for ∀t ∈ T do
8: RandomTree(t)
9: Return (L,Pbst)

RandomTree(t)

1: if L < t.L then
2: t.AddPath(Pbst)
3: t.L = L
4: t.prune(L)
5: t.SetSampleBounds(L)
6: while TreeTimeLeft() and TimeLeft() do
7: v = t.RandomPoint(L)
8: t.Insert(v)
9: if t.L < L then

10: Pbst = t.Pbst

11: L = t.L
12: Return

Figure 3.5: Sequential C-FOREST (left), and individual tree (right). Note that any random-tree algorithm
can be used, as long as it provides the necessary subroutines. Subroutines are described in Figure 3.2 in
Section 3.1.

This is due to the fact that points in Pbst may increase the visibility of the receiving tree, and will

be connected to the latter by construction. Lemma 3.2 shows that sharing points in Pbst can only

increase the probability that the receiving tree finds a better solution.

A consequence of Theorem 3.4 is that we expect pj ≤ pt,j if a C-FOREST T and a stand

alone tree t′ have the same L. Although this technically violates the assumption pj = pt,j = pmin,j

used in Theorem 3.2, it is not a problem due to the fact that using the inequality instead of the

equality can only improve the performance of T vs. t′. Thus, sharing Pbst should increase the

advantage C-FOREST has over a single tree.

Given the analysis presented above, it is possible to predict the types of problems expected

to exhibit the most speedup. Each new value of L significantly affects p and/or pt via As, and

a particular path length reduction reduces ‖As‖ℓ by an amount exponential in d. Since ‖As‖ℓ

correlates directly to random sampling and pruning, C-FOREST is expected to become more useful

with increasing dimensionality d. Similarly, examining Figures 3.4 it is expected that harder search

problems (e.g., those with smaller p) are more likely to exhibit super linear speedup.

3.3 Sequential C-FOREST

Given the potential for super linear speedup vs. T , I propose a sequential version of C-

40

FOREST that is allotted 1/T -th of computation time on a single CPU for each tree t ∈ T. The

algorithm is presented in Figure 3.5. The subroutine TreeTimeLeft() returns true if there is still

time for tree t to plan during the current planning iteration. The amount of time allotted to each

tree per iteration is small (e.g., on the order of 0.01 second), so that many loops through the forest

occur over the course of the search. The rest of the subroutines are identical to those described in

Figure 3.2 in Section 3.1.

The algorithm moves to the next tree as soon as the previous tree has found a solution, even

if time still remains for the previous tree (RandomTree(t), line 12). I have found this to help

during early phases of search, since it enables the next tree to focus a disproportional amount of

effort on improving the current best solution. This effect is diminished once the forest is established.

However, quickly reducing the search space at the beginning of the search has positive effects that

propagate through the rest of the runtime.

The analysis on super linear speedup in Section 3.2 is also applicable to the sequential C-

FOREST algorithm presented here. The main difference is that speedup and efficiency are equiva-

lent for sequential C-FOREST, since only one CPU is used. Thus, while parallel C-FOREST may

still offer a speed advantage when efficiency < 1, sequential C-FOREST will only be beneficial

when efficiency > 1. Figure 3.4 shows the potential trade-offs between tree size n, forest size T ,

and speedup.

3.4 C-FOREST experiments

I perform three sets of experiments to evaluate the performance of C-FOREST of various sizes

vs. a single random tree. The first experiment involves a seven degree-of-freedom manipulator arm.

The second and third involve a multi-robot team in which all robots are viewed as pieces of a single

robot. The sequential C-FOREST is tested on all three environments, and parallel C-FOREST is

tested on the multi-robot problem using clusters containing T = {1, 2, 4, 8, 16, 32, 64} computers.

T = 1 is equivalent to planning with the underlying tree algorithm. The manipulator arm exper-

iment uses C-FOREST composed of a search tree included in the OpenRAVE [33] environment

41

Figure 3.6: 7 DOF arm. The arm must grasp a block while avoiding the obstacles. The end-effector and
summed swept area distance metrics (left and right, respectively).

that has been modified to perform a bi-directional SPRT, where SPRT is the random tree path

planning algorithm described in Appendix B. The multi-robot experiments evaluates C-FORESTs

composed of RRT* and SPRT trees. SPRT has a linear node insertion function, and RRT* [64]

has a logarithmic insertion function in most cases. The parameter that defines the maximum dis-

tance between nodes in RRT* is set according to the analysis presented in appendix C. In short,

the maximum distance is set to the diameter of the configuration space so that new nodes can

rapidly spread the search-tree through the configuration space during early search stages. RRT*

automatically shrinks this distance as more nodes are added to the tree to guarantee logarithmic

node insertion runtime while maintaining convergence to the optimal solution.

3.4.1 Seven degree of freedom manipulator arm

A bi-directional planner in OpenRAVE [33] has been modified to use a sequential C-FOREST

of SPRT trees instead of a single tree and test it on a 7-DOF manipulator arm (Figure 3.6). Each

‘tree’ corresponds to a particular pair of forward and backward SPRT trees. Two experiments are

run, each using a different distance metric over the configuration space. The first defines solution

42

 1 8 16 32 64
 1

 10

 100

1000

Trees in forest

T
im

e
(s

ec
on

ds
)

 Arm, sequential C−FOREST, end−effector distance, time

0.275 m
0.300 m
0.350 m
0.450 m

 1 8 16 32 64
 1

 10

 100

1000

Trees in forest

T
im

e
(s

ec
on

ds
)

 Arm, sequential C−FOREST, summed swept area, time

650 cm2

700 cm2

800 cm2

1000 cm2

 1 8 16 32 64
 0

 5

10

15

20

25

Trees in forest

S
pe

ed
up

 Arm, sequential C−FOREST, end−effector distance, speedup

0.275 m
0.300 m
0.350 m
0.450 m
S=1

 1 8 16 32 64
 0

 5

10

15

20

Trees in forest

S
pe

ed
up

 Arm, sequential C−FOREST, summed swept area, speedup

650 cm2

700 cm2

800 cm2

1000 cm2

S=1

Figure 3.7: Sequential C-FOREST using bidirectional SPRT on a 7-DOF arm. Solution quality is the
distance (m) traveled by the end effector or the summed swept area (cm2) of arm segments (Left or Right,
respectively). Color denotes solution quality. Top: Time to find a solution of a particular quality (mean
and standard error over 20 trials)—note the log scale. Bottom: the resulting efficiency. Larger forests find
better solutions more quickly. Many data-points have speedup > 1.

length as the total distance traveled by the end-effector of the arm. The second defines length as

the sum of areas swept out by each arm section. The first metric minimizes the distance traveled

by whatever the arm is holding, and the second minimizes the arm’s interference with the rest of

the environment. There are two main purposes of this experiment. The first is to demonstrate that

existing hardware and software can be modified to use C-FOREST with relative ease—and that it

is beneficial to do so. The second is to demonstrate that the benefits provided by C-FOREST are

not dependent on a particular cost-metric.

Figure 3.7 displays how long it takes the forest to obtain solutions of varying lengths. Each

data-point represents the mean and standard error over 20 trials. Left and right sub-figures cor-

respond to using the first and second distance metrics, respectively. Top and Bottom display the

average solution lengths and the speedup observed for C-FOREST of various size T .

43

Figure 3.8: Toy and Office environments used in experiment groups 2 and 3 with sample paths. Goal
regions appear rectangular and robot starting locations are circular.

3.4.2 Centralized multi-robot planning: toy problem

Four experiments are performed to evaluate the performance of C-FOREST on a simple

multi-robot problem where four robots must change places around a central obstacle (Figure 3.8).

The centralized multi-robot planning framework is used, so all robot are viewed as individual pieces

of a single larger robot. The dimensionality of the configuration space is found by summing degrees-

of-freedom of all individual robots. Four holonomic robots are used, and each adds two dimensions

to the configuration space, for a total of eight degrees-of-freedom. Experiments are performed

using sequential and parallel C-FORESTs compose of SPRT and RRT* trees. This experiment is

designed to test the abilities of C-FOREST in a multi-robot problem where tree-growth is relatively

unhindered by robot-obstacle collision checking. Obstacle collision checking may require significant

computational power and may indirectly influence the runtime of the node insertion function (e.g.,

by causing more memory or disk reads). By minimizing collision checking I hope to push the

runtime of the node insertion function toward its theoretical value. The experiment is also designed

to demonstrate that C-FOREST can work on a variety of underlying random tree algorithms with

different node insertion function run-times.

44

 1 8 16 32 64

 1

 10

100

Trees in Forest (CPUs in Cluster)

T
im

e
(s

ec
on

ds
)

 Toy environment, parallel C−FOREST, SPRT, time

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m

 1 8 16 32 64

 1

 10

100

Trees in Forest (CPUs in Cluster)

T
im

e
(s

ec
on

ds
)

 Toy environment, parallel C−FOREST, RRT*, time

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m

 1 8 16 32 64
 0

 50

100

150

200

250

300

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Toy environment, parallel C−FOREST, SPRT, speedup

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
S=T

 1 8 16 32 64
 0

 25

 50

 75

100

125

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Toy environment, parallel C−FOREST, RRT*, speedup

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
S=T

 1 8 16 32 64
0
1
2
3
4
5
6
7

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Toy environment, parallel C−FOREST, SPRT, efficiency

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
E=1

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Toy environment, parallel C−FOREST, RRT*, efficiency

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
E=1

Figure 3.9: Parallel C-FOREST using SPRT or RRT* trees (Left and Right, respectively) on a toy multi-
robot problem. Top: time required to find a solution of a particular length (mean and standard error over
32 trials)—note the log scale. Color denotes solution length (m). Center and Bottom: the resulting speedup
and efficiency, respectively. Larger forests find better solutions more quickly. Better speedup and efficiency
are observed on more difficult problems. Many data-points have efficiency > 1.

Figure 3.9 displays results for parallel C-FOREST. Points and bars represent mean and

standard error over 32 trials, respectively. The left and right sub-figures of correspond to C-

FOREST with SPRT and RRT* trees, respectively. The top sub-figures show how long it takes

C-FOREST to obtain solutions of varying lengths in either environment, where length is the total

length of the solution through the combined configuration space of all robots. Solutions with less

length are more desirable and are expected to take longer to calculate. The center and bottom

sub-figures display the mean speedup and parallelization efficiency that was observed, respectively.

Figure 3.10 displays results for sequential C-FOREST. Points and bars represent mean and

standard error over 50 trials, respectively. The organization of Figure 3.10 is similar to that of

45

 1 8 16 32 64
0.1

 1

 10

100

Trees in forest

T
im

e
(s

ec
on

ds
)

 Toy environment, sequential C−FOREST, SPRT, time

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m

 1 8 16 32 64

0.1

 1

 10

100

Trees in forest

T
im

e
(s

ec
on

ds
)

 Toy environment, sequential C−FOREST, RRT*, time

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m

 1 8 16 32 64
 0

 2

 4

 6

 8

10

12

Trees in forest

S
pe

ed
up

 Toy environment, sequential C−FOREST, SPRT, speedup

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
S=1

 1 8 16 32 64
 0

 2

 4

 6

 8

10

Trees in forest

S
pe

ed
up

 Toy environment, sequential C−FOREST, RRT*, speedup

44.5 m
45.0 m
46.0 m
48.0 m
52.0 m
S=1

Figure 3.10: Sequential C-FOREST using SPRT or RRT* trees (Left and Right, respectively) on a toy
multi-robot problem. Top: time required to find a solution of a particular length (mean and standard error
over 50 trials)—note the log scale. Color denotes solution length (m). Bottom: the resulting speedup.
Larger forests find better solutions more quickly. Better speedup is observed on more difficult problems.
Many data-points have speedup > 1.

Figure 3.9, except that efficiency is omitted since only one CPU is used.

3.4.3 Centralized multi-robot planning: office environment

C-FOREST is evaluated on a multi-robot planning problem in the office environment provided

by our lab (Figure 3.8). Four holonomic robots each contribute two dimensions to the configuration

space, for a total of eight. Experiments are performed using sequential and parallel C-FORESTs

composed of SPRT and RRT* trees. This experiment tests C-FOREST in a realistic environment

that requires significant robot-obstacle collision checking. It is designed to show that the advantages

of C-FOREST prevail also in realistic problems.

Figure 3.11 displays results for parallel C-FOREST. Points and bars represent mean and

standard error over 32 trials, respectively. As in Figure 3.9 left and right sub-figures correspond to

C-FORESTs of SPRT trees and RRT* trees, respectively. The top, center, and bottom sub-figures

depict the time required to obtain solutions of varying quality, the mean observed speedup, and

the mean observed parallelization efficiency, respectively.

46

 1 8 16 32 64
 1

 10

100

Trees in Forest (CPUs in Cluster)

T
im

e
(s

ec
on

ds
)

 Office environment, parallel C−FOREST, SPRT, time

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m

 1 8 16 32 64

 1

 10

100

Trees in Forest (CPUs in Cluster)

T
im

e
(s

ec
on

ds
)

 Office environment, parallel C−FOREST, RRT*, time

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m

 1 8 16 32 64
 0

 50

100

150

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Office environment, parallel C−FOREST, SPRT, speedup

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
S=T

 1 8 16 32 64
 0

100

200

300

400

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Office environment, parallel C−FOREST, RRT*, speedup

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
S=T

 1 8 16 32 64
0

1

2

3

4

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Office environment, parallel C−FOREST, SPRT, efficiency

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
E=1

 1 8 16 32 64
 0

 2

 4

 6

 8

10

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Office environment, parallel C−FOREST, RRT*, efficiency

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
E=1

Figure 3.11: Parallel C-FOREST using SPRT or RRT* trees (Left and Right, respectively) on an office
multi-robot problem. Top: time required to find a particular solution length (mean and standard error over
32 trials)—note the log scale. Color denotes solution length (m). Center and Bottom: the resulting speedup
and efficiency, respectively. Larger forests find better solutions more quickly. Better speedup and efficiency
are observed on more difficult problems. Many data-points have efficiency > 1.

Figure 3.12 displays results for sequential C-FOREST. Points and bars represent mean and

standard error over 50 trials, respectively. The organization of Figure 3.12 is similar to that of

Figure 3.10.

The theoretical analysis in Section 3.2 shows that speedup is a result of three things: (1)

quicker node insertion via smaller individual tree size—due to decreased expected time to achieve

a particular solution quality. (2) Increased probability a sampled point is useful—by focusing the

sampling envelope. (3) Increasing probability a (useful) sampled point is connected to the tree—by

increasing the visibility envelope of the tree via engrafting current best paths from one tree to

another.

47

 1 8 16 32 64
 1

 10

100

Trees in forest

T
im

e
(s

ec
on

ds
)

 Office environment, sequential C−FOREST, SPRT, time

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m

 1 8 16 32 64
 1

 10

100

Trees in forest

T
im

e
(s

ec
on

ds
)

 Office environment, sequential C−FOREST, RRT*, time

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m

 1 8 16 32 64
0

1

2

3

4

5

Trees in forest

S
pe

ed
up

 Office environment, sequential C−FOREST, SPRT, speedup

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
S=1

 1 8 16 32 64
 0

 5

10

15

20

25

Trees in forest

S
pe

ed
up

 Office environment, sequential C−FOREST, RRT*, speedup

30.0 m
32.5 m
35.0 m
40.0 m
50.0 m
S=1

Figure 3.12: Sequential C-FOREST using SPRT or RRT* trees (Left and Right, respectively) on an office
multi-robot problem. Top: time required to find a solution of a particular length (mean and standard error
over 50 trials)—note the log scale. Color denotes solution length (m). Bottom: the resulting speedup.
Larger forests find better solutions more quickly. Better speedup is observed on more difficult problems.
Many data-points have speedup > 1.

All of these benefits are inherent in the results depicted in Figures 3.9-3.12. However, in order

to assess the relative effects of each, the office environment experiment is rerun for solution quality

30 meters with modified versions of the algorithm that either do not decrease the sampling envelope

size or do not share and engraft the current best solution (length L is still shared). Figures 3.13

and 3.14 depict the adjusted planning times and efficiencies for the parallel and sequential versions

of C-FOREST, respectively.

3.5 Discussion of C-FOREST results

Overall, planning with C-FOREST works exceptionally well. The parallel C-FOREST algo-

rithm gives significantly better results vs. a single tree—more trees correlate to better solutions,

regardless of the type of tree being used. Super linear speedup is observed in all experiments

(sometimes above 350), many efficiencies greater than 2, and some greater than 9. To the best of

my knowledge, the greatest efficiency previously observed in parallel path planning is 1.2. Results

are similarly positive for the sequential C-FOREST algorithm. This algorithm is only useful when

48

 1 8 16 32 64

 10

100

Trees in forest (CPUs in cluster)

T
im

e
(s

ec
on

ds
)

 Office environment, parallel C−FOREST, SPRT, time

baseline
no sample adjust
no path share

 1 8 16 32 64
 1

 10

100

Trees in forest (CPUs in cluster)

T
im

e
(s

ec
on

ds
)

 Office environment, parallel C−FOREST, RRT*, time

baseline
no sample adjust
no path share

 1 8 16 32 64
 0

 25

 50

 75

100

125

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Office environment, parallel C−FOREST, SPRT, speedup

baseline
no sample adjust
no path share
S=T

 1 8 16 32 64
 0

100

200

300

400

Trees in forest (CPUs in cluster)

S
pe

ed
up

 Office environment, parallel C−FOREST, RRT*, speedup

baseline
no sample adjust
no path share
S=T

 1 8 16 32 64
 0

0.5

 1

1.5

 2

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Office environment, parallel C−FOREST, SPRT, efficiency

baseline
no sample adjust
no path share
E=1

 1 8 16 32 64
 0

 2

 4

 6

 8

10

Trees in forest (CPUs in cluster)

E
ffi

ci
en

cy

 Office environment, parallel C−FOREST, RRT*, efficiency

baseline
no sample adjust
no path share
E=1

Figure 3.13: Variations of parallel C-FOREST using SPRT or RRT* trees (Left and Right, respectively),
on an office multi-robot problem for solution length = 30m. Blue is normal parallel C-FOREST, yellow is a
variant that does not decrease the sampling envelope, red is a version that does not engraft best solutions
(solution lengths are still shared). Top: time required to find a solution (mean and standard error over 32
trials)—note the log scale. Center and Bottom: the resulting speedup and efficiency. Engrafting appears to
be more important than decreasing the sampling envelope, especially for larger forests.

speedup is super linear vs. T ; however, speedup greater than 2 is observed in all experiments, and

sometimes greater than 20.

In general, the speedup observed using the single processor version is greater than what we

might expect based on the efficiencies observed with a cluster. I believe this can be attributed to

the fact that the sequential version of C-FOREST passes messages in memory while the cluster

must use a network. It is also possible that the sequential algorithm’s practice of moving on to the

next tree as soon as a better solution is found provides additional advantage.

Speedup > 1 and efficiencies > 1 are observed for most experiments, solution lengths, and

forest sizes. However, there are some data points for which efficiency and speedup are less than

49

 1 8 16 32 64

 50

100

400

Trees in forest

T
im

e
(s

ec
on

ds
)

 Office environment, sequential C−FOREST, SPRT, time

baseline
no sample adjust
no path share

 1 8 16 32 64
 10

100

400

Trees in forest

T
im

e
(s

ec
on

ds
)

 Office environment, sequential C−FOREST, RRT*, time

baseline
no sample adjust
no path share

 1 8 16 32 64
 0
0.5
 1
1.5
 2
2.5
 3
3.5

Trees in forest

S
pe

ed
up

 Office environment, sequential C−FOREST, SPRT, speedup

baseline
no sample adjust
no path share
S=1

 1 8 16 32 64
 0

 3

 6

 9

12

15

Trees in forest

S
pe

ed
up

 Office environment, sequential C−FOREST, RRT*, speedup

baseline
no sample adjust
no path share
S=1

Figure 3.14: Variations of sequential C-FOREST using SPRT or RRT* trees (Left and Right, respectively),
on an office multi-robot problem for solution length = 30m. Blue is normal parallel C-FOREST, yellow is a
variant that does not decrease the sampling envelope, red is a version that does not engraft best solutions
(solution lengths are still shared). Top: time required to find a solution (mean and standard error over 50
trials)—note the log scale. Bottom: the resulting speedup. Engrafting appears to be more important than
decreasing the sampling envelope, especially for larger forests.

1 for both the parallel and sequential version of the algorithm. In general, data points for which

results are not super linear correspond to problems that are relatively easy to solve. This result

makes sense given Corollary 3.3 in Section 3.2 which indicates that a few Any-Time solutions need

to be found in order to fully capitalize on super linearity. For easy problems, the first solution may

be good enough, and so super linear speedup is not observed. Note however, that speedup > 1 is

still observed for nearly all data points in all experiments. Therefore, with respect to solution time,

it is still almost always in one’s best interest to use parallel C-FOREST instead of a single tree.

For parallel C-FOREST (run on a cluster of T CPUs) the highest efficiencies were achieved

using less than 64 computers in the particular experiments that I ran. Thus, with respect to power

consumed per solution, there may be an inherent limit to the cost-savings C-FOREST can provide.

Although the observed power savings of up to 89% (for efficiency 9.4) is quite decent. Experiments

also show that using sequential C-FOREST can lead to power savings of over 95% (for speedup

23.6). While this highlights some of the better results, it is important to note that substantial

50

power savings were observed on most experiments (e.g., whenever efficiency > 1 for the parallel

version of the algorithm, or speedup > 1 on the sequential version).

For most applications the most important metric is time required per solution. Assuming this

evaluation criteria is used, the results show that using more trees is almost always better. In parallel

C-FOREST, it was observed that mean solution times always decrease as more computers are added

to the cluster—despite a falling, yet still greater than 1 efficiency. For sequential C-FOREST in

the office environment, the benefits of adding more trees eventually plateau then gradually decline.

In the simple environment the speedup is still increasing for sequential C-FOREST at 64 trees.

Algorithmically, it appears that sharing and engrafting nodes has a larger effect than reducing

the size of the sampling envelope based on the length of the best solution. This can be seen in

Figures 3.13 and 3.14, where forests that do not share nodes exhibit efficiencies slightly above or

below 1 depending on if RRT* or SPRT trees are being used. That said, reducing the sampling

envelope does have a noticeable effect in all experiments, with larger effects observed for forests

containing few trees (e.g., those with T ≤ 16).

A practical issue not yet addressed is how to select T in order to achieve the maximum

efficiency (i.e., power savings) when using the parallel algorithm or to maximize speedup when

using the sequential algorithm. However, it is clear that the optimal value of T for a particular

problem is almost certainly greater than 1, assuming only one tree is constructed per CPU. Given

the favorable efficiencies observed for higher values of T , it seems better to error on the side of

using too many CPUs than too few. The high efficiency of the forest means that one can use many

CPUs and still have a better power consumption per solution than what is observed using a single

CPU. However, if power consumption is the most important metric, then an even better option

appears to be using sequential C-FOREST on a single CPU.

This rationalization may be little consolation to those who desire a method of explicitly

calculating the best T for a particular problem. To them I offer the following discussion: The

analysis in Section 3.2 suggests C-FOREST works well because it allows multiple trees to share

information about the sampling envelope and environmental visibility set. Therefore, it seems

51

reasonable that environments with similar properties should exhibit similar behavior vs. T . Here

‘properties’ may include things like the dimensionality of the configuration space, the average

obstacle size and distribution, the ratio of the configuration space that is free of obstacles, and the

type of robot being used. Experimental results suggest that performance seems to be stable vs. T

that vary by an order of magnitude or more, and that it is better to error on the side of using too

many trees than not enough. Therefore, calibrating T on a similar problem will likely give a decent

approximation to its optimal value. Even if the optimal value of T cannot be estimated exactly,

there appears to be ample room for error. For example, using an algorithm with 30% to many or

too few trees has a relatively small effect on solution quality vs. time.

3.6 C-FOREST conclusions

I present a new approach to single-query path planning called Coupled Forests Of Random

Engrafting Search Trees (or C-FOREST). In the C-FOREST algorithm multiple probabilistically

independent random trees are coupled such that new random points are sampled, and existing

nodes pruned, based on the best solution found by any tree in the forest. Current best solutions

are also shared among and engrafted onto other trees in the forest. This allows good solutions to

be improved by all trees in the forest and provides all trees increased visibility of the configuration

space.

A significant contribution of this work is a theoretical proof showing that parallel C-FOREST

(where each CPU grows a search tree), can achieve super linear speedup vs. the number of CPUs.

In other words, C-FOREST has parallelization efficiency > 1. This is the first proof that super

linear speedup in parallelized path planning can be attributed to algorithmic design, instead of

more common hardware phenomena that are less scalable and harder to reproduce (e.g., better

cache alignment). Super linear speedup is very rare. When it exists, it is possible to design faster

non-distributed algorithms by dividing processing time between each sub-problem on a single CPU.

Therefore, I also propose a non-distributed sequential version of C-FOREST that operates according

to this concept.

52

Three sets of experiments are performed, in three different environments, using three different

state-of-the art underlying random trees, three different distance metrics, and two different robotic

systems. To the best of my knowledge, the parallel C-FOREST we test with RRT* is the first

parallel implementation of RRT*.

Experiments show that parallel C-FOREST nearly always out-performs a stand-alone tree,

often with super linear speedup. Indeed, to the best of our knowledge the efficiency obtained

by C-FOREST is significantly larger than any previous result in parallel robotic path planning.

Efficiencies over 2 are common and efficiencies up to 9.4 are observed (with speedups well over

350), while the best previous result I am aware of has efficiency 1.2. The speedup of sequential

C-FOREST is also significant—often over 2 and up to 23.6.

My analysis suggests these positive results should be reproducible for C-FORESTs utilizing

any type of random search tree that is expected to converge to optimality, and for any configuration

space that obeys the triangle inequality. C-FOREST works especially well for difficult problems,

where the probability of finding a better path is small.

Chapter 4

Any-Com C-FOREST: path planning with an ad-hoc distributed computer

created over a networked robotic team

Complete solutions to multi-robot problems can be computationally complex. Although

less expensive methods can enable practical performance in many real-world situations, these are

incomplete and can fail in the most challenging circumstances (see Chapter 2). Often, each robot in

a team is equipped with its own computer and the ability to communicate. Given these resources,

it makes sense to divide computational effort among all robots a solution will benefit. That is, a

networked team of robots can be re-cast as a distributed computer to solve the problems encountered

by its composite robots. This is particularly useful for complex communal tasks such as centralized

multi-robot path-planning. Specifically, this form of ad-hoc distributed computer can be used

to run the C-FOREST algorithm described in Chapter 3, where the problem solved is the exact

multi-robot path planning problem faced by the robotic team.

In practice, wireless bandwidth is environment dependent and often beyond the control of the

user or a system. Yet, algorithms for coordinating networked robot systems usually rely on a mini-

mum quality of service and fail otherwise. In contrast, I am interested in distributed algorithms that

are able to utilize unreliable communication, and coin the term “Any-Com” to describe them. The

idea is to find a suboptimal solution quickly, and then refine toward optimality as communication

permits. This is analogous to the “Any-Time” paradigm, in which algorithms adapt to the avail-

able computation time [15]. Note that the C-FOREST algorithm is well suited to this idea given

that it provides a distributed framework in which each CPU can make independent progress, but

54

successful communication between CPUs are beneficial—often resulting in super linear speedup.

In this chapter I present the necessary modifications required to run C-FOREST on an ad-

hoc distributed computer formed from a robotic team. I call the revised algorithm Any-Com

C-FOREST. Although Any-Com C-FOREST uses distributed computation it is algorithmically

centralized due to the fact that all robots are viewed as single pieces of a composite robot. The

ad-hoc distributed computer—acting as a single entity—calculates a solution. In previous work,

centralized solutions have either been calculated on a single robot and then disseminated, or solved

by each robot individually (see chapter 2). Note, I originally presented this idea in [91], where the

algorithm was called Any-Com Intermediate Solution Sharing (Any-Com ISS).

In general, I believe that Any-Com algorithms should exploit perfect communication and have

gracefully performance declines otherwise. However, just as Any-Time algorithms cannot calculate

a solution in 0 time, Any-Com C-FOREST may not find a solution when communication totally

fails. Worst-case scenarios aside, Any-Com C-FOREST is robust to a high degree of communication

disruption.

4.1 Any-Com C-FOREST methodology

To utilize the distributed computational power of a team of mobile robots we need algorithms

that function in environments where communication is unreliable, but we also desire that reliable

communication can be exploited when it exists. The basic C-FOREST algorithm has strong in-

herent Any-Com properties. It is robust to moderate packet loss because dropped messages do

not affect an agent’s ability to eventually find a solution. Each agent maintains its own randomly

created tree, and successful communication focuses search in beneficial ways and helps the team

find better solutions more quickly. Robots share their individual intermediate solutions during

path-planning so that all agents can prune globally sub-optimal branches from their local trees.

This enables each robot to focus effort on finding only better solutions than those currently known

to any robot. It also gives all robots a chance to directly refine the best intermediate solution.

Therefore, even out-of-date messages have the potential to be beneficial, as long as the solution

55

they contain is better than the receiving agent’s current best.

On the other hand, using C-FOREST for multi-robot path planning in a realistic setting

requires additional considerations. In this chapter I focus on what is needed assuming that a team

has already been established (this is extended in Chapter 5 to address team formation). If robots do

not know other team member’s starting and goal locations a priori then a start up communication

exchange is required to share this data. Also, some mechanism is required to enable the team to

reach a consensus on (which version of) the final solution to use, since multiple robots may find

different improvements immediately before planning time is exhausted. Once a solution has been

found and agreed upon, robots must coordinate movement along the final solution—while all team

members should theoretically be able to follow the time schedule dictated by the solution, it is

dangerous to assume that delays will never happen.

Practical Any-Com C-FOREST is achieved by adding synchronization mechanisms to the

algorithm to enable consistency within the team with respect to initial data, final solution, and

movement. Each message m contains the following data, based on the sending robot’s current

knowledge:

• m.D A set containing a data field dr about each robot r that the sender knows about,

including the start dr.s and goal dr.g for each dr ∈ D.

• m.Pbst Best solution (currently known to the sender).

• m.Lbst Best solution’s length.

• m.rbst ID of the robot that generated the best solution.

• m.V List of robots that believe m.Pbst is the best solution.

• m.F List of robots that have submitted a final solution.

• m.M Movement flag that is true if the sender has started moving.

• m.B The amount of time that this robot is behind schedule (with respect to movement).

56
AnyComCFOREST()

1: D = {dr}
2: Lbst = ∞
3: Pbst = ∅
4: rbst = ∞
5: M = false
6: B = 0
7: F = ∅
8: ListenerThread()
9: SenderThread()

10: while ∃ r ∈ R s.t. NeedData(r) do
11: sleep(1/ω)
12: RandomTree(t)
13: F = F ∪ {r}
14: AgreeAndMove()

ListenerThread()

1: while RobotsNotAtGoal() do
2: m = GetMessage()
3: if ∃ r ∈ R s.t. NeedData(r) then
4: for all r s.t. dr ∈ m.D and

NeedData(r) do
5: sr = dr.s
6: gr = dr.g
7: D = D ∪m.D
8: else if m.M then
9: Pbst = m.Pbst

10: Lbst = m.Lbst

11: rbst = m.r
12: M = true
13: V = m.V ∪ {r}
14: F = m.F ∪ {r}
15: else if TimeLeft() and (m.Lbst < Lbst or

(m.Lbst = Lbst and m.r ≤ rbst)) then
16: if m.Lbst 6= Lbst or m.r 6= rbst then
17: V = m.V ∪ {r}
18: Pbst = m.Pbst

19: L = m.Lbst

20: rbst = m.r
21: t.Prune(Lbst)
22: t.SetSampleBounds(Lbst)
23: if not TimeLeft() then
24: F = m.F ∪ F ∪ {r}
25: if m.Lbst = Lbst and m.rbst = rbst then
26: V = m.V ∪V

RandomTree(t)

1: while TimeLeft() and not M do
2: v = RandomPoint(Lbst)
3: t.Insert(v)
4: if t.Lbst < Lbst and not M then
5: Pbst = t.Pbst

6: Lbst = t.Lbst

7: rbst = t.r
8: V = {r}
9: t.Prune(Lbst)

10: t.SetSampleBounds(Lbst)

SenderThread()

1: while RobotsNotAtGoal() do
2: m.D = D
3: m.Lbst = Lbst

4: m.Pbst = Pbst

5: m.rbst = rbst
6: m.V = V
7: m.F = F
8: m.M = M
9: m.B = B

10: Broadcast(m)
11: sleep(1/ω)

AgreeAndMove()

1: while RobotsNotAtGoal() do
2: if RobotsAgree() then
3: Br = time this robot is behind schedule
4: if Br < B then
5: stop moving along path
6: else if Br > B then
7: B = Br

8: continue moving along path
9: else

10: continue moving along path

RobotsAgree()

1: if M or (∀ r ∈ R, r ∈ F) or
(rbst = t.r and ∀ r ∈ R, r ∈ V) then

2: M = true
3: return true
4: return false

Figure 4.1: Algorithm for Any-Com C-FOREST (Left-Top), and new subroutines. Note that
ListenerThread() and SenderThread() are started on their own threads. RobotsNotAtGoal() re-
turns true if not all robots are at the goal and false if all robots are at the goal. m = GetMessage()
receives an incoming message and stores the data in m. NeedData(r) returns true if start/goal data has
not been received from robot r. All other subroutines are identical to those in Figure 3.2 in Chapter 3, with
the exception that TimeLeft() also returns false if M is true.

57

The practical implementation of Any-Com C-FOREST is displayed in Figure 4.1. D is

initialized to contain this agent’s data about its start and goal on line 1. The best solution is

initialized to the empty set, its length to infinity, and the generating agent to infinity (lines 2-

4). The movement flag is initialized to false (line 5), the amount this robot is behind schedule is

initialized to 0 (line 6), and the set of agents that have submitted their final solution is initialized

to the empty set (line 7). Separate threads are used to receive incoming messages (line 8) and send

messages (line 9). Planning is handled according to the modified random tree algorithm but does

not start until all start/goal data has been received (lines 10-12). After the allotted planning time

has been exhausted, this agent adds itself to the list of agents that have submitted a final solution

(line 13). Control is then passed to the function AgreeAndMove() on line 14.

Each robot keeps a copy of what it believes to be the best solution found by any robot, and

each robot is responsible for adding itself to the lists D, V, and F (AnyComCFOREST() lines

1 and 13, ListenerThread() lines 13-14, 17, 24, and RandomTree(t) line 8). In order to keep

the network up-to-date, messages are dropped if they contain paths that are worse than the best

path known to the receiving agent (ListenerThread() line 15). Ties are broken by robot id r.

The sender thread broadcasts this robots world view at rate ω (SenderThread() lines 1-11).

The listener thread is responsible for receiving messages from other robots (SenderThread() line

2), and then adjusting this robots world view accordingly. During the start-up data exchange phase

the listener thread adds start and goal information about other robots to the combined start and

goal states (lines 3-7). If a message contains data that indicates the sending robot is moving, then

the message data automatically replaces the best solution to guarantee consistency within the team

(lines 8-14). If a new best solution is received during the planning phase, then the global data are

updated accordingly (lines 15-22). If there is not time left for planning, then the list of agents that

have submitted their final solution is updated (lines 23-24). If the agent that sent the message

agrees with this agent about the best solution, then the list of all agents that support the solution

is updated accordingly (lines 25-26).

RobotsAgree() checks if an agreement has already occupied (line 1, first part). Otherwise,

58

any robot can correctly deduce when an agreement has occurred if it knows all robots have sub-

mitted a final solution (line 1, second part). This is because better solutions are no longer being

generated and the best solution known to the sending robot is always sent in every message—the

actual best solution must have been passed along with the knowledge that the robot who generated

it has submitted a final solution. In the unlikely event of a tie, the solution found by the robot

with the lower ID is used.

There is also an additional method of reaching an agreement using V. By carefully tracking

which solutions other robots support during the planning phase, it is possible to approximately

forecast the final vote. A robot can conclude that its own solution should be used if it believes

all robots currently support its most recent solution (line 1, third part). Although this may allow

a suboptimal solution to be chosen, it is unlikely. Further, if an agent erroneously believes all

robots currently support its solution, then it must have had the best solution in the past, so

the cost of erroneously picking a suboptimal solution is mitigated. A scenario where different

robots move along different incompatible solutions is impossible because two or more robots cannot

simultaneously believe all robots support their most recent solution. This is due to the fact that

only the robot that generated a solution can initiate movement along it. If two different robots

generate competing solutions, neither will initiate movement until one robot advertises support for

the other’s solution—and they cannot both support the other’s solution because one solution is

guaranteed to be better than the other (or, in the case of ties, come from the robot with lower ID).

Once a robot knows an agreement has been reached, it sets M to true (RobotsAgree()

line 2), and begins moving along its path per the best solution (AgreeAndMove() lines 2-10).

Moving robots track keep track of the furtherest that any robot is running behind schedule, and

then adjusts movement along their own paths accordingly (lines 3-10). Note that in practice this

means that each robot adjusts the time it plans to be at a particular location by B.

There is an implicit assumption in the algorithm as it is depicted above that enough mes-

sages are successfully transmitted that agents start moving at similar times. In extremely harsh

communication environments the algorithm may need to be additionally modified to include a syn-

59

chronized countdown timer to guarantee that all agents begin moving within an allowable time

tolerance of each-other.

Theoretically, allowing more agents to work on a random-tree problem will increase the

chances a good solution is found quickly, regardless of whether or not Any-Com C-FOREST is

actually causing cooperation during the planning phase. To determine how much (if any) advantage

Any-Com C-FOREST provides, it is compared to having each agent individually find a unique

solution to the complete problem. Individual solutions are then broadcast so that the team can

use the best one found by any angent. The latter method is referred to as Voting, and similar

ideas have been explored in the past [29]. Finally, to give context to the relative performance of

Any-Com C-FOREST vs. Voting, both are compared to a client-server framework. In the client-

server system, called Baseline, the server is charged with calculating a complete solution using a

single random tree, and then sharing it with the other robots. Any-Com C-FOREST, Voting, and

Baseline use the same underlying random tree algorithm (Figure 3.2-Left). Performance is also

compared to Any-Time RRT [43].

Both Any-Com C-FOREST and Voting use the same underlying message-passing protocol

to disseminate information within the group. The idea is simple: each robot broadcasts informa-

tion to every other robot at a predefined rate ω using the User Datagram Protocol (UDP). UDP

drops unsuccessful messages, which keeps the information flowing through the network up-to-date.

Baseline modifies this by having the server set M to true as soon as the planning time is over.

Therefore, each robot begins moving as soon as the solution is received from the server. In order to

keep Baseline as naive as possible, the client robots do not rebroadcast the solution to each other,

but the server continues to rebroadcast at ω.

Each search-tree is generated randomly and each solution is drawn from a distribution over

all possible solutions. Assuming R = |R| robots, the union of all trees is a O(R) times larger tree

maintained collectively by the entire team. Theoretically, both Any-Com C-FOREST and Voting

should increase the team’s collective chances of finding a desirable solution, vs. Baseline, because R

random samples are drawn from this distribution instead of 1. I hypothesize Any-Com C-FOREST

60

will produce better solutions than the other two methods due to the distributed computational

advantages it provides.

4.2 Any-Com C-FOREST experiments

Three experiments are performed with 5 robots in an office environment to evaluate C-

FOREST vs. Voting and Baseline. The first experiment is conducted in simulation to evaluate

theoretical performance over a wide range of parameters and also compares vs Any-Time RRT.

The second experiment uses real robots to validate that the algorithms function in practice, but

comparison vs Any-Time RRT is omitted due to the latter’s poor performance on the first experi-

ment. The third experiment is conducted on real robots in a deliberately challenging communication

environment where imperfect Faraday cages are used to disrupt communication. The CU Prairied-

gog robotic platform is used for the real robot experiments (see Figure 4.2). It is built on top of the

iRobot create base and uses the ROS operating system by Willow Garage. Robots are equipped

with the Stargazer Indoor Localization System. The Computational Units are System 76 Netbooks

with built-in wireless networking capabilities.

In all experiments C-FOREST uses the SPRT algorithm (presented in Appendix B) as the

underlying random tree. I chose to use SPRT instead of RRT* because I desire solution quality

Lbst = ‖Pbst‖ to be measured as either the sum of the distance along each robot’s individual path

through the workspace (to reflect the cumulative distance traveled), or as the maximum time it

takes any robot to achieve the goal (to reflect the time that must pass until robots are free to begin

a new task). Note that the latter metric is used for the experiments in this chapter. Proper use of

either metric is not possible with RRT*, due to the fact that graph neighbors are selected with the

help of a kd-tree that relies on the Euclidean distance through the team’s combined configuration

space.

61

Figure 4.2: Left: 5 robots in an office environment and the resulting paths. Center and Right:
Prairiedog platform. Each robot is equipped with an indoor localization system, a netbook and
IEEE 802.11g wireless communication.

0 0.5 1
0

50

100

150

200

250

5 sec

S
ol

ut
io

n
le

ng
th

 (
m

ax
 ti

m
e

to
 g

oa
l)

0 0.5 1

10 sec

 Probability of successful message send
0 0.5 1

25 sec

0 0.5 1

50 sec

Baseline

Voting

Any−Com C−FOREST

Any−Time RRT

Figure 4.3: Solution lengths from the simulated office experiment. Sub-plots show different planning
times µ. Mean and standard error over 100 runs are shown as points and error-bars respectively.

0 0.5 1
0

5

10

15

20
5 sec

A
gr

ee
m

en
t t

im
e

(s
ec

)

0 0.5 1

10 sec

 Probability of successful message send
0 0.5 1

25 sec

0 0.5 1

50 sec

Baseline

Voting

Any−Com C−FOREST

Figure 4.4: Agreement time from the simulated office experiment. Sub-plots show different planning
times µ. Mean and standard error over 100 runs are shown as points and error-bars respectively.

62

0 10 20 30 40 50

50

60

70

80

90

100

110

120

Planning Time (sec)

S
ol

ut
io

n
le

ng
th

 (
m

ax
 ti

m
e

to
 g

oa
l)

Baseline
Voting
Any−Com C−FOREST

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Planning Time (sec)

A
gr

ee
m

en
t t

im
e

(s
ec

)

Baseline
Voting
Any−Com C−FOREST

Figure 4.5: Solution lengths (Left) and average agreement time (Right) from the real robot office
experiment. Mean and standard error over 20 runs represented as points and error-bars, respectively

4.2.1 Simulated office experiment

This experiment evaluates the relative performance of Any-Com C-FOREST, Voting, Base-

line, and Any-Time RRT (Figure 4.2). Note that Any-Time RRT is run on a single robot. The

performance of all four algorithms is evaluated vs. message success probability τ vs. planning time

µ. In this experiment τ = {1, 1/4, 1/16, 1/64} probability of success and µ = {5, 10, 25, 50} sec-

onds. 100 runs are performed per each combination of parameters to facilitate statistical analysis

of results. Mean and standard errors of the resulting solution lengths are displayed in Figure 4.3

and agreement times in Figure 4.4 (agreement time is the time after µ and before movement).

Both Any-Time RRT and Baseline are run on a single agent and have identical agreement phases.

Therefore, the agreement times for Any-Time RRT are omitted.

4.2.2 Real robot office experiment

This experiment is conducted on 5 actual robots, but is otherwise similar to the simulated

office experiment. Robot maximum speed is set to 0.2 meters per second. During planning ω = 4,

and during the agreement phase ω = 32. The change is due to the preliminary results in Experiment

1, where it is clear that the agreement phase can become lengthy in terms of messages sent. Also,

63

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Baseline

Any-Com C-FOREST

Baseline sim

Any-Com C-FOREST sim

S
o
lu
ti
o
n
L
en

g
th

(m
a
x
ti
m
e
to

g
o
a
l)

Minimum message success rate

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Baseline

Any-Com C-FOREST

Baseline sim

Any-Com C-FOREST sim

A
g
re
em

en
t
ti
m
e
(s
ec
)

Minimum message success rate

Figure 4.6: Faraday cage experiment results. Crosses and stars correspond to the effective, mea-
sured packet loss in the environment. Error-bars show means and standard deviations over 100
simulations assuming Poisson distributed package loss.

path-planning is computationally intensive while the agreement phase is not, and robots are able to

spare additional resources to increase ω. The same µ are used as in Experiment 1. Each data-point

represents 20 runs. We plot solution quality and agreement time vs. planning time in Figure 4.5

Left and Right, respectively. Signal quality was relatively good in this experiment, the observed

packet loss rate was less than 50%. We forgo comparison vs. Any-Time RRT due to the positive

performance of the other methods in the simulated experiment.

64

4.2.3 Faraday cage experiment

In this experiment five robots plan paths through an office environment while the wireless

channel is systematically disturbed by shielding the RF system using an imperfect Faraday cage

created by a tin-can. This is done in order to significantly disrupt communication—but not com-

pletely prohibit it. Statistics are collected on the actual solution quality and consensus time as a

function of the effective packet throughput. Note that a different planning problem is solved than

in the previous two experiments.

Results from the simulated experiment predict that Any-Com C-FOREST should outperform

the other methods, even given packet-loss rates as high as 95%. However, the theoretical model

used for simulation assumes that communication quality is Poisson distributed, and cannot account

for all real-world communication disturbances. This experiment is designed to test Any-Com C-

FOREST under harsh communication constraints in a real-world environment, and either validate

or refute the earlier simulated predictions.

Experimental results are depicted in Figure 4.6, along with predictions from the theoretical

simulations. The real data are depicted as crosses/stars. The theoretical data are shown as circles

and error bars (representing the mean and standard deviation over 100 simulations, respectively,

per a particular drop-rate). Note, the vertical appearance of the data-points at 1, 1/2, and 1/3 is

an artifact of the low number of messages sent by the baseline approach and caused by experiments

where solutions were successfully distributed on the first, second, and third, attempts, respectively.

4.3 Discussion of Any-Com C-FOREST results

With regard to solution quality, both Any-Com C-FOREST and Voting out-perform Baseline,

and Any-Com C-FOREST outperforms Voting. All three methods outperform Any-Time RRT.

Using a two-sample Kolmogorov-Smirnov test on results from the first two experiments, algorithms

are compared based on solution lengths. Difference between algorithms are found to be statistically

significant (p < .05) for all but one method-parameter combinations in the simulated experiment

65

(i.e. for one method vs. another with µ and τ held constant), and all but one parameter combination

in the real robot experiment (Voting vs. Any-Com C-FOREST at µ = 5 sec). In fact, p < 0.001

for most data-points, and when the results from the first two experiments are considered together,

p becomes vanishingly small.

Performing a similar analysis for the Faraday cage experiment results makes less sense due

to the high variability of τ . However, in the Faraday cage experiment, Any-Com C-FOREST

out-performs the the other methods in terms of solution quality (i.e., path-time-to-goal). The

three methods are similar with respect to mean agreement time, except that Any-Com has a lower

standard deviation—which I attribute to early consensus building during the planning phase. Basic

trends in the experimental results are similar to those predicted by the theoretical simulations.

However, agreement times are greater than those predicted by the theoretical model. I believe this

is due to the fact that wireless communication is not Poisson distributed in the real world. Results

show that Any-Com C-FOREST can drastically speed up computation, even if packet loss is as high

as 97%. In other words, the team is able to act as an effective distributed computer with only 3%

of the messages getting through. These results validate my hypothesis that Any-Com C-FOREST

will outperform the other two methods.

Examining the solution quality vs. planning time for the various methods in Figures 4.3

and 4.5-Left illustrate just how well Any-Com C-FOREST performs. Voting finds similar quality

solutions using less than half the planning time as Baseline, on average, while Any-Com C-FOREST

finds similar quality solutions in ≤ 1/n of the time. These results agree well with those from the

basic C-FOREST algorithm in Chapter 3. They provide strong evidence that the robotic team is

functioning as an effective ad-hoc distributed computer. Given the team is using n times as much

computational power, the expected ratio of required planning time is 1/n. Therefore, the value

of < 1/n that was observed in the real robot office experiment shows that the ad-hoc distributed

computer is able to achieve parallelization efficiency > 1.

It often takes longer than 5 seconds (or even 10) for an agent to find a solution. That is,

µ = 5 is not enough time to guarantee that all robots have found a solution. In such a case, after 5

66

seconds has passed, Any-Com C-FOREST uses the best solution found by any robot so far, while

Baseline must wait until the server finds its first solution, and Voting must wait until all robots

have found a solution. This has two interesting affects. First, the agreement times of Baseline and

Voting are greater than Any-Com C-FOREST because all robots must wait until the server or all

robots have found a solution, respectively, before an agreement can be reached. Second, by waiting

extra time until n solutions exits, Voting has an increased chance of finding a “good” solution vs.

Any-Com C-FOREST. While this may initially seem desirable, Any-Com C-FOREST is able to

start movement at the expected time, while the other algorithms suffer unexpected delays. We

believe this is why the results for Voting and Any-Com C-FOREST are similar for µ = 5 sec in

the real robot office experiment (i.e. p > .05), and also why the agreement times for Voting are

inflated for µ = 5 and µ = 10 in the simulated office experiment.

Another interesting trend is that Any-Com C-FOREST solution quality does not get much

worse as communication becomes unreliable. Theoretically, as τ → 0 the results of Any-Com C-

FOREST will approach those of Voting.1 There is a hint of this in the simulated office experiment,

where τ is controlled, especially for longer planning times. However, it appears communication must

drastically deteriorate before Any-Com C-FOREST begins to suffer. In fact, packet loss rates as

high as 98% have little affect on solution quality.

The most noticeable effect of poor communication is an increase in the time it takes the

robots to agree on a single solution. Assuming that communication failure is strictly all-to-all and

Poisson-distributed, increasing the messaging rate ω during the agreement phase can mitigate the

effects of communication deterioration (as in the real world office experiment). In any case, the

bandwidth will eventually become saturated, and further diminishing τ will eventually prevent an

agreement from taking place within a useful time. Therefore, Any-Com C-FOREST should not be

used when τ ≈ 0. That said, it is impossible for any complete algorithm to function when τ ≈ 0.

As a practical measure, the τ ≈ 0 case could be handled using a time-out. After which, robots start

moving based on the best solutions known to them individually. Assuming on-board sensors exist,

1 They are also trivially the same at τ = 0, since neither method will be able to reach a consensus.

67

conflicts would then be resolved using the cocktail-party model. Although this ‘worst-case-scenario’

forces the algorithm to become incomplete until communication is resumed, it is arguably better

than letting the team remain motionless forever.

The simulated experiments predict Baseline should have similar agreement times to Any-Com

C-FOREST, while the real experiments show Any-Com C-FOREST as the clear winner. The fact

that these benefits do not extend to the Voting method (even for µ > 10) suggests some other

mechanism is responsible for the relatively quick agreement time of Any-Com C-FOREST. We

credit this improvement to the auxiliary vote-forecasting agreement method available to Any-Com

C-FOREST.

It is important to note that I have been using a communication protocol in which each robot

sends messages directly to every other robot. While this works well for small numbers of robots,

it may not transfer well to larger teams. In practice, any message protocol can be used that

has the ability to propagate information to the entire team. However, other protocols may cause

performance to change. In particular, I suspect that multi-hop protocols may decrease performance

vs. a particular environmental communication state, since a particular message will be assaulted

multiple times.

4.4 Any-Com C-FOREST conclusions

I coin the term “Any-Com” to describe algorithms that iteratively refine a solution toward

optimality as communication permits. Any-Com algorithms are well suited for use on ad-hoc

distributed computers, where communication between computational nodes may be unreliable.

The motivation behind using Any-Com for multi-robot path planning is that a networked team

of robots can be thought of as an ad-hoc distributed computer, and should adapt to use as much

collaborative problem solving as communication quality permits. In general, the Any-Com idea is

useful for solving computationally intensive problems, especially those with solutions of value to

multiple agents. Centralized multi-robot navigation has both of these qualities.

I present the modifications necessary to turn C-FOREST into a practical Any-Com multi-

68

robot path-planning algorithm, and call the resulting algorithm Any-Com C-FOREST. The basic

C-FOREST algorithm itself has strong Any-Com properties. Dropped messages do not prohibit a

solution from eventually being found, while successful messages improve solution quality (both in

overall path quality, and the time it takes to reach an agreement). Any-Com C-FOREST provides

additional synchronization mechanisms that ensure the entire team uses the same solution and

begins moving at the same time. It also explicitly uses a message passing protocol to share data

between computational nodes (robots). I envision Any-Com C-FOREST as one tool among many

in the multi-robot planning arsenal—useful in the specific case when a complete algorithm must

be used (i.e., when a group of robots finds itself confronted with a difficult problem that cannot be

solved by less expensive incomplete planning methods).

Three experiments are performed using a team of n = 5 robots, and results are compared to

a basic server-client model as well as a voting method (in the server-client framework one agent

plans and then distributes the solution to the other robots, while in voting each agent is allowed to

plan separately and then the team uses the best solution found by any single agent). As with the

basic C-FOREST algorithm, Any-Com C-FOREST can achieve super linear speedup vs. solving

the same problem on a single computational node (robot). Any-Com C-FOREST is also at least

twice efficient as the voting method assuming at least 2% message success rate.

As bandwidth approaches 0 the solution quality of Any-Com C-FOREST theoretically de-

clines gracefully to that of the voting method, while both remain better than the server-client

model. In fact, communication loss as high as 98% has little affect on solution quality. Unfortu-

nately, the time it takes to reach consensus approaches infinity as communication approaches 0.

This is not unexpected, as all complete multi-robot planning algorithms are inherently vulnerable

to total communication failure. In an actual production implementation, total (or near-total) com-

munication loss can easily be identified and used as a condition to fall-back to sensor-based cocktail

party methods. Ignoring this worst-case-scenario, Any-Com C-FOREST is found to be robust to a

high degree of communication interference.

While this chapter is a focused case-study on Any-Com applied to multi-robot navigation,

69

I believe that the Any-Com idea is not limited to the multi-robot path planning domain. I hope

that the Any-Com concept will spread to other problems that can benefit from the computational

power of ad-hoc distributed computing, and envision a world in which mobile robots dynamically

take advantage all available computational resources to solve complex problems.

Chapter 5

Dynamic-Team Any-Com C-FOREST: centralized multi robot path planning

with dynamic teams

This Chapter extends Any-Com C-FOREST by giving it the ability to use dynamic teams. I

call the resulting algorithm Dynamic-Team Any-Com C-FOREST. The basic idea is that all robots

start in their own team, and teams are combined only if doing so is necessary to guarantee safety

and/or completeness. The idea is inspired by the twin observations that centralized multi-robot

problem complexity is exponential in the number of robots in a team, and that many robots may

not interfere with each-other’s ability to navigate—despite operating near each other.

Any-Com C-FOREST and the dynamic team idea also complement each other for a number

of other reasons. First, Any-Com C-FOREST assumes that robots working on the same problem

are within communication range, and dynamic teams can be used to ensure this condition is met.

Second, dynamic teams provide a graceful way to handle the discovery of previously unknown

robots; once discovered, Any-Com C-FOREST provides a framework to check if they should be

added to a team, and to harness their computational power if so. Third, and most importantly,

they are both designed to attack the centralized multi-robot problem—albeit from different angles.

By combining the two ideas, I hope to create a more resilient algorithm that inherits the positive

aspects of both.

Previous work on dynamic teams has focused on the necessity of dynamic teams due to limited

communication. In [28] team formation is seen as a positive event and allowed to occur as soon

as two robots can communicate. This is because limited communication necessarily hinders team

71

(1)

X

X

X

X

X X

X

X

X

X

X X

(2)

X

X

X

X

X X

X

X

X

X

X X

(3)

X

X

X

X

X X

X

X

X

X

X X

(4)

X

X

X

X

X X

X

X

X

X

X X

Figure 5.1: Dynamic-Team Any-Com C-FOREST (without selection of a conflict area). (1) Each robot
starts in its own team. (2) Path conflicts cause pink and gray to form a team, and yellow and green to form
a team. (3) New paths found by the green team conflict with new paths of the gray team, causing both
teams to merge into a single team. (4) Total team formation includes two 1-robot teams and a 4-robot team.

formation and prevents information exchange. In contrast, I believe aggressive team formation

overlooks the dynamic team framework’s natural ability to break an R ≥ 2 robot problem into

two separate problems of size n and m, where n + m = R. Search complexity is dependent on

the Lebesgue measure of the configuration space. If the Lebesgue measure of a configuration space

containing a single robot is ‖C1‖l, then the Lebesgue measure of the multi-robot configuration

space of R identical robot opperating in the same workspace is ‖CR‖l = ‖C1‖lR. It is much easier

for two teams to solve O (‖C1‖lm) and O (‖C1‖ln) complex problems in parallel, than for one large

team to solve an O
(

‖C1‖ln+m) problem. Therefore, I believe it makes sense to keep teams as

small as possible, and only combine teams if doing so is necessary to avoid collisions and maintain

72

(1)

X

X

XX
(2)

X

X

XX

(3) (4)

Figure 5.2: Dynamic-Team Any-Com C-FOREST (with selection of a conflict area). (1) Each robot starts
in its own team. (2) Conflicts cause red and blue to form a team and pink and green to form a team. (3)
Each team selects a small region around the conflict to re-plan in. (4) Each robot follows the team path
within the conflict region, and its original path outside the conflict region.

completeness guarantees (See Figure 5.1).

Given that a single team’s search complexity is O(‖C1‖l∆), where ∆ = |∆| is the number of

robots in a particular dynamic team ∆, it is computationally advantageous to keep ‖C1‖l small.

Assuming that ∆ is fixed, this means that team search should be confined to the smallest portion of

the configuration space necessary to guarantee whatever algorithmic properties we are interested in

(e.g., optimality, completeness, etc.)—see Figure 5.2. This presents an interesting design decision.

Limiting search to a subset of the configuration space necessarily prevents some solutions from

being found. This means that care must be taken to maintain guarantee on completeness, and that

optimality is likely to be lost. On the other hand, while planning in the entire configuration space

73

may theoretically provide complete and optimal solutions, it may cause the search problem to be

so difficult that a solution cannot be found within a practical amount of time.

My personal bias is to favor problem complexity considerations over optimality. The rational

being that finding a quick suboptimal solution is more useful than an optimal (or less suboptimal)

solution that takes longer to calculate. The assumption here is that the extra movement along

a sub-optimal trajectory is worth the decrease in planning time caused by shrinking the size of

the planning sub-space. There are two reasons I believe this is a valid assumption in situations

where Dynamic-Team Any-Com C-FOREST is expected to be used. First, shrinking the diameter

of the planning space causes an exponential decrease in problem complexity. Therefore, unless the

environment is diabolically designed, the decrease in planning time is likely to be exponentially

larger than the increase in path length. Second, long-term navigational solutions are likely to be

invalidated by unforeseen future robot-robot conflicts and so replanning is likely. Thus, it does

not make sense to spend a disproportionate amount of time converging toward an optimal solution

when the majority of it may never be used.

Therefore, the version of Dynamic-Team Any-Com C-FOREST presented in this chapter

seeks to minimize both the number of robots in a team, as well as the size of the configuration

space that teams must plan through, while hopefully maintaining completeness guarantees. This

is accomplished by combining teams only if their paths conflict (in both time and space), and then

having the team to solve the combined problem of moving from one side of the conflict region to

the other. For instance, if two robot’s paths conflict, then the combined problem solved by the

two robot team is limited to the area directly around the original conflict. Each robot can use its

original path to move to and from the conflict region, but within the conflict region it must move

according to the multi-robot solution. The selection of the conflict region is done in a way attempts

to maintain completeness guarantees.

Indeed,“Dynamic-Team” plays the same role along the computation spectrum that “Any-

Com” plays along the communication spectrum. Dynamic teams require a small amount of com-

putational power to be useful, but become unnecessary given an infinite amount of computational

74

power. In practice, the selection of both team size and conflict region size that can be made

dependent on the computational resources available to the resulting team.

5.1 Dynamic-Team Any-Com C-FOREST methodology

The major difference between Dynamic-Team Any-Com C-FOREST and Any-Com C-FOREST

(presented in Chapter 4), is that the Dynamic Team version adds additional functionality to com-

bine and dissolve teams, including the selection of which sub-set of the configuration space a team

should plan through. As with Any-Com C-FOREST robots broadcast messages m that reflect the

sender’s current belief of the world. Messages are similar to those introduced in Section 4.1, except

for the following modifications and additions:

• m.∆ is a list of all robots in the sender’s team.

• dr, the individual elements of m.D are modified as follows: dr.s and dr.g are maintained

to reflect the robots start and goal with respect is current sub-problem, and the additional

fields dr.Pnav and dr.ε are added. dr.Pnav contains the entire path between the current

location dr.s and the goal dr.g that robot r is currently using to navigate—including its

time parameterization. dr.ε contains the current planning epoch of robot r. Note that m.D

still contains data about all robots that the sending agent knows about, not just those in

the sender’s team.

All other fields of m remain unchanged, except that they are defined with respect to the sender’s

team ∆ instead of the set of all robots R.

Dynamic Team Any-Com C-FOREST is outlined in Figures 5.3 and additional subroutines

are showed in 5.3. Initialization is performed on lines 1-5, where each robot inserts its own data

into D and places itself into its own team ∆. The host robot also sets the path it advertises

indicating its planned navigation to Pnav to be its start location. The planning iteration that the

host robot advertises to other robotsD.dt.r.ε is initialized to 0. The planning iteration ε is increased

every time a new sub-problem is solved, and is used to ensure consistency within dynamic teams.

75
DynamicTeamAnyComCFOREST()

1: D = {dt.r}
2: ∆ = {t.r}
3: Pnav = st.r
4: D.dt.r.ε = 0
5: Reset()
6: ListenerThread()
7: SenderThread()
8: loop
9: while ∃ r ∈ ∆ s.t. NeedData(r, ε,D) do

10: sleep(1/ω)
11: [C∆, v 6∆] = PickCSpace(C,∆,D)
12: RandomTree(C∆, t)
13: if NeedToReset then
14: continue
15: F = F ∪ {r}
16: Pnav = PathCombine(Pnav,C∆,Pbst)
17: AgreeAndMove()
18: Reset()

RandomTree(C∆, t)

1: while TimeLeft() and not M and
not NeedToReset do

2: v = RandomPoint(Lbst)
3: t.Insert(v)
4: if t.Lbst < Lbst and not M then
5: Pbst = t.Pbst

6: Lbst = t.Lbst

7: rbst = t.r
8: V = {r}
9: t.Prune(Lbst)

10: t.SetSampleBounds(Lbst)

SenderThread()

1: loop
2: dt.r.Pnav = Pnav

3: dt.r.ε = ε
4: m.D = D
5: m.Lbst = Lbst

6: m.Pbst = Pbst

7: m.rbst = rbst
8: m.V = V
9: m.F = F

10: m.M = M
11: m.B = B
12: Broadcast(m)
13: sleep(1/ω)

ListenerThread()

1: loop
2: m = GetMessage()
3: for all r s.t. (dr 6∈ m.D)∨

(dr ∈ m.D ∧m.D.dr.ε ≥ D.dr.ε) do
4: D.dr = m.D.dr
5: if m.r 6∈ ∆ and (∃ r1, r2 s.t. r1 ∈ m.∆∧

r2 ∈ ∆ ∧Conflict(m.D.dr1 ,D.dr2)) then
6: ∆ = ∆ ∪m.∆
7: ε = max(ε,m.D.dr1 .ε) + 1
8: NeedToReset = true
9: else if (m.r ∈ ∆ and m.D.dr.ε > ε) or

(m.r 6∈ ∆ and ∃ t.r ∈ m.∆) then
10: ∆ = ∆ ∪m.∆
11: ε = m.D.dr.ε
12: NeedToReset = true
13: else if m.r ∈ ∆ and m.D.dr.ε = ε then
14: if m.M then
15: Pbst = m.Pbst

16: Lbst = m.Lbst

17: rbst = m.r
18: M = true
19: V = m.V ∪ {r}
20: F = m.F ∪ {r}
21: else if TimeLeft() and (m.Lbst < Lbst or

(m.Lbst = Lbst and m.r ≤ rbst)) then
22: if m.Lbst 6= Lbst or m.r 6= rbst then
23: V = m.V ∪ {r}
24: Pbst = m.Pbst

25: L = m.Lbst

26: rbst = m.r
27: t.Prune(Lbst)
28: t.SetSampleBounds(Lbst)
29: if not TimeLeft() then
30: F = m.F ∪ F ∪ {r}
31: if m.Lbst = Lbst and m.rbst = rbst then
32: V = m.V ∪V

Reset()

1: Lbst = ∞
2: Pbst = ∅
3: rbst = ∞
4: M = false
5: B = 0
6: F = ∅
7: ε = D.dt.r.ε
8: v 6∆ = ∅
9: NeedToReset = false

Figure 5.3: Algorithm for Dynamic-Team Any-Com C-FOREST (Left-Top), and new/modified subroutines.
Other subroutines appear in Figure 5.4 or are identical to those in Figure 4.1 in Chapter 4.

76
AgreeAndMove()

1: while not NeedToReset do
2: if RobotsAgree() then
3: Br = time this robot is behind schedule
4: if Br < B then
5: stop moving along path
6: else if Br > B then
7: B = Br

8: continue moving along path
9: else

10: continue moving along path
11: if RobotAt(v 6∆) then
12: ∆ = {t.r}
13: stop moving along path

RobotsAgree()

1: if M or (∀ r ∈ ∆, r ∈ F) or
(rbst = t.r and ∀ r ∈ ∆, r ∈ V) then

2: M = true
3: return true
4: return false

NeedData(r, ε,D)

1: if dr 6∈ D then
2: return true
3: else if D.dr.ε < ε then
4: return true

[C∆, v 6∆] = PickCSpace(C,∆,D)

1: D∆ =
⋃

r∈∆ dr
2: K =

⋃

r∈∆ FindFirstConflict(dr,D∆ \ dr)
3: if ∃ r ∈ ∆ s.t. Kr 6∈ K then
4: vχ = Centroid(K)
5: for all r s.t. r ∈ ∆ ∧Kr 6∈ K do
6: K = K ∪ClosestPoint(dr.Pnav, vχ)
7: C∆ = SubspaceContaining(C,K)
8: while C∆ 6= C and not Safe(C∆,∆) do
9: C∆ = Expand(C∆,C)

10: for all r ∈ ∆ do
11: sr = first point along D.dr.Pnav in C∆

12: gr = last point along D.dr.Pnav in C∆

13: v 6∆ = gt.r

Figure 5.4: New/modified subroutines for Dynamic-Team Any-Com C-FOREST. Other subroutines appear
in Figure 5.3 or are identical to those in Figure 4.1 in Chapter 4.

Additional initialization happens within the Reset() function, which is also called each time the

robot begins to solve a new subproblem. The best path (for the current problem) Pbst, its length

Lbst, and ID of its generating robot are initialized (Reset() lines 1-3), as well as the movement flag

M , the amount the robot is behind schedule B, the planning iteration ε, the location at which the

robot can dissolve its team v 6∆, and NeedToReset which is a master flag that is used to indicate

that a new subproblem must be solved (lines 4-9).

Back in the main Dynamic-Team Any-Com C-FOREST algorithm, the listener and sender

threads are started on lines 6 and 7, and the main loop begins on line 8, and will continue to run

forever (Due to the fact that the total number of robots is unknown, and new robots may require

the host robot to move away from its goal after it has been reached. The main loop gets restarted

every time a new sub-problem must be solved (e.g., when a new robot joins the team). As in

Any-Com C-FOREST, the robot waits until it receives the most up-to-data data for each robot in

its team (lines 9-10).

77

After the robot knows all desired navigational paths of its team (D.dr.Pnav for each r ∈ ∆),

it uses this information to calculate which subset of the environment should be used for planning

C∆ on line 11. Note that all robots must use the same deterministic algorithm to find C∆ in

order to guarantee C-FOREST compatibility. Actual planning takes place on line 12. Assuming a

solution is found before the sub-problem changes then the robot adds itself to the list of teammates

that have submitted a final solution line 15. The robot combines the new solution Pbst with its old

navigational path Pnav—using the former within C∆ and the latter outside of C∆, and updating

the time parametrization accordingly. Finally, the robot enters the agree and move phase (lines

16-17).

In practice I have found it advantageous to set the time associated with the first point on

Pnav to be 0, and then updating Pbst accordingly. While this causes points on Pbst that are located

before Pnav to be negative, each robot immediately updates B to reflect the time that it expects

it will arrive at the beginning of Pnav, and so other robots adjust accordingly.

The subroutine RandomTree(C∆, t) is similar to what was used in Any-Com C-FOREST,

except that it will return early if NeedToReset is set to true. AgreeAndMove() is modified in

a similar fashion. The latter also checks if the robot reaches v 6∆, and if so then dissolves the team

(lines 11-12). RobotsAgree() is also similar to its Any-Com C-FOREST version, except that only

robots within the dynamic team are considered. SenderTread() is modified to populate m with

the additional fields required by Dynamic-Team Any-Com, and NeedData(r, ε,D) is modified to

additionally check for planning iteration consistency.

A large portion of the new functionality required to use dynamic teams takes place within

ListenerTread(). Lines 3-4 keep D up to date (in addition to start and goal data, D contains

the path that each robot is using for navigation and their current planning iteration). Lines 5-12

check for different cases that will cause team size to be increased. Line 5 checks if any robots in

the sender’s team conflict with any robots in the host robot’s team. If so then the host robot set

its planning iteration to be larger than the maximum iteration involved in the combination, adds

all robots from the sender’s team to its own team, and then sets NeedToReset to true (lines 6-8).

78

Line 9 checks if there is either a within-team planning iteration incrementation or if an out-of-team

robot has added the host-robot to its team. In either case, the host-robot combines teams with the

other robot, adopts the other robot’s planning iteration, and then sets NeedToReset to true (lines

10-12). If a message comes from a within-team robot that is using the same planning iteration (line

13), then behavior is identical to the previous version of the algorithm presented in Section 4.1

(lines 14-32).

Selection of C∆ the subspace of C team ∆ agrees to use for planning is accomplished via

the [C∆, v 6∆] = PickCSpace(C,∆,D) function. For simplicity, all team data is accumulated in

the list D∆ on line 1. Next, Kr the first conflict vs. time of each robot r ∈ ∆ is found and

accumulated in the list K on line 2. If some robots do not have conflicts vs. any other robot in the

team then some method of including them in the search space must be devised (this can happen

due to the fact that robots in the same team may have already resolved their conflicts during a

previous planning iteration). Although this could be handled in many different ways (e.g., removing

non-conflicting robots from the team), I have chosen to include all robots in the conflicting teams.

The rationalization for this is that since all robots in ∆ were previously coordinating movement

with at least one currently conflicting robot, it is likely that new solutions may result in another

conflict with the same robot. Therefore, if robot r does not have any conflicts, then its conflict

point is defined to be the closest point on D∆.dr.Pnav to the centroid of all other conflict points

vχ, lines 3-6. The closest point is chosen in hopes of minimizing the size of C∆.

C∆ is initialized to the smallest subspace of C that contains all points in K, line 7. Next,

C∆ is increased until either we can be sure that completeness guarantees are maintained via the

Safe(C∆,∆) function, or C∆ contains the entire space C, lines 8-9. I will postpone discussion

about Safe(C∆,∆) until the next section. Finally, the sub-area start and goal coordinates are

saved, lines 11-12, and the point at which the host robot can dissolve its team is also recorded, line

13.

79

5.1.1 Maintaining completeness

Maintaining completeness while using a subset of the original configuration space for planning

is a tricky problem. I believe that in the worst case the general problem of selecting the smallest

C∆ that maintains completeness guarantees is at least as hard as planning through the entire C,

due to the fact that, in the worst case, it is impossible to find a solution even when C∆ = C—and

verifying this requires solving the planning problem using the entire C.

The logic for using C∆ is that problem complexity is reduced when C∆ (C. Therefore, any

useful algorithm for selecting C∆ should run fast compared to solving the path planning problem

through C∆. A strategy that I have found to work well in practice, and the one that I use in

Safe(C∆,∆), is to use a set of fast and greedy heuristic-based checks that will never falsely report

that completeness is maintained when it is not, but may erroneously report that completeness is

not maintained when it actually is. This is why the size of C∆ is increased until we can be sure

that completeness is maintained.

I now prove a few theorems showing cases where completeness is guaranteed to be maintained.

I assume a 2D workspace with circular holonomic robots that have the ability to stop in place.

Similar proofs exist for robots that do not meet these conditions, and can be achieved by replacing

the robotic footprint with the maximal space required to slow to a halt, turn around, or otherwise

maintain movement required for safety (i.e., circling in place to maintain altitude in an aircraft).

Similar proofs also exist for 3D workspaces. Let the maximum diameter of the robot footprint be

denoted φ. I assume that all robot use the same portion of the workspace to define their portion

of the configuration space. In other words, ∀r1, r2 ∈ ∆ s.t. r1 6= r2 it is the case that Cr1 = Cr2 .

Recall that C∆ =
⋃

r∈∆Cr. Let Wr be the portion of the workspace that corresponds to Cr.

Given the previous assumptions, Wr is the same for all r ∈ ∆, so let W∆ = Wr∈∆ to highlight

the fact that we are considering the same subset of the workspace for each member of the entire

team. I also assume that all start and goal locations are valid (i.e. there are no robot-robot conflicts

before planning begins or at goal location, and start/goal locations are safely within the planning

80

area), and that each robot has a unique ID number.

Lemma 5.1: Assuming ∆ robots are organized along the top row of a ∆ by ∆ grid-matrix, where

each grid has side-length φ, it is possible to reorder the robots in any permutation without collisions.

Proof. The proof is by construction, and there are three cases ∆ = 1, ∆ = 2, and ∆ ≥ 3. Case

1 is trivially true. Case 2 has two sub-cases: In sub-case 2.1 the robots are already in the correct

position, which is trivially true. In sub-case 2.2 the robots need to be swapped, which is possible

by moving the right-most robot down, then the left most robot over into the correct position, and

the finally the first robot left and then up into the correct position. For Case 3 an algorithm to

reorder the robots is as follows: let robots be identified by their left to right order in the desired

permutation. Place the robot with the highest ID in the correct location by swapping it with the

robot in the desired position (this is possible since one robot can move right along the second row

of the matrix, while the other can move left along the third row of the matrix). Repeat with the

second highest ID, third highest ID, etc.

Corollary 5.1: Assuming ∆ robots are organized along the top row of a 3 by ∆ grid-matrix, where

each grid has side-length φ, it is possible to reorder the robots in any permutation without collisions.

Proof. This is immediately evident given that the ∆ = 1 and ∆ = 2 cases are guaranteed by

Lemma 5.1, and the case ∆ ≥ 3 can be solved by the same algorithm used in Case 3 of Lemma 5.1.

Lemma 5.2: Assuming ∆ robots are located in a 2 by ∆ grid-matrix, where each grid has side-

length φ, it is possible to place all robots in the top row without collisions.

Proof. The proof is by construction. Let the grids in the top row be numbered 1, 2, ...,∆. An

algorithm to place all robots along the top row is as follows: let the robot closest to grid-1 be called

robot-1, ties are broken by selecting the left most robot. Of the remaining robots, let the robot

closest to grid 2 be called robot-2. Repeat this process for the rest of the grids and robots. Next,

simultaneously move all robots toward their corresponding grids at the same speed until all robots

81

either cannot move without entering a collision state or have reached their desired location. Note

that at least one robot must now be closer to its corresponding grid due to the fact that there is

too much space (φ∆ across) for traffic jams to prevent all ∆ robots from moving at all. The entire

process is repeated until all robots are organized along the top row. Note that this is analogous

to placing marbles in a container and turning it up-side-down so all the marbles fall toward the

ground.

Corollary 5.2: Assuming ∆ robots are located in a 3 by ∆ grid-matrix, where each grid has side-

length φ, it is possible to place all robots in the top row without collisions.

Proof. This is immediately evident given Lemma 5.2 and the fact that allowing more space to

maneuver will not hurt the ability of robots to reach the goal.

Corollary 5.3: Assuming ∆ robots are located in a ∆ by ∆ grid-matrix, where each grid has

side-length φ, it is possible to place all robots in the top row without collisions.

Proof. There are two cases trivial cases, ∆ = 1 and ∆ ≥ 2, the first it trivially true and the second

is immediately evident given Lemma 5.2 and the fact that allowing more space to maneuver will

not hurt the ability of robots to reach the goal.

Corollary 5.4: Assuming ∆ robots are located in the top row of a 2 by ∆ grid-matrix, where each

grid has side-length φ, it is possible to move the robots to any safe configuration within that space

without collisions.

Proof. This is immediately evident given that the inverse problem can be solved by Lemma 5.2,

and then the robot paths reversed.

Corollary 5.5: Assuming ∆ robots are located in the top row of a 3 by ∆ grid-matrix, where each

grid has side-length φ, it is possible to move the robots to any safe configuration within that space

without collisions.

82

Proof. This is immediately evident given that the inverse problem can be solved by Corollary 5.2,

and then the robot paths reversed.

Corollary 5.6: Assuming ∆ robots are located in the top row of a ∆ by ∆ grid-matrix, where each

grid has side-length φ, it is possible to move the robots to any safe configuration within that space

without collisions.

Proof. This is immediately evident given that the inverse problem can be solved by Corollary 5.3,

and then the robot paths reversed.

Theorem 5.1: If no obstacles are present then completeness guarantees are maintained if W∆ is

defined by a rectangle with side-lengths 3∆ by φ∆.

Proof. Such a rectangle contains a 3 by ∆ grid where each grid has side-length φ. Regardless of

initial configuration, it is possible to move all robots so they are located along the upper row of

the grid , reorder them appropriately (corollary 5.1), and then move all robots from that position

to any other position within the square (corollary 5.5).

Theorem 5.2: If no obstacles are present then completeness guarantees are maintained if W∆ is

defined by a square with side-length φ∆.

Proof. Such a square contains a ∆ by ∆ grid where each grid has side-length φ. Regardless of

initial configuration, it is possible to move all robots so they are located along the upper row of the

grid (corollary 5.3), reorder them appropriately (Lemma 5.1), and then move all robots from that

position to any other position within the square (corollary 5.6).

Theorem 5.3: If obstacles are present then completeness guarantees are maintained if W∆ con-

tains a free-space patch defined by a rectangle with side-lengths 3∆ by φ∆ that is accessible to all

robots.

Proof. All robots can get to a free-space rectangle where they can rearrange themselves in any

configurations. This allows the robots to order themselves appropriately so that robots that must

leave the rectangle do so in the appropriate order.

83

Theorem 5.4: If obstacles are present then completeness guarantees are maintained if W∆ con-

tains a free-space patch defined by a square with side-length φ∆ that is accessible to all robots.

Proof. All robots can get to a free-space square where they can rearrange themselves in any con-

figurations. This allows the robots to order themselves so that they can leave the square in the

appropriate order.

For algorithmic purposes the square case is only more useful than the the rectangle case when

∆ ≤ 2. Additional theorems can be proved that guarantee completeness is maintained given even

less stringent requirements on free-space. I will now give a rough sketch of two ideas. The first

idea requires all robots to have access to a 2∆ by φ∆ free-space rectangle plus another 2∆ by 2∆

free-space square (robots go to the rectangle, then take turns using the 2∆ square to swap locations,

then move to their final locations). Another requires all robots to have access to ∆ + 1 free-space

squares of size φ by φ that robots can occupy without blocking other robots from getting to or

from any of these squares (this is essentially the same as the previous proof sketch, except that the

rectangle used to store robots during the swapping phase has been chopped into ∆ pieces that are

dispersed throughout the environment and the final square is used to help swap robots). While

these ideas are clearly more general than the proofs given above, they are also more computationally

complex to automate—and I do not use them in practice.

5.1.2 Modifications

There are a number of reasons to delay team formation as long as possible. For instance, the

world is uncertain and communication range is limited. Just because robots appear to conflict at

some future time does not necessarily mean that they will—other (sooner) conflicts may change

a robots plans. For instance, assume two teams ∆A and ∆B are in conflict. There may exist

another robot/team ∆C 6⊂ (∆A ∪∆B) initially beyond communication range, but that eventually

joins ∆A or ∆B and forces them to re-plan. Thus, the original “conflicting” solution of ∆A or ∆B

may either become invalid or cease to be in conflict before either team actually reaches the original

84

conflict point.

Since complete multi-robot navigation is exponentially complex in the number of robots,

keeping teams small is a priority and it is advisable to delay team formation until collisions appear

unavoidable (e.g., if ∆A and ∆B are in conflict and the two conflicting robots are physically near

each other, then the chances of collision are much greater). Another consideration is that, although

Any-Com C-FOREST is theoretically robust to poor communication, it can benefit from improved

communication (and has problems when communication totally fails). Assuming communication is

generally better at closer range, forming teams such that teammates are near each other also reduces

the chance of total communication failure. Therefore, Conflict(dr1 , dr2) delays team formation by

returning false until a robot r1 is closer than a predefined threshold to r2.

5.2 Dynamic-Team Any-Com C-FOREST experiments

All experiments in this chapter are performed using use the Prairiedog robotic platform (see

Figure 4.2). Robots run the ROS operating system, localize using the Hagisonic Stargazer, and are

equipped with a map of the environment. Robots exchange data using IEEE 802.11g wireless in

ad-hoc mode. The target speed is set to 0.2 meters per second. As in Chapter 4 C-FOREST uses

the SPRT algorithm (presented in Appendix B) as the underlying random tree. Solution length is

measured as the sum of all individual path lengths.

Five experiments are performed. The first three compare Dynamic-Team Any Com C-

FOREST with and without using sub-area selection for determining CDelta, respectively. The

rest of the experiments are designed to compare the performance of Dynamic-Team Any-Com

C-FOREST vs. Any-Com C-FOREST.

5.2.1 Large Andrews Hall experiment

This experiment evaluates the benefits of planning in C∆ (C vs. planning in the entire

space C∆ = C. Four robots are deployed in Andrews Hall, a large building on the University

of Colorado at Boulder campus with a challenging floor-plan that requires team formation (see

85

10m

Figure 5.5: Andrew’s Hall (gray and white), with the polygon obstacle map (red), and Conflicting
solutions found when robot team sizes = 1 (black paths). Each robot plans from its current location
(blue) to a goal location (green).

Figure 5.6: Actual robot paths vs. time (thick colored lines), and their projections on the free-
space of Andrews Hall (thin colored lines and gray, respectively). Time 0 corresponds to the start
of movement. Blue successfully reaches the goal, but the experiment is aborted when the red +
black + pink team is unable to find a solution after 10 minutes. Note, only the first 5 minutes of
the experiment are plotted.

Figure 5.5). Two robots start in each of the east and west wings of the building, respectively.

Robots are assigned the task of trading places with a robot in the opposite wing. As discussed in

86

the previous section, robots initially plan a path to the goal for themselves, then form larger teams

and re-plan if they encounter other robots/teams who’s paths conflict with their own. Planning is

forced to take place in the entire configuration space C∆ = C. However, teams are not combined

unless robots have conflicting paths and are closer to each-other than 3 meters. 5 runs of the

experiment are performed.

Failure or partial failure is observed in all 5 runs of the experiment. That is, never did all four

robots successfully reach their goals in a single run. I postpone a full discussion of this result until

the next section; however, the failure is due to the computational complexity of a large workspace

combined with large dynamic team size. Planning through the entire residence hall is too complex

a problem for teams of more than two robots to handle in any reasonable amount of time, and the

design of the building makes it unlikely that all robots will reach their goals without forming teams

of size three or four. Over all 5 runs, the average observed communication quality between any

two members of the same team is 60.69% with a standard deviation of 22.64%—so communication

quality is not to blame for the team’s repeated failure to find a solution.

Figure 5.6 illustrates robot location vs. time from a typical run of the experiment when

C∆ = C. The red robot catches up to the black robot and they form a dynamic team in the east

wing of the building (the left wing of the plot). Before red and black discover a 2-robot solution,

the pink robot joins their team. The resulting 3 robot team is unable to find an initial solution

after planning for 10 minutes, and the experiment is halted. In this run, blue is the only robot able

to successfully reach its goal.

5.2.2 Small Andrews Hall experiment

This experiment is designed to highlight the important role of the size of C∆ (C by forcing

a worst case team size ∆ to plan in a subset of the environment used in the previous experiment.

4 robots start in locations as they might enter the large common room in the center of Andrew’s

Hall. Teams are combined if conflicting robots are within 10 meters of each-other. This causes all

robots to quickly form one large team. C∆ is defined such that W∆ is the entire common room.

87

30
32

34
36

38

6

8

10

12

0

20

40

60

metersmeters

se
co

nd
s

Figure 5.7: Workspace is limited to the large common room. Actual robot paths vs. time (thick
colored lines), and their projections on the free-space (thin colored lines and gray, respectively).
Time 0 corresponds to the start of movement. The resulting robot paths are plotted vs. time (thick
colored paths), along with their projections on the free-space (colored paths and gray, respectively).

Table 5.1: Small Andrews Hall experiment statistics, 10 runs with 4 robots

mean standard deviation

In-team communication quality 67.47% 26.68%

Time to first solution (seconds) 14.24 9.55

First solution length (meters) 46.59 4.30

Final solution length (meters) 38.02 3.27

Actual distance traveled (meters) 44.88 7.80

10 runs are performed, and all robots successfully reach their goals in every run. Figure 5.7

depicts robot locations vs. time for a typical run. The mean and standard deviation of observed

statistics over all 10 runs are displayed in Table 5.1. The mean measured distance robots actually

traveled is greater than the mean final solution length due to small pose jumps between localization

tags and temporary localization error incurred between global localization updates during rotation.

88

Figure 5.8: Actual robot paths vs. time (thick colored lines), and their projections on the free-space
of Andrews Hall (thin colored lines and gray, respectively). Time 0 corresponds to the first team
formation.

Table 5.2: Large Andrews Hall experiment (with conflict region selection) statistics, 10 runs with
4 robots

mean standard deviation
In-team communication quality 63.18% 27.48%
Actual distance traveled (meters) 161.8 12.6

5.2.3 Large Andrews Hall experiment with conflict region selection

This experiment is designed to verify that Dynamic-Team Any-Com C-FOREST using con-

flict region selection can overcome the difficulties encountered by the same algorithm without

conflict region selection (e.g., as observed in the large Andrews Hall experiment). In other words,

to test the hypothesis that using C∆ (C is beneficial. Four robots are placed as they would

enter the common room/hallway in the center of the building and told to go to the corners of the

opposite wing. This results in a bottle-neck condition that favors the creation of a 4-robot team.

Each team is allowed to plan for twice the time it takes to find an initial solution.

89

20

25

30

35

40

45

0

5

10

15

20
0

20

40

metersmeters

se
co

nd
s

Figure 5.9: A typical solution from the six robot experiment with dynamic teams and conflict region
selection. Actual robot paths vs. time (thick colored lines), and their projections on the free-space
of Andrews Hall (thin colored lines and gray, respectively). Two teams of three robots each form
on either side of the common room. Note that the floor-plan is included to aid in visualization and
does not correspond to the conflict areas.

Table 5.3: Six robot experiment (with dynamic-teams) statistics, 10 runs with 6 robots

mean standard deviation
In-team communication quality 63.81% 13.72%
Actual distance traveled (meters) 37.30 8.60

10 runs are performed, and all robots successfully reach their goals in every run. Figure 5.8

depicts robot locations vs. time for a typical run. The mean and standard deviation of observed

statistics over all 10 runs are displayed in Table 5.2.

5.2.4 Six robot experiment with dynamic-teams

This experiment is designed to showcase the full power of Dynamic-Team Any-Com C-

FOREST. Two groups of three robots are set up at the two bottle-neck positions in either end

of the common room in Andrew’s Hall (Figure 5.9). The robots are told to exchange places within

90

20

25

30

35

40

45

0

5

10

15

20
0

50

100

meters
meters

se
co

nd
s

Figure 5.10: A typical solution from the six robot experiment without dynamic teams but still using
conflict region selection. Actual robot paths vs. time (thick colored lines), and their projections on
the free-space of Andrews Hall (thin colored lines and gray, respectively). Paths tend to be longer
than in the previous experiment. Note that the floor-plan is included to aid in visualization and
does not correspond to the conflict area.

Table 5.4: Six robot experiment (without dynamic-teams) statistics, 10 runs with 6 robots

mean standard deviation
In-team communication quality 66.59% 9.21%
Actual distance traveled (meters), if an experiment was successful 64.62 18.35

each group. This placement is used to encourage the formation of two three robot teams. Each

team is allowed to plan for twice the time it takes to find an initial solution.

10 runs are performed, and all robots successfully reach their goals in every run. Figure 5.9

depicts robot locations vs. time for a typical run. The mean and standard deviation of observed

statistics over all 10 runs are displayed in Table 5.3.

91

5.2.5 Six robot experiment without dynamic-teams

This experiment is designed to test the importance of using dynamic teams, assuming that

conflict region selection is being used. As in the previous experiment, two groups of three robots

are set up at the two bottle-neck positions in either end of the common room in Andrew’s Hall

(Figure 5.9). The robots are told to exchange places within each group. However, unlike the

previous experiment all robots are programmed to immediately form a single 6-robot team. Note

that the team still uses conflict region selection to choose C∆ (C. The team is allowed to plan

for twice the time it takes to find an initial solution.

10 runs are performed. In 5 of 10 runs the test is halted due to a time-out, where time-out

occurs if an initial solution has not been found within five minutes of planning time. Two other

experiments failed after a solution was found: on one run the battery ran out in a net-book, and

on another there was a non-recoverable localization error. Figure 5.10 depicts robot locations vs.

time for a typical run. The mean and standard deviation of observed statistics over all 10 runs are

displayed in Table 5.4, where communication quality is over all 10 runs, and distance traveled is

over the three experiments where all robots reached the goal.

5.3 Discussion of Dynamic-Team Any-Com C-FOREST results

When C∆ = C in the large Andrews Hall experiment the configuration space of teams with

∆ ≥ 3 is so large that the problem becomes intractable. This happens despite the distributed

computing power of Any-Com C-FOREST, and the fact that teams are not combined unless robots

are close to each other. The observation that intra-team packet loss was less than 40%, on average,

suggests that the team’s difficulty in finding a solution was due to problem complexity and not poor

communication. This result highlights the fact that dynamic team formation can lead to grid-lock

and failure because it forces teams to deal with the worst-case complexity of the problem.

Both the small Andrews hall experiment and the large andrew’s hall experiment with conflict

region selection show that C∆ (C is beneficial even in conjunction with a worst-case team size. I

92

believe these results highlight the benefits of using C∆ ⊆ C.

The six robot experiments reiterate the importance of using dynamic teams to reduce team

size (e.g., in addition to the size of the configuration space associated with each robot). Even though

the same problem instance is used in both experiments, results in the dynamic team experiment

are much better than those in the non-dynamic-team experiment. Using dynamic teams allows the

six robot problem to be broken into two easily solved three robot problems. Not using dynamic

teams both increases problem complexity to the point that half of the runs end in a time-out, and

causes increased path length when runs do not time out.

5.4 Dynamic-Team Any-Com C-FOREST conclusions

In this chapter I present a distributed centralized multi-robot path-planning algorithm called

Dynamic Team Any-Com C-FOREST. Each robot starts in its own team, and teams are joined if

their individual solutions conflict. Combining teams based on path conflicts allows non-conflicting

teams to solve problems of reduced complexity in parallel. Within a particular team, the ad-hoc

distributed computation of Any-Com C-FOREST utilizes the computing potential of all team-

members to find better solutions more quickly. In order to reduce problem complexity, the resulting

multi-robot path planning problems are constrained to a subset of the original configuration space.

Robots coordinate progress along combined solution to avoid conflicts, but can move to and from

the combined solution using their previously calculated paths.

Dynamic-Team Any-Com C-FOREST is experimentally evaluated in a large, complex, in-

door environment. Experiments evaluate the benefits of solving the multi-robot planning problem

through a reduced portion of the configuration space. When instructed to swap places from one

end of the building to the other, robots succeed in forming teams after they discover each other.

However, when the building’s entire configuration space is used for planing the resulting problem

complexity prohibits teams of three or more robots from finding a solution within any useful amount

of time. In contrast, re-planning through the conflict region (a small subset of the environment

around the original conflict) reduces problem complexity substantially, allowing a solution to be

93

found and all robots to reach their goals. Further experiments show that reducing the size of

the configuration space per robot is often not enough to guarantee tractability, and highlight the

importance of decreasing team size when possible.

Although computational complexity of centralized algorithms is a known theoretical issue,

the experiments in this chapter show experimentally that it can cause dynamic team formation

to trigger grid-lock and failure—due to increased team size and/or environment size. This illus-

trates the importance of algorithms that are able to choose appropriately complex sub-problems

for dynamic teams to solve. I believe that dynamic teams operating in large environments should

attempt to solve the smallest sub-problems necessary to avoid collision, while also maintaining

completeness. This strategy is advantageous because it decreases the size of the base to which the

exponent is raised.

Dynamic Team Any-Com C-FOREST attempts to extend the size of problems for which a

complete solution can be calculated. By delaying team formation as long as possible and planning

in a reduced subset of the configuration space, dynamic teams attempt to minimize the complexity

of the problem required to be solved by any particular team. When a team must be formed, each

team uses Any-Com C-FOREST to divide the computational effort of calculating the members’

common solution.

Chapter 6

Conclusions

The thesis that I argue in this dissertation is “Sharing Any-Time search progress over an

ad-hoc distributed computer that is created from a dynamic team of robots enables probabilistically

complete, centralized, multi-robot path-planning across a broad class of instances with varied com-

plexity, communication quality, and computational resources.” To support this thesis I propose and

experimentally evaluate three new algorithmic advances. In Chapter 3 I demonstrate that central-

ized algorithms can be parallelized in an extremely efficient manner and propose a new distributed

framework for single-shot high dimensional planners called C-FOREST. In Chapter 4 I investigate

the idea that a networked team of robots can be used as an ad-hoc distributed computer in order

to use C-FOREST for solving the multi-robot path planning problem that exists between team

members. I call the resulting algorithm Any-Com C-FOREST because the algorithm automati-

cally adopts to utilize whatever communication is available. In Chapter 5 I extend the idea again,

this time allowing dynamic teams to form and dissolve as robots move through the environment.

If a robot conflicts with another team, then it is added to the team, and the team uses Any-Com

C-FOREST to find a conflict free solution through the problematic region. the latter algorithm is

called Dynamic Team Any-Com C-FOREST.

The success of Dynamic-Team Any-Com C-FOREST provides the best evidence for the valid-

ity of my overarching thesis. It demonstrates that it is possible to automatically adjust problems to

minimize computational loads by keeping both teams sizes and their configuration spaces small. It

also shows that this can be done while simultaneously adapting to different levels of communication

95

(due to the fact that it is built on Any-Com C-FOREST). In addition to supporting my thesis, the

work presented in this dissertation has numerous contributions, both in the field of path planning

and beyond. A quick summary includes:

(1) Proposal of a new method for distributed single-query path planning called C-FOREST.

• Theoretical proof that C-FOREST can have super linear speedup vs. number of CPUs.

• Experimental validation that C-FOREST can have super linear speedup in practice.

• Proposal of a modified Sequential C-FOREST for use on a single CPU.

• Experimental validation that Sequential C-FOREST is beneficial on a single CPU.

• Experimental validation that C-FOREST and Sequential C-FOREST can be used with

a variety of distance metrics, configuration spaces, robots, and random search-trees.

(2) Proposal of the Any-Com C-FOREST algorithm for use on an ad-hoc distributed computer.

• Coinage of the term “Any-Com” to describe distributed and/or multi-agent algorithms

that have graceful performance declines vs. decreasing communication quality.

• Demonstration that a team of robots can be used as an ad-hoc distributed computer.

• Experimental validation that Any-Com C-FOREST performs well in practice, even

when communication is relatively poor.

(3) Proposal of Dynamic-Team Any-Com C-FOREST algorithm, in which robots form teams

and re-plan in sub-regions of the configuration space as necessary to avoid collisions.

• Observation that increasing team size can cause practical planning failure due to

increased problem complexity.

• Theoretical insight into how the size of the configuration space can be reduced while

maintaining probabilistic completeness.

96

• Experimental validation that Dynamic-Team Any-Com C-FOREST allows more dif-

ficult planning instances to be solved than Any-Com C-FOREST, with respect to

planning time.

• Experimental validation that both team size and configuration space diameter inde-

pendently contribute to problem complexity.

The distributed C-FOREST algorithm presented in Chapter 3 has provably super-linear

speedup vs. the number of CPUs that are used—a rare and useful property. The C-FOREST

idea can be extended to any random high-dimensional search tree that is expected to converge to

optimality, and in any search space that obeys the triangle inequality. I experimentally demonstrate

its usefulness (including super linear speedup) in conjunction with a variety of underlying search-

trees, configuration spaces, robots, distance metrics, and cluster sizes.

I propose a practical way of using ad-hoc distributed computers to solve multi-agent problems

in In Chapter 4. Where ad-hoc refers to both (1) the fact that ad-hoc wireless communication is

used to connect computational nodes, and (2) the on-the-fly process by which the distributed

computer emerges as independent computational nodes discover each other. While I envision ad-

hoc distributed computers being most useful to multi-agent problems that have a dependency on

geographic location, I hope the idea is also useful in other domains.

In Chapter 4 the term “Any-Com” is coined to describe the class of algorithms that utilize

whatever available communication exists to calculate a solution, where more communication means

that better solutions can be found more quickly. While Any-Com algorithms are naturally suited

for use in an ad-hoc distributed computing framework, this concept can also be found in other

domains. I propose the Any-Com C-FOREST algorithm for solving the centralized multi-robot

path planning problem. Any-Com C-FOREST enables the robots involved in a particular path-

planning problem to pool their resources, by forming an ad-hoc distributed computer, in order to

solve it.

Finally, I observe that forming teams in order to solve the centralized multi-robot path plan-

97

ning can make the resulting problem too computationally complex to solve in a realistic amount

of time. The reason for this is that problem complexity is exponentially dependent on the dimen-

sionality of the search-space, and dimensionality is proportional to the number of robots in a team.

I propose Dynamic-Team Any-Com C-FOREST to (1) keep teams as small as possible by only

combining teams when doing so is necessary in order to avoid collisions, and (2) have teams plan

through the smallest sub-set of the search space necessary to overcome the collision state while also

maintaining algorithmic completeness.

Bibliography

[1] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooperation in the
martha project. Robotics and Automation Magazine, IEEE, 5(1):36–47, 1998.

[2] R. Alami, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot cooperation through incremental
plan merging. In Proc. IEEE International Conference on Robotics and Automation, pages
2573–2578, 1995.

[3] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang, R. Han, D. Lawrence,
and K. Mohseni. Sensorflock: an airborne wireless sensor network of micro-air vehicles.
In Proceedings of the 5th international conference on Embedded networked sensor systems,
pages 117–129, 2007.

[4] N. M. Amato and L. K. Dale. Probabilistic roadmap methods are embarrassingly parallel.
In Proc. IEEE International Conference on Robotics and Automation, pages 688–694, 1999.

[5] P. Amstutz, N. Correll, and A. Martinoli. Distributed boundary coverage with a team of
networked miniature robots using a robust market-based algorithm. Annals of Mathematics
and Artifcial Intelligence. Special Issue on Coverage, Exploration, and Search, 52(2-4):307–
333, 2009.

[6] B. Aronov, M. de Berg, A. F. van der Stappen, P. Svestka, and J. Vleugels. Motion planning
for multiple robots. In Proceedings of the fourteenth annual symposium on Computational
geometry, pages 374–382, Minneapolis, USA, 1998.

[7] F. Arrichiello, J. Das, H. Heidarsson, A. Pereira, S. Chiaverini, and G. S. Sukhatme. Multi-
robot collaboration with range-limited communication: Experiments with two underactuated
ASVs. In International Conference on Field and Service Robots, 2009.

[8] K. Asarm and G. Schmidt. Conflict-free motion of multiple mobile robots based on decentral-
ized motion planning and negotiation. In Proc. IEEE International Conference on Robotics
and Automation, pages 3526–3533, 1997.

[9] R. A. Askey and R. Roy. Beta function. In F. W. J. Olver, D. M. Lozier, and R. F. Boisvert,
editors, NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.

[10] P. Bachmann. Die Analytische Zahlentheorie. Zahlentheorie. B. G. Teubner, Leipzig, 1894.

[11] N. Balakrishnan and A. C. Cohen. Order statistics and inference. Acedemic Press, New York,
1991.

99

[12] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation
approach. International Journal of Robotics Research, 10(6):628–649, 1991.

[13] M. Bennewitz, W. Burgard, and S. Thrun. Optimizing schedules for prioritized path planning
of multi-robot systems. In Proc. IEEE International Conference on Robotics and Automation,
pages 271–276, 2001.

[14] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[15] M. Boddy and T. L. Dean. Solving time-dependent planning problems. In Proc. Eleventh
International Joint Conference on Artificial Intelligence, pages 979–984, 1989.

[16] M. Bonert. Motion planning for multi-robot assembly systems. M.S. dissertation, University
of Toronto, 1999.

[17] M. Bonert, L. H. Shu, and B. Benhabib. Motion planning for multi-robot assembly systems.
International Journal of Computer Integrated Manufacturing, 13(4):301–310, 2000.

[18] V. Boor, N. H. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for
probabilistic roadmap planners. In Proc. IEEE International Conference on Robotics and
Automation, pages 1018–1023, 1999.

[19] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA,
1984.

[20] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-randomized path-planning. In
Proc. IEEE International Conference on Robotics and Automation, pages 1481–1487, 2001.

[21] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[22] S. J. Buckley. Fast motion planning for multiple moving robots. In Proc. IEEE International
Conference on Robotics and Automation, pages 322–326, 1989.

[23] S. Caselli and M. Reggiani. Randomized motion planning on parallel and distributed archi-
tectures. In In Euromicro Workshop on Parallel and Distributed Processing, pages 297–304,
1999.

[24] C. Chang, M. J. Chung, and B. H. Lee. Collision avoidance of two general robot manipulators
by minimum delay time. IEEE Transactions on Systems, Man and Cybernetics, 24(3):517–
522, 1994.

[25] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: therory, algorithms and implimentations. MIT Press, Cambridge,
2004.

[26] C. M. Clark, T. Bretl, and S. Rock. Applying kinodynamic randomized motion planning
with a dynamic priority system to multi-robot space systems. In Proc. IEEE Aerospace
Conference, volume 7, pages 3621–3631, 2002.

[27] C. M. Clark and S. Rock. Randomized motion planning for groups of nonholonomic robots. In
Proc. International Symposium of Artificial Intelligence, Robotics and Automation in Space,
2001.

100

[28] C. M. Clark, S. M. Rock, and J.-C. Latombe. Dynamic networks for motion planning in
multi-robot space systems. In Proc. 7th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, pages 3621–3631, 2003.

[29] C. M. Clark, S. M. Rock, and J.-C. Latombe. Motion planning for multiple mobile robots using
dynamic networks. In Proc. IEEE International Conference on Robotics and Automation,
pages 4222–4227, 2003.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambtidge, MA, 2001.

[31] N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clayton, F. Dominguez,
K. Donahue, S. Dyar, L. Johnson, H. Liu, A. Patrikalakis, T. Robertson, J. Smith, D. Soltero,
M. Tanner, L. White, and D. Rus. Building a distributed robot garden. Intelligent Service
Robots, Special Issue on Agricultural Robotics, 3(4):219–232, 2010.

[32] H. Davis, A. Bramanti-Gregor, and J. Wang. The advantages of using depth and breadth
components in heuristic search. Methodologies for intelligent systems, 3:19–28, 1988.

[33] R. Diankov and J. Kuffner. Openrave: A planning architecture for autonomous robotics.
Technical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh, PA, July 2008.

[34] E. W. Dijkstra. A note on two problems in connection with graphs. In Numererical
Mathematics, volume 1, pages 269–271, 1959.

[35] C. Dixon and E. W. Frew. Maintaining optimal communication chains in robotic sensor
networks using mobility control. In International conference on Robot Communication and
Coordination, 2007.

[36] J. Elston, E. Frew, D. Lawrence, P. Gray, and B. Argrow. Net-centric communication and
control for a heterogeneous unmanned aircraft system. Journal of intelligent and Robotic
Systems, 56(1-2):199–232, 2009.

[37] M. Erdmann and T. Lozano-Perez. On multiple moving objects. Algorithmica, (2):477–521,
1987.

[38] H. R. Everett, D. W. Gage, G. A. Gilbreath, R. T. Laird, and R. P. Smurlo. Real-world
issues in warehouse navigation. In Proceedings of the SPIE Conference on Mobile Robots IX,
volume 2352, pages 629–634, Boston, MA, 1994.

[39] H. R. Everett, R. T. Laird, G. A. Gilbreath, T. A. Heath-Pastore, R. S. Inderieden, K. Grant,
and D. M. Jaffee. Multiple resource host architecture for the mobile detection assessment and
response system. In Technical Document 3026, Space and Naval Warfare Systems Center,
San Diego, CA, 1998.

[40] B. Faverjon. A local based approach for path planning of manipulators with a high number
of degrees of freedom. In Proc. IEEE International Conference on Robotics and Automation,
volume 4, pages 1152–1159, 1987.

[41] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs. In IEEE International
Conference on Robotics and Automation, pages 1243–1248, 2006.

101

[42] D. Ferguson and A. Stentz. Field D*: An interpolation-based path planner and replanner.
2005.

[43] D. Ferguson and A. Stentz. Anytime RRTs. In Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5369–5375, 2006.

[44] D. Ferguson and A. Stentz. Using interpolation to improve path planning: The field D*
algorithm. Journal of Field Robotics, 23(2):79–101, 2006.

[45] D. Ferguson and A. Stentz. Anytime, dynamic planning in high-dimensional search spaces. In
Proc. IEEE International Conference on Robotics and Automation, pages 1310–1315, 2007.

[46] R. Gayle, K. R. Klingler, and P. G. Xavier. Lazy reconfiguration forest (LRF) - an approach
for motion planning with multiple tasks in dynamic environments. pages 1316–1323, 2007.

[47] R. L. Graham, D. E. Knuth, and O. Patashnik. Answer to problem 9.60. In Concrete
Mathematics: A Foundation for Computer Science, 2nd ed.

[48] Y. Guo and L. D. Parker. A distributed and optimal motion planning approach for multiple
mobile robots. In Proc. IEEE International Conference on Robotics and Automation, pages
2612–2619, 2002.

[49] Y. Hada and K. Takasa. A robust and deadlock free navigation of mobile robots based
on a task-level feedback control. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 629–634, 1999.

[50] Y. Hada and K. Takasa. Multiple mobile robot navigation using the indoor global positioning
system (igps). In Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1005–1010, Hawaii, United States, 2001.

[51] E. A. Hansen and R. Zhou. Anytime heuristic search. Journal of Artificial Intelligence
Research, 28:267–297, 2007.

[52] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. In Proc. IEEE Transactions On System Science and Cybernetics, pages
100–107, 1968.

[53] G. Hollinger and S. Singh. Multi-robot coordination with periodic connectivity. In Proc.
IEEE International Conference on Robotics and Automation, 2010.

[54] G. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. Sukhatme. Distributed coordination
and data fusion for underwater search. In IEEE International Conference on Robotics and
Automation, pages 349–355, 2011.

[55] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. The
International Journal of Robotics Research, 3(4):76–88, 1984.

[56] M. A. Hsieh, L. Chaimowicz, A. Cowley, B. Grocholsky, J. Keller, V. Kumar, C. J. Taylor,
Y. Endo, R. Arkin, B. Jung, D. F. Wolf, G. S. Sukhatme, and D. MacKenzie. Adaptive teams
of autonomous aerial and ground robots for situational awareness. Journal of Field Robotics,
24(11):991–1014, 2007.

102

[57] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for narrow passages with probabilistic
roadmap planners. In Proc. IEEE International Conference on Robotics and Automation,
2003.

[58] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In
Proc. IEEE International Conference on Robotics and Automation, pages 2719–2726, 1997.

[59] R. K. D. Hsu, J. C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving
obstacles. In Proc. IEEE International Conference on Robotics and Automation, pages 537–
543, 2000.

[60] G. Huber. Gamma function derivation of n-sphere volumes. The American Mathematical
Monthly, 89(5):301–302, 1982.

[61] L. Jiang, J.-H. Huang, A. Kamthe, T. Liu, I. Freeman, J. Ledbetter, S. Mishra, R. Han, and
A. Cerpa. Sensearch: Gps and witness assisted tracking for delay tolerant sensor networks. In
Proceedings of the 8th International Conference on Ad-Hoc, Mobile and Wireless Networks,
pages 255–269, 2009.

[62] K. Kant and S. W. Zuker. Trajectory planning in time-varying environments, 1: Tpp = ppp
+ vpp. In Technical Report TR-84-7R, McGill University, Computer vision and Robotics
Laboratory, Canada, 1984.

[63] K. Kant and S. W. Zuker. Toward efficient trajectory planning: the path -velocity decompo-
sition. The international journal of robotics research, 5(3):72–89, 1986.

[64] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion
planning. In Proceedings of Robotics: Science and Systems, Zaragoza, Spain, June 2010.

[65] S. Kato, S. Nishiyama, and J. Takeno. Coordinating mobile robots by applying traffic rules.
In Proc. IEEE International Conference on Intelligent Robots and Systems, pages 1535–1541,
1992.

[66] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghaven. Randomized query processing
in robot path planning. Journal of Computer and Science Systems, 57(1):50–60, 1998.

[67] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 5(1):90–98, 1986.

[68] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown
terrain. In Proc. IEEE International Conference on Robotics and Automation, pages 968–
975.

[69] Y. Koga and J.-C. Latombe. On multi-arm manipulation planning. In Proc. IEEE
International Conference on Robotics and Automation, volume 2, pages 945–952, 1994.

[70] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile
robot navigation. In Proc. IEEE International Conference on Robotics and Automation,
1991.

[71] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path planning.
IEEE Transactions on Robotics and Automation, 20(2):229–242, 2004.

103

[72] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. B. G. Teubner, Leipzig,
1909.

[73] J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors and other
artifacts. In The International Journal of Robotics Research, volume 18, pages 1119–1128,
1999.

[74] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.

[75] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In IEEE International
Conference on Robotics and Automation, pages 473–479, 1999.

[76] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In
Algorithmic and Computational Robotics: New Directions, pages 293–308, 2001.

[77] B. H. Lee and C. Lee. A minimum-time trajectory planning method for two robots. IEEE
Transactions on Systems, Man and Cybernetics, 17(1):21–32, 1987.

[78] D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in
multidimensional binary search trees and balanced quad trees. Acta Informatica, 9(1):23–29,
1977.

[79] S. Leroy, J. P. Laumond, and T. Simeon. Multiple path coordination for mobile robots: a
geometric algorithm. In Proc. International Conference on Artificial Intelligence, 1999.

[80] S. Li. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of
Mathematics and Statistics, 4(1):66–70, 2011.

[81] T.-Y. Li and Y.-C. Shie. An incremental learning approach to motion planning with roadmap
management. In IEEE International Conference on Robotics and Automation, pages 3411–
3416, 2002.

[82] M. Likhachev and S. Koenig. Incremental a*. In Proceedings of the Neural Information
Processing Systems, 2001.

[83] V. J. Lumelski and A. A. Stepanov. Dynamic path planning for a mobile automaton with
limited information on the environment. IEEE Transactions on Automatic Control, AC-
31(11):1057–1063, 1986.

[84] V. J. Lumelsky and K. R. Harinarayan. Decentralized motion planning for multiple mobile
robots: The cocktail party model. Autonomous Robots, 4:121–135, 1997.

[85] J. R. Marden and A. Wierman. The limitations of utility design for multiagent systems.
submitted for journal publication, 2011.

[86] M. C. Mozer and J. Bachrach. Discovering the structure of a reactive environment by explo-
ration. Neural Computation, 4(2):447–457, 1990.

[87] D. Murray and J. Little. Using real-time stereo vision for mobile robot navigation. In Proc.
of the IEEE Workshop on Perception for Mobile Agents, Santa Barbara, California, 1998.

[88] J. Ng and T. Braunl. Performance comparison of bug navigation algorithms. Journal of
Intelligence and Robotic Research, 50(1):73–84, 2007.

104

[89] P. A. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free coordination of two
robotic manipulators. In Proc. IEEE International Conference on Robotics and Automation,
pages 484–489, Scottsdale, AZ, 1989.

[90] M. Otte and N. Correll. The any-com approach to multi-robot coordination. In IEEE
International Conference on Robotics and Automation: Network Science and Systems Issues
in Multi-Robot Autonomy, 2010.

[91] M. Otte and N. Correll. Any-com multi-robot path-planning: Maximizing collaboration for
variable bandwidth. In Proc. 10th International Symposium on Distributed Autonomous
Robotics Systems, 2010.

[92] M. Otte and N. Correll. Any-com multi-robot path-planning with dynamic teams: Multi-
robot coordination under communication constraints. In Proc. 12th International Symposium
on Experimental Robotics, 2010.

[93] M. Otte and N. Correll. C-forest: Parallel path planning with super linear speedup. In
Submission, 2011.

[94] M. Otte and G. Grudic. extracting paths from fields built with linear interpolation. In
International Conference on Intelligent Robots and Systems, St. Louis, 2009.

[95] M. Overmars and P. Svestka. A probabilistic learning approach to motion planning. In
Algorithmic Foundations of Robotics (WAFR), pages 19–37, 1995.

[96] R. B. Paris. incomplete beta functions. In F. W. J. Olver, D. M. Lozier, and R. F. Boisvert,
editors, NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.

[97] D. Parsons and J. Canny. A motion planner for multiple mobile robots. In Proc. IEEE
International Conference on Robotics and Automation, volume 1, pages 8–13, 1990.

[98] R. Philippsen. A light formulation of the E* interpolated path replanner. Autonomous
Systems Lab, Ecole Polytechnique Federale de Lausanne, 2006.

[99] J. Phillips, L. Kavraki, and N. Bedrossian. Spacecraft rendezvous and docking with real-time,
randomized optimization. In AIAA Guidance, Navigation, and Control, 2003.

[100] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-based roadmap
of trees for parallel motion planning. IEEE Transactions on Robotics, 21(4):587–608, 2005.

[101] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for large-scale
motion planning. In IEEE International Conference on Robotics and Automation, pages
3879–3884, 2005.

[102] G. Ramanathan and V. S. Alagar. Algorithmic motion planning in robotics: coordinated
motion of several disks amidst polygonal obstacles. In Proc. IEEE International Conference
on Robotics and Automation, pages 514–522, 1985.

[103] J. H. Reif. Complexity of the movers problem and generalizations. In Proceedings of the
IEEE Symposium on Foundations of Computer Science, pages 421–427, 1979.

[104] S. M. Ross. Expectation of a random variable. In Introduction to probability models (9th
ed.).

105

[105] S. Rutishauser, N. Correll, and A. Martinoli. Collaborative coverage using a swarm of net-
worked miniature robots. Robotics and Autonomous Systems, 57(5):517–525, 2009.

[106] M. Ryan. Multi-robot path-planning with subgraphs.

[107] M. Ryan. Exploiting subgraph structure in multi-robot path planning. Journal of Artificial
Intelligence Research, 31:497–542, 2008.

[108] G. Sanchez and J.-C. Latombe. On delaying collision checking in prm planning: Application
to multi-robot coordination. The international Journal of Robotics Research, 21(5):5–26,
2002.

[109] G. Sanchez and J.-C. Latombe. Using a prm planner to compare centralized and decoupled
planning for multi robot systems. In Proc. IEEE International Conference on Robotics and
Automation, volume 2, pages 2112–2119, 2002.

[110] A. Sankaranarayanan and M. Vidyasagar. A new path planning algorithm for moving a point
object amidst unknown obstacles in a plane. In Proc. IEEE International Conference on
Robotics and Automation, pages 1930–1936, 1990.

[111] A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst
unknown obstacles in a plane: a new algorithm and a general theory for algorithm develop-
ment. In Proc. IEEE International Conference on Decision and Control, pages 1111–1119,
1990.

[112] C. Schimmel. UNIX Systems for Modern Architectures: Symmetric Multiprocesssing and
Caching for Kernel Programmers. Addison-Wesley Professional, Reading, MA, 1994.

[113] J. T. Schwartz and M. Sharir. On the piano mover’s problem iii. coordinating the motion of
several independent bodies: the special case of circular bodies amidst polygonal barriers. In
Proc. IEEE International Conference on Robotics and Automation, pages 514–522, 1985.

[114] J. A. Sethian. A fast marching level-set method for monotonically advancing fronts. Proc.
Nat. Acad. Sci., 93:1591–1595, 1996.

[115] M. Sharir and S. Sifrony. Coordinated motion planning for two independent robots. In
Proceedings of the fourth annual symposium on Computational geometry, volume 3, pages
107–130, 1991.

[116] K. G. Shin and Q. Zheng. Minimum-time collision free trajectory planning for dual-robot
systems. IEEE Transactions on Robotics and Automation, 8(5):641–644, 1992.

[117] T. Simeon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile robots: A
resolution-complete algorithm. IEEE Transactions on Robotics and Automation, 18(1):42–49,
2002.

[118] A. Stentz. Optimal and efficient path planning for partially-known environments. In Proc.
IEEE International Conference on Robotics and Automation, pages 3310–3317, 1994.

[119] A. Stentz. The focussed D* algorithm for real-time replanning. In Proc. of the International
Joint Conference on Artificial Intelligence, 1995.

106

[120] I. A. Sucan and L. E. Kavraki. Kinodynamic motion planning by interior-exterior cell ex-
ploration. In Algorithmic Foundation of Robotics VIII (Proceedings of Workshop on the
Algorithmic Foundations of Robotics), STAR, pages 449–464, 2009.

[121] I. A. Sucan and L. E. Kavraki. On the implementation of single-query sampling-based motion
planners. In IEEE International Conference on Robotics and Automation, pages 2005–2011,
2010.

[122] I. A. Sucan and L. E. Kavraki. On the implementation of single-query sampling-based motion
planners. In IEEE International Conference on Robotics and Automation, 2010.

[123] J. van den Berg, S. J. Guy, M. Lin, and Dinesh Manocha. Reciprocal n-body collision
avoidance. In Proc. International Symposium on Robotics Research, 2009.

[124] R. Voyles, S. Povilus, R. Mangharam, and K. Li. Reconode: A reconfigurable node for
heterogeneous multi-robot search and rescue. In IEEE International Workshop on Safety,
Security and Rescue Robotics, 2010.

[125] R. M. Voyles, J. Bae, A. C. Larson, and M. A. Ayad. Wireless video sensor networks for
sparse, resource-constrained, multi-robot teams. Intelligent Service Robotics, 2(4), 2009.

[126] C. W. Warren. Multiple robot path coordination using artificial potential fields. In Proc.
of IEEE International Conference on Robotics and Automation, pages 500–505, Cincinnati,
OH, 1990.

[127] E. K. Xidias and N. A. Aspragathos. Motion planning for multiple non-holonomic robots: a
geometric approach. Robotica, 26:525–536, 2008.

[128] A. Yasuaki and M. Yoshiki. Collision avoidance method for multiple autonomous mobile
agents by implicit cooperation. In Proc. IEEE Conference Intelligent Robots and Systems,
volume 3, pages 1207–1212, 2001.

[129] D.-Y. Yeung and G. A. Bekey. A decentralized approach to the motion planning problem for
multiple mobile robots. In Proc. IEEE International Conference on Robotics and Automation,
volume 4, pages 1779–1784, 1987.

[130] M. Zucker, J. J. Kuffner, and M. S. Branicky. Multipartite RRTs for rapid replanning in
dynamic environments. In International Conference on Robotics and Automation, pages
1603–1609, 2007.

Appendix A

Path planning background

This chapter contains a selected review of relevant technical concepts, as well as a survey

of related work. It should provide enough background information to understand the rest of my

dissertation, and place it within the context of what has been done before. Section A.1 provides a

brief summary of concepts such as ‘planning’ and ‘completeness.’

A.1 Conceptual overview

Many of the sub-fields of robotic algorithms have boundaries that are blurred and/or overlap.

While some roboticists may have slightly different ideas about the nuanced distinction between

inherently similar concepts—such as ‘planning’ vs. ‘path-planning’—I expect they will agree that

my version of the taxonomy is well within the bounds of standard practice.

A.1.1 Planning, paths, and navigation

Planning is the task of finding a sequence of actions P that will cause a system to transition

from an initial state pS to a goal state pG. It is possible to have multiple goal states. The action

sequence P = {pS, pi, pi+1, ..., pG} is called a plan.

In the context of robotics, states often represent a robot’s physical properties (position, speed,

force, etc.). Path-planning is the particular type of planning in which states represent position

and/or orientation—usually defined relative to the real-world. In this case, P can be visualized as a

bread-crumb trail through the world (see Figure A.1-Left). Each bread-crumb or point pi represents

108

X X

Figure A.1: A path visualized as a trail of bread-crumbs (left) and line segments (right).

a safe location for the robot. It is assumed the robot can maneuver between consecutive points

pi and pi+1. It is standard practice to draw lines between pi and pi+1 for visualization purposes

(see Figure A.1-Right). If other physical properties are used instead of position and orientation

(e.g., force), then the terms kinodynamic planning or kinodynamic path-planning are used. This

dissertation is concerned with path-planning; however, many of the techniques described may also

be useful for kinodynamic planning.

It is often convenient or necessary to associate a time dimension with P, in order to indicate

when each pi should be achieved. This is especially important when a robot must share its envi-

ronment with other moving bodies. A P that includes time is called a trajectory, and the act of

calculating P is refered to as trajectory-planning. Since a trajectory can be thought of as a special

type of path, the terms ‘path’ and ‘path-planning’ are also frequently used to describe ‘trajectory’

and ‘trajectory-planning’. For the remainder of this dissertation proposal, whether or not a ‘path’

contains a time dimension (or even if it matters) will be evident from the context in which the term

appears. A trajectory will always contain a time dimension.

Plan exicution is the act of following P. It is assumed that P can be followed to within a

small amount of error ǫ, and also that the area located within ǫ of P is safe. For planning purposes,

ǫ can be thought of as a tolerance that is built into the system to guarantee collision avoidance.

This is often achieved by increasing robot size (or, alternatively, obstacle size) by ǫ.

109

Navigation is the combination of deciding how to move and then actually moving. It is a

basic primitive of more complex robotic behavior.

One popular form of navigation is based on path-planning. This type of system works by

first planning a path P, and then executing it. In the event that the agent detects a change in the

environment that effects its ability to follow the path, then a new path is planned and executed.

This dissertation proposal is concerned with path-planning based navigation; however, other forms

of navigation exist (these will be discussed in Section A.2).

A.1.2 Configuration-space vs. work-space

An agent must maintain an internal representation of the world through which to plan a

path. In the context of robotic path-planning, there are two important representations one should

be familiar with. The work-space W and the configuration-space C. The workspace is essentially

a map of the environment—there is one dimension in W per each dimension in the environment.

The configuration-space is an abstract space containing one dimension per each of the system’s

degrees-of-freedom. Consider a rover moving along the floor of an office-building. W is the two-

dimensional blue-print of the building, while C is the three-dimensional (x, y, θ) space containing

all possible combinations of the robot’s north-south, east-west, and rotational positions within the

building, respectively.

Path-planning occures in C, but C is defined as a result of the robot’s ability to move through

W. Often it is advantageous to ignore a subset of the dimensions in either W or C, in order to

decrease the computational complexity of the problem. In the office-building scenario described

above, W does not contain the vertical z dimension—as a result, neither does C. Similarly, C itself

can be reduced by ignoring one or more of the robot’s degrees-of-freedom. For instance, rotation

can be ignored if the robot can rotate in place. This works because the robot will be able to orient

itself at pi+1 before moving away from pi.

Obstacles are regions the robot cannot move through without incurring a collision. Both W

and C contain obstacles; however, obstacles in C may either be caused by obstacles in W or the

110

robot’s own limitations (e.g., a manipulator arm cannot move through itself).

A.1.3 Completeness

An algorithm is complete if it is guaranteed to find a solution in a finite amount of time when

one exists, and will report failure in a finite amount of time when a solution does not exist.

A resolution complete algorithm will find a solution in a finite amount of time if one exits,

but may run forever if a solution does not exist. A typical resolution complete algorithm works

by systematically attempting all possible moves through an increasingly accurate environmental

representations. In practice, it can be more useful to query whether or not a solution exists for a

sufficiently accurate resolution of the environment, since this avoids the possibility of having the

algorithm run forever. However, this comes at the price of occasionally overlooking a valid solution.

A probabilistically complete algorithm will find a solution when one exists with probability 1

as time approaches infinity. Note, this does not guarantee a solution will be found in finite time

[74]. In practice, most algorithms are modified to return failure if they cannot find a solution within

a predetermined amount of time.

A.1.4 Any-Time algorithms

Any-time algorithms provide an initial solution as quickly as possible, then better-and-better

solutions as time progresses [15]. They allow a trade-off between computation time and solution

quality. Ideally, solutions approach optimality as time approaches infinity. Any-Time algorithms

are popular in real-time robotic path-planning applications where optimal solutions are difficult to

calculate, and actionable solutions must be found in time to guarantee collision avoidance.

A.2 Single-robot navigation

This section briefly describes a few of the major incarnations of single-robot path-planning

and navigation techniques. Single-robot methods are relevant to this dissertation proposal because

multi-robot navigation often assumes single-robot navigation exists as a basic primitive. Also,

111

some multi-robot path-planning algorithms are built directly on single-robot versions of the same

algorithms.

A.2.1 Reactive algorithms and potential field methods

Often a robot may be directed to seek or avoid various environmental stimuli. This is known

as a reactive algorithm. While reactive algorithms can be designed for navigation to a destination

(e.g., move at the goal), they can also be used to invoke behavior that is not tied to a particular

location (e.g., move at the noise). Indeed, it is even possible to implement this type of behavior in

an analog system by wiring environmental sensors directly to motors and servos. For this reason,

some of the earliest forms of robotic navigation are reactive in nature [19].

Many reactive algorithms model the robot and other environmental features as a system

of charged particles or other potential-based physical system. These techniques are known as

potential-field methods [12, 67, 70, 87]. Navigation to a particular location can be achieved by

having the robot attracted to the goal and repulsed by obstacles. Control commands are calculated

as a function of the resulting force the (simulated) potential-field exerts on the robot.

A drawback of reactive algorithms is that local optima may trap the robot and prohibit it

from ever reaching the goal. For example, the robot may get stuck oscillating between two points

or fall into equilibrium on the edge of an obstacle. While the vulnerability to local optima can be

reduced by the introduction of random noise, it cannot be eliminated (since the required amount of

random noise must be tuned for each new environment the robot encounters). Reactive algorithms

are widely used for adjusting a global path based on local disturbances, but tend not to be used

for global location-driven navigation.

A.2.2 Rule based navigation (bug algorithms)

Early goal seeking algorithms used provably correct logic in conjunction with simple envi-

ronmental sensors to navigate. The two-dimensional Bug Algorithms are a good example of this

type of system [83, 88, 110, 111]. In Bug-1 a robot moves directly at the goal until it reaches an

112

x

Figure A.2: The route taken by a robot using the Bug1 algorithm.

obstacle. Next, the robot moves around the entire perimeter of the obstacle until it ends up back

at the point of initial contact. Finally, the robot again moves around the perimeter until it reaches

the point that was closest to the goal—where it departs the obstacle to move directly at the goal.

This process is repeated every time a new obstacle is encountered (see Figure A.2). Bug-1 is con-

strained to operate in two-dimensional work-spaces. In the worst case, it spends most of its time

traveling around the perimeters of obstacles. Although the addition of more rules can enable more

complex and/or efficient behavior, it is hard to reduce the worst-case runtime in all environments

[88]. Although popular for two-dimensional navigation, this type of rule-based system can quickly

become difficult to analyses in higher-dimensions.

A.2.3 Graph based methods

Often a robot is provided with a map of the world a priori and/or is equipped with sensors

that enable it to create/update a map as it moves (e.g., laser scanner or camera). In these cases,

path-planning is the preferred method of planning, since many algorithms exist that are complete

with respect to map data. Graph based path-planning techniques operate in two phases: (1) A

graph (directed or undirected) is built in the configuration space, while accounting for map data.

(2) A path through the graph is calculated using a graph-search algorithm (see Figure A.3). There

113

X

Figure A.3: A path created using a 4-neighborhood grid (Left)—the path is optimal with respect
to the graph, but sub-optimal with respect to the real world. A path created using the grid-
based algorithm I presented in [94] (Right)—interpolation between edges allows movement in any
direction.

are many ways to construct the graph, including (but probably not limited to):

• Along a predefined pattern, such as a grid or repeating hexagons.

• Patterns within patterns (etc.), such as a quad-tree.

• Placing nodes along the edges of obstacles, then connecting nodes that are visible to each

other–called a visibility graph [73].

• Learning the graph structure of an environment (e.g., by exploration as in [86]).

• Randomly.

Once built, standard search-techniques can be used to search the graph. While this technically

includes basic algorithms such as breadth-first-search, depth-first-search, and Dijkstra’s algorithm

[30, 34], far more efficient best-first search techniques are usually available—given that graph nodes

represent physically related points in the real-world.

Assuming an admissible heuristic exists to estimate the distance to an unexplored node, it is

possible to avoid work that cannot possibly lead to a good solution. An early version of this idea

114

is the A* Algorithm [52]. Given an admissible heuristic, A* is guaranteed to find an optimal path

with respect to the graph.

A* is one of the most widely used path-planning algorithms in existence, and it has inspired

many descendants. Many of these are designed to solve the special types of path-planning problems

encountered in robotics. For example, Lifelong A* is more efficient when multiple goal-searches are

performed from different starting locations [82]. The search-tree is rooted at the goal, and most

of an old search-tree can be re-used when the starting location changes. In D* and D* lite, most

of the old search-tree is reused after the environment changes (e.g. new obstacles are found, old

obstacles disappear, or the robot changes location) [68, 118, 119]. Since the map is usually only

modified within sensor range of the robot, this often decreases the computation time by orders of

magnitude. Any-Time versions of A* also exist [32, 51].

The techniques used to build the graph often create artifacts that cause optimal graph paths

to be suboptimal, with respect to the real-world. In particular, imposing a 4-grid on the environ-

ment causes movement to be broken into vertical and horizontal segments. Although an 8-grid

reduces this problem by also allowing movement along 45 degree diagonals, paths may still be

sub-optimal with respet to the real world. Field D* [42, 44] and fast-marching level-set methods

[98, 114] seek to overcome this problem by allowing arbitrary movement by interpolating between

graph-edges. In [94] I present an extension to the original Field D* algorithm that further reduces

artifacts (Figure A.3-Right).

A.3 High-dimensional path-planners

The methods previously described are complete, and even optimal under certain conditions.

However, most are ill-suited to plan in more than three dimensions. This section is devoted to path-

planning techniques that can be used for problems with many degrees-of-freedom. This includes

both single-robot systems, such as manipulator arms, as well as multi-robot systems.

The standard choice for planning in many dimensions still involves a graph-based path. Unlike

the low-dimensional methods described in Section A.2.3, most of the computational effort in high-

115

dimensional graph-based path-planners must be spent on creating the graph (vs. searching through

it to find a path). Depending on their application, high-dimensional graph-based path-planners

tend to come in one of two flavors: (1) multi-shot planners and (2) single-shot planners. In general,

both of these ideas are probabilistically complete.

A.3.1 Multi-query path-planners

If a robot must perform many searches through the same environment, then it is advantageous

to create a detailed graph through the configuration space. Once a detailed graph exists, paths

can be calculated with relative ease. This idea is known as a multi-query path-planning, since the

same graph is used to produce multiple paths. Multi-query path-planners tend to be used with

industrial manipulator arms and other robots that operate in relatively static environments.

The most widely used multi-query planner is known as probabilistic road maps or the PRM

planner [28, 69, 95, 108, 109]. The initial graph is built by iteratively picking random points in C

and connecting them to the existing graph. This continues until C contains a sufficiently dense

population of graph nodes. Paths are calculated by connecting the start and goal locations to the

graph, and then using a standard technique such as A*.

The main challenge lies in ensuring that the final graph adequately fills the configuration

space. This can be tricky, especially if there are portions of the environment only accessible via

narrow passages. Much research has been devoted to various random sampling techniques [18, 20,

57].

A.3.2 Single-query planners

It does not make sense to save a detailed graph throughC if the robot is expected to encounter

a different version of the environment every time it plans. Instead, it is better to focus on finding

the smallest graph that enables a decent path to be found for a particular problem. This is known

as single-query planning. In these methods, graph-creation and graph-search are combined.

Single-query planners usually take the form of random-tree algorithms. As with PRM, new

116

nodes are chosen by randomly sampling C. However, whenever a new point can be connected to

the existing graph, it is immediately inserted into the search-tree. Points that cannot be connected

to the graph are ignored. Since all nodes in the graph also exist in the search-tree, it is often easier

to think of these algorithms as growing a tree through the configuration space from start to goal

(or vise versa).

As the tree is created, care must be taken not to over-sample any particular portion of the

configuration-space (sampling uniformly at random tends to create trees with a disproportionate

number of nodes near the root). Often, this concern is addressed by actively sampling from regions

that are under-represented in the current tree [58, 59, 99]. While this can be effective, it requires

additional overhead to determine the relative representation of any particular area. An algorithm

that automatically addresses spatial sampling is called rapidly exploring random tree or RRT [75,

76]. The RRT algorithm operates by picking a random point p1 in space, and then finding the

tree-node pt that is closest to p1 and extending the tree from pt a small distance toward p1 (it is

also possible to extend pt all the way to p1). Re-planning versions also exist [41, 45].

While RRT provides nice probabilistic space-coverage guarantees, its main drawback is that

the resulting paths tend to wander around. Although much of this can be eliminated in post-

processing, it has been proven that the algorithm will almost surly converge to a sub-optimal

solution [64]. A number of attempts have been made to eliminate the wandering algorithmically.

Any-Time RRT works by iteratively building better and better trees while time remains [43, 45].

RRT* carefully chooses a set of candidate nodes to extend in-place of pt, such that the resulting

algorithm almost surly converges to the optimal solution [64].

Appendix B

The Any-Time Shortest Path Random Tree path planning algorithm

(Any-Time SPRT)

This appendix contains a previously unpublished paper, written by myself under the direction

of my advisor Nikolaus Correll, that describes the Any-Time SPRT algorithm that is used as a

foundation of much of the work in Chapters 3-5. The version that appears here is self-contained,

but retains the original paper’s nomenclature and voice—which are unique from that found in the

rest of my dissertation.

Path planning is an important capability for enabling autonomous robots to function in the

real word. Multi-robot planning algorithms find mutually compatible paths for all robots operating

in a shared environment [27, 37, 84, 123]. Centralized multi-robot planning algorithms discover

this solution using a single agent—usually with guarantees on completeness and/or optimality

[109, 113, 127]. However, optimal solutions can be prohibitively expensive, and pragmatic sub-

optimal solutions are often tolerated [48, 63].

Any-time algorithms provide an initial solution as quickly as possible, then better-and-better

solutions as time progresses [15]. They allow a trade-off between computation time and solution

quality. Ideally, solutions approach optimality as time approaches infinity. Any-time algorithms

are popular in real-time robotic path-planning applications where optimal solutions are difficult to

calculate, and actionable solutions must be found in time to guarantee collision avoidance.

The Rapidly-exploring random tree algorithm (or RRT) was originally created to search non-

118

(a) (b) (c) (d)

Figure B.1: Search-trees and resulting shortest-paths (pink) around obstacles (black). (a) and (b)
are found using RRT, (c) and (d) using SPRT (our algorithm). Blue is the RRT path after post-
processing. RRT wanders the wrong way around some of the obstacles (b), but path shortening
only eliminates the detour around the small triangular obstacle and not the large quadrilaterals.
SPRT goes the correct way around obstacles and does not require post-processing (d).

convex high-dimensional configuration spaces with differential constraints [75]. RRT is a coverage

algorithm that builds a tree such that the expected distance between a random point and the tree

is minimized. RRT is widely used to solve single-shot path-planning problems—i.e. cases where the

robot or robot-team is expected to traverse the configuration space once.

More recently RRT has been co-opted to solve high-dimensional shortest-path planning prob-

lems in metric spaces—in particular, the multi-robot shortest-path problem. Despite RRT’s nice

coverage guarantees, finding shortest-paths is not what it was originally intended for. In fact, be-

cause RRT fundamentally performs coverage, and overall tree shape is dependent on a random node

insertion order, the resulting trees tend to wander around the configuration space (Figure B.1-a,b).

This can lead to sub-optimal results with respect to shortest-paths. Post-precessing can mini-

mize wandering by shortcutting it whenever possible. However, environmental obstacles may still

constrain the post-processed path in suboptimal ways (Figure B.1-b).

A more sophisticated method using RRT to find shortest-paths is the Any-Time RRT al-

119

gorithm [43]. It works by building a secession of individual RRTs, where subsequent RRTs are

guaranteed to yield better paths than their predecessors. Improvement vs. time is achieved by

using a heuristic to focus search. New nodes are not added unless their cost-to-goal plus the actual

cost-to-come through the tree is less than the best known solution length. This is similar to the

heuristic used in the A* algorithm [52]. Any-Time RRT finds better solutions to the shortest-path

problem than basic RRT. However, despite the focusing heuristic, nodes are still added to minimize

distance-to-tree. Thus, the resulting tree still intrinsically performs coverage—albeit constrained

to ever more refined search envelopes.

A newer algorithm called RRT* [64] minimize the path wandering by re-wiring old nodes to

a newly inserted node if they are within a particular distance of it and will benefit from doing so.

The rewire distance is calculated as a function of graph size and carefully managed to guarantee

asymptotically similar runtime to RRT, and also convergence to an optimal path. While this is

undoubtedly an elegant solution to the path wandering problem, the method relies on finding a

new nodes nearest neighbors (i.e., potential rewire-candidates) via a kd-tree [14], and thus is only

applicable to configuration spaces in which the “best” neighbor corresponds to the closest based on

Euclidean distance in the configuration space. Our previous research has been on the centralized

multi-robot path planning problem, in which distance is defined as either the maximum or the

sum over a set of individual distances projected from the configuration space onto the workspace

dimensions of each robot. These distance metrics corresponds to maximum time to goal for any

robot in the team or the sum of the distance traveled in the real word by all robots. Regardless,

these distances are definitely non-Euclidean and therefore cannot be used with RRT*.

Our work is concerned with creating an any-time algorithm for finding shortest-paths in

non-convex metric spaces that use any distance function that obeys the triangle inequality. Hence,

we call our algorithm Any-Time Shortest-Path Random Tree (or Any-Time SPRT). Our work is

inspired by [43], and developed in parallel to [64], but is fundamentally different in a number of

important ways. As in RRT*, we connect new nodes such that distance-to-root is minimized instead

of distance-to-tree. This fundamentally changes the algorithm vs. RRT from performing coverage

120

to calculating the shortest-path (see Figure B.1-c,d). Also (similar to RRT*), we maintain a single

tree for the duration of the search, and continually improve it to yield better paths—in contrast,

Any-Time RRT builds a secession of new trees from scratch. By leveraging previous effort we avoid

exploring the same area multiple times. This is important in non-convex environments, where

simply locating the goal may be difficult and time-consuming. Third, Any-Time SPRT continually

remodels the tree—however, the particular way this is done is unique from RRT* and allows our

algorithm to be used in conjunction with non-Euclidean definitions of “nearest” neighbors. As with

RRT* we re-wire old nodes if they can benefit from being attached to a new node. However, unlike

RRT* we must search through all previous nodes in the tree (i.e., instead of a subset returned by the

kd-tree). To compensate for the extra time that this requires, we take great care to reduce tree size

whenever possible. For instance, pruning nodes that cannot possibly help us find better solutions.

We believe these differences will allow Any-Time SPRT to find shorter paths more quickly than

Any-Time RRT and allow it to be used in non-Euclidean configurations spaces outside the domain

of RRT*.

Methodology and theoretical analysis are presented in Sections B.1 and B.2, respectively. In

Section B.3 we perform three experiments comparing Any-Time SPRT to Any-Time RRT. We also

evaluate the utility of path post-processing in either algorithm. In Section B.4 we discuss results,

and conclusions are given in Section B.5.

B.1 SPRT methodology

Sections B.1.1 and B.1.2 outline Any-Time RRT and our Any-Time SPRT, respectively.

B.1.1 Basic Any-Time RRT

Let C be the robot configuration space. In a multi-robot setting, each individual robot’s

degrees-of-freedom are combined to obtain the final dimensionality ofC (e.g. 5 robots each operating

in R2 leads to a 10 dimensional C). Let Cfree be the subspace of C that is collision-free. Pseudo-

code for Any-Time RRT is given in Figure B.2. bstln is the length of the shortest path known

121
AnyTimeRRT()

1: bstln = ∞
2: while time < µ do
3: if RRT() then
4: post best solution
5: delete tree

NewPointWithin(q)

1: pick a point p1 ∈ C, where
p1 = goal with probability α

2: p2 = Nearest(p1)
3: if h(p2, p1) > δ then
4: p3 = Extend(p2, p1, q)
5: if h(start, p3) + h(p3, goal) ≥ bstln

and edge (p3,p2) ∈ Cfree then
6: return {p3, p2}
7: return {null,null}

NewRandomPoint()

1: pick a point p1 ∈ C, where
p1 = goal with probability α

2: p2 = Nearest(p1)
3: if h(p2, p1) > δ then
4: if h(start, p1) + h(p1, goal) ≥ bstln

and edge (p1,p2) ∈ Cfree then
5: return {p1, p2}
6: return {null,null}

RRT()

1: add start to search-tree
2: while time < µ do
3: {p1, p2} = NewPointWithin(q)
4: if p1 = null then
5: continue
6: Sdist(p1) = Sdist(p2) + h(p1, p2)
7: add p1 to search-tree as a child of p2
8: if p1 = goal then
9: bstln = Sdist(p1)

10: return true
11: return false

PathShorten(P)

1: f = 1
2: b = l
3: while f < l do
4: b = l
5: while b > f do
6: if edge (Pf ,Pb) ∈ Cfree then
7: reroute Pf through Pf

8: f = b− 1
9: break

10: else
11: b = b− 1
12: f = f + 1

Figure B.2: Any-Time RRT algorithm (Top-Left). RRT() finds the next RRT.
NewPointWithin(q) finds a point to add to the tree that is q away from the current tree.
NewRandomPoint() finds a random point to add to the tree. PathShorten(P) greedily shortens
path P.

at any particular time. µ is the total time allowed for planning. AnyTimeRRT() continuously

attempts to find better RRTs, and after each solution is posted the old tree is deleted.

RRT() creates a single RRT. The start is added on line 1 and the tree grows until a new

solution is found or no more time remains (lines 10 or 11, respectively). On line 3 a new point p1

is found that can be connected to a point p2 already in the tree. On lines 6 and 7 p1 is added as

a neighbor of p2, while keeping track of Sdist(p)—the distance from p to the start via the current

tree. h(p1, p2) is an admissible heuristic estimate of the distance between p1 and p2. Specifically,

h(p1, p2) is the sum of all robots’ Euclidean distance between p1 and p2 ignoring collisions.

122

NewPointWithin(q) returns {p3, p2}, where p3 is new a point located q away from p2 in

the current tree. A random point p1 is picked on line 1. α is a small predefined probability used to

focus search toward the goal. On line 2 we find p2 the tree-node closest to p1. On line 3 we check

if p1 is more than a small distance δ away from p2 to avoid populating the tree with essentially

duplicate points (i.e. δ is the search granularity). Subroutine Extend(p2, p1, q) on line 4 returns

the point located q from p2 toward p1 (p1 is returned if h(p1, p2) < q). On line 5 we check if using

p3 can lead to a better solution based on the start and goal configurations and bstln, and verify

the edge from p3 to p2 is valid.

An additional parameter ǫ < 1 can be used to ensure new RRTs find paths at least 1−ǫ times

better than previous solutions. In practice, we find most new solutions are already significantly

shorter, and therefore omit ǫ.

B.1.1.1 Holonomic Any-Time RRT

When holonomic robots are used, better results may be achieved by connecting p2 to p1 di-

rectly, instead of finding p3 [76]. This is achieved by replacingNewPointWithin(q) byNewRandomPoint()

on line 3 of AnyTimeRRT(), and has the additional advantage of eliminating the parameter q.

B.1.1.2 Path shortening

Paths found using RRT tend to wander around—a side effect of RRT performing coverage.

Previous work has used a greedy path-shortening algorithm to remove much of this wandering. We

believe better results can be obtained by performing the shortening operation after each successful

tree has been found (in Any-Time RRT and Holonomic Any-Time RRT). The reason being that

this will allow subsequent searches to prune more nodes, thereby focusing effort on finding even

better solutions. The specific algorithm we use is displayed in Figure B.2. The path P has l nodes

indexed 1 to l, and Pi is the i-th node. The algorithm tries to short-cut as many points as possible

by sweeping along the path from front-to-back (outer loop, lines 3-12) and back-to-front (inner loop,

lines 5-11). Versions of Any-Time RRT with and without this idea are evaluated in Section C.7.

123

AnyTimeSPRT()

1: bstln = ∞
2: while time < µ do
3: RandomShortcut()
4: pick a point p1 ∈ C, where

p1 = goal with probability ρ
5: if p1 /∈ Cfree

orh(start, p1) + h(p1, goal) ≥ bstln then
6: continue
7: p2 = FindBestParent(p1)
8: if p2 = null then
9: continue

10: Sdist(p1) = Sdist(p2) + h(p1, p2)
11: add p1 to search-tree as a child of p2
12: if p1 = goal then
13: bstln = Sdist(p1)
14: post best solution
15: PruneTree()
16: FindChildren(p1)

FindBestParent(p1)

1: p2 = null
2: gp2 = bstln
3: for each node pi ∈ Tree do
4: if p1 is within δ of p2 then
5: return null
6: if Sdist(Pi) + h(pi, p1) < gp2 then
7: if edge (pi,p1) ∈ Cfree then
8: p2 = pi
9: gp2 = Sdist(Pi) + h(pi, p1)

10: return p2

FindChildren(p1)

1: for each node pi ∈ Tree do
2: if Sdist(pi) + h(pi, p1) < Sdist(p1)

and edge (pi,p1) ∈ Cfree then
3: Sdist(p1) = Sdist(pi) + h(pi, p1)
4: reroute pi through p1
5: for descendants of p1 do
6: update Sdist()
7: if a goal was updated then
8: bstln = Sdist(goal)
9: post best solution

10: PruneTree()

RandomShortcut()

1: p1 = random node ∈ Tree
2: p2 = null
3: for each node pi ∈ Tree do
4: if Sdist(pi) + h(pi, p1) < Sdist(p1)

and edge (pi,p1) ∈ Cfree then
5: p2 = pi
6: Sdist(p2) = Sdist(Pi) + h(pi, p1)
7: if p2 6= null then
8: reroute p1 through p2
9: for descendants of p1 do

10: update Sdist()
11: if a goal was updated then
12: bstln = Sdist(goal)
13: post best solution
14: PruneTree()

PruneTree()

1: for each node pi ∈ Tree do
2: if Sdist(pi) > bstln then
3: remove all descendents of p1
4: remove pi

Figure B.3: Any-Time SPRT algorithm (Top-Left). FindBestParent(p1) finds the best par-
ent of p1. FindChildren(p1) rerouts nodes if they would rather have p1 as their parent.
RandomShortcut() randomly improves the tree. PruneTree() removes nodes that cannot lead
to shorter paths.

B.1.2 Any-Time SPRT (shortest path random tree)

Both versions of Anytime RRT are fundamentally coverage algorithms. Although coverage

is useful in many circumstances, it can lead to difficulties when finding a shortest path. The main

124

reason is the wandering nature of RRTs, caused by linking new nodes to have the shortest possible

distance-to-tree (Figure B.1-a,b).

Our algorithm is presented in Figure B.3. We believe shorter paths can be achieved by linking

nodes to have the least distance-to-root Sdist(). That is, link p1 to the tree-node p2 that gives p1

the shortest possible path-to-start through the tree. This is done on lines 7-11 of RandomTree().

Intelligently connecting nodes cannot completely prevent suboptimal connections. In particular,

the optimal parent for a child may be inserted after the child is already in the tree. To account

for this, we reroute old nodes that would rather use a new node p1 as their parent (lines 3-4 of

FindChildren(p1)). Afterward, we update the Sdist() values of the descendants of p1 (lines 5-6 of

FindChildren(p1)). If a goal node is updated, the new bstln is recorded and the corresponding

solution is posted (lines 7-9 of FindChildren(p1)).

To avoid a large runtime, a greedy algorithm is used to update Sdist() of descendants of p1

(we postpone a full discussion on runtime until Section B.2.1). While Sdist() of all involved nodes

is guaranteed to be reduced, an optimal rerouting may not be found. Therefore, we periodically

re-link random nodes to their best parents using RandomShortcut() to combat suboptimal edges.

Although FindBestParent() and FindChildren(p1) account for the bulk of Sdist() reductions,

RandomShortcut() guarantees resolution optimality as time approaches infinity.

After the first solution has been found, we can use an admissible heuristic to avoid work that

cannot possibly lead to better solutions. In particular this is done on lines 4-9 of RandomTree(),

line 6 of FindBestParent(p1), line 2 of FindChildren(p1), and line 4 of RandomShortcut().

The heuristic can also be used to prune old-nodes that have become obsolete due to bstln (subrutine

PruneTree()).

B.2 Runtime, theory, and proofs

Let n be the number of nodes in an average tree. Let t be the number of trees created over

an entire search. Let m be the total number of nodes we attempt to insert into any tree. m/t is

the average number of nodes we attempt to insert into a single tree.

125

B.2.1 Runtime

We must find the nearest neighbor of each node we attempt to insert. A naive implementation

of Nearest(p1) examines every node in the tree and requires O(n) time. However, using kd-

trees [14] can reduce this to an expected runtime of O(log n)—assuming points are randomly

distributed. If points are not randomly distributed, the wost-case runtime is O(dn1−1/d), where d

is the dimensionality of the configuration space [78]. Thus, the runtime per RRT is expected to be

O((m/t) log n), and the expected runtime of Any-Time RRT is O(m log n).

While Any-Time RRT uses Nearest(p1) to find the best parent based on distance-to-tree,

Any-Time SPRT uses FindBestParent(p1) to find the best parent with respect to distance-to-

root. As a result, kd-trees cannot be used (and other tricks currently allude us), so we must perform

an O(n) sweep of the entire tree.

The subroutine FindChildren(p1) runs in time O(n). The initial sweep (lines 1-4) uses

O(n) time. Updating the descendants of p1 can be implemented recursively such that each node

is touched at most once. This works because each node has only one parent, and all n nodes are

descendants of p1 in the worst-case. If a goal is updated, the tree is pruned in time O(n) (each

node is touched at most once). We wait to update Sdist() of the descendants of p1 until after the

initial sweep is performed. This is a greedy approach that can lead to suboptimal myopic decisions.

For example, if an old node p and its ancestor pa would both rather use p1 as their parent, but

rerouting causes Sdist(pa) to be reduced more than Sdist(p), then p would have actually done better

to remain connected to pa. Therefore, despite being guaranteed by construction to reduce Sdist()

for all updated nodes, the reduction may not be the largest possible. The reason we settle for a

suboptimal greedy algorithm is because updating all nodes optimally would require at least O(n2)

operations—since any updated node has the potential to become a better parent to other nodes.

Long-term optimality is ensured by FindChildren(p1), and helped by the fact that additional

insertions may also decrease distance-to-root.

FindChildren(p1) runs in time O(n). A single sweep of all n nodes is required (lines 3-6)

126

start

goal

start

goal

p1

start

goal

p1

start

goal

p1

p2

(a) (b) (c) (d)

Figure B.4: Assuming the goal is added as pi+1 and the tree contains the particular points shown
before pi is added, red R and blue B regions show all possible locations for pi. If pi ∈ R or B then
the path will go the long or short way around the obstacle, respectively. In Holonomic RRT the
probability a point is inserted into R vs. B is proportional to their respective areas. i = 1, 2, 2,
and 3 in (a), (b), (c), and (d), respectively. Holonomic RRT is likely to take the long path in this
environment.

to find the best parent for p1. As explained above, updating the descendants of p1 and pruning the

tree can both be implemented in time O(n).

This leads to an overall runtime of O(nm/t) per tree, and a total O(nm) for Any-Time

SPRT. Although this is substantially larger than the expected O(m log n) of Any-Time RRT, we

hypothesize Any-Time SPRT will still achieve shorter paths because it actively attempts to find

shortest paths instead of performing coverage in ever-more constrained search envelopes.

The path shortening algorithm (Figure B.2) runs in time O(l2), where l is the length of

the pre-shortened path. In practice, l ≪ n because n is proportional to the hyper-volume of the

search space, while l is proportional to a 1-dimensional path through that space. If Any-Time RRT

is modified to perform path-shortening (after each solution is found), then the expected runtime

becomes O(m log n+ tl2)

B.2.2 Path wandering phenomenon

The primary purpose of RRT is to perform coverage. The specific properties that encourage

coverage also contribute to RRT wandering around the configuration space. This can be problematic

if a shortest-path is desired. Even when path-shortening is used, the final path may wander the

127

long-way around obstacles. Note, in a convex environment there are no holes (i.e. obstacles) to pin

the path and RRT with path-shortening may find close to optimal solutions.

Although a thorough investigation of path-wandering is beyond the scope of this paper, the

following example provides some intuition (for a more formal discussion see [64]). Consider the

single obstacle configuration space in Figure B.4. The start and goal locations are drawn along

with dotted-lines on the edges of their visibility envelopes (a visibility envelope is the subset of

environment visible from a particular location). Let Es be the union of visibility envelopes of all

nodes in the search-tree. Let Eg be the visibility envelope of the goal. For this discussion, assume

holonomic RRT is used. Because points are chosen randomly, the probability a point p is chosen

within E is equal to AE , the area in E, divided by the total configuration area AC . That is,

P (p ∈ E) = AE/AC .

Assume the goal is added as the second node after the root. In this case, we know the first

point p1 must be visible by both the start and goal, p1 ∈ Es∩Eg. In Figure B.4-a (Es∩Eg) is shaded

as either red or blue if it is above or below the obstacle, respectively—we denote these regions R

or B, respectively. If p1 exists in R or B, then the path must go the long or short way around the

obstacle, respectively. The probability the path goes the short way reduces to AB/(AB +AR), the

area of B divided by the combined area of B and R. Thus, when AB < AR it is more likely the

path will go the long way around the obstacle. This can be extended to higher dimensions by using

hyper-volume instead of area.

We can extend this idea to paths with more points, however the general computation is

difficult because we must integrate over all possible locations of each point. As a simplified example,

consider the parallel cases illustrated in Figures B.4-b and -c, where we fix the location of the first

point as shown. As with the previous example, the probability the path goes the short way around

the obstacle is given by AB/(AB +AR). Finally, if we assume the goal is added as the fourth point,

and fix the locations of the first two points, the resulting case is depicted in Figure B.4-d. It is

easy to see holonomic RRT is more likely to go the long way around the obstacle in this particular

environment.

128

Assume Any-Time RRT is being executed and at least one solution has been found. bstln

contains the length of the best known solution. An interesting consequence of wandering is that

during the creation of a new RRT, wandering within that tree may prevent the algorithm from

ever reaching the goal. Specifically, if there is enough wandering such that all leaf-nodes have

Sdist ≥ bestln + θ but are yet further from the goal than θ, then it is impossible to find a better

solution with the current tree. For this reason, one should consider restarting the RRT after a

specific time has elapsed without finding a better solution. Regardless, this scenario provides more

evidence that using a coverage algorithm to find a shortest path can be problematic.

B.2.3 Path-length proofs

Here we present a few simple theorems on the relative lengths of paths found using Any-Time

SPRT vs. Any-Time RRT.

Theorem B.1: Assuming a metric space Cfree and a partially created tree, Any-Time SPRT will

add a new point pi to the tree in a particular way that yields a shorter or equal path-to-root for pi,

when compared to RRT and Any-Time RRT.

Proof. This is guaranteed by construction because Any-Time SPRT always links a node to the tree

in the way that yields the shortest possible path-to-root, given the current tree, using an exhaustive

search. If Any-Time SPRT chooses the same parent for pi as {Any-Time} RRT, then the resulting

trees will be identical and pi will have equal distance-to-root. Otherwise, Any-Time SPRT must

have a shorter path-to-root because of the triangle inequality.

Theorem B.2: Assuming a metric space, and given a particular ordering of random points to

insert into a single tree, Any-Time SPRT will always find a shorter or equal path to that found by

RRT (and by extension Any-Time RRT).

Proof. This is shown using induction on i. At step i, each node in the Any-Time SPRT tree will

have equal or better distance-to-root, compared to the tree that would be generated by Any-Time

RRT. If Any-Time SPRT chooses the same parent for pi as Any-Time RRT, then the resulting

129

distance-to-root will be equal to or less than that of Any-Time RRT. Otherwise, Any-Time SPRT

must have a shorter path-to-root because of the triangle inequality and Theorem B.1.

Theorem B.3: Assuming a metric space, and given a particular ordering of random points to

insert, Any-Time SPRT will always find a shorter or equal path to that found by Any-Time RRT.

Proof. Any-Time SPRT keeps all nodes until they cannot possibly yield better paths, while individ-

ual Any-Time RRTs are chopped and then regrown. Therefore, any nodes in the most recent RRT

of Any-Time RRT that could possibly lead to a better solution must also be available to Any-Time

SPRT. Using induction on i, at step i Any-Time SPRT has the same nodes available to it as the

current RRT of Any-Time RRT, and Any-Time SPRT will have linked these nodes together in a

way that must yield a better or equal distance-to-root (from Theorems B.1 and B.2). However,

Any-Time SPRT may also have other nodes (corresponding to Any-Time RRT’s previously deleted

RRTs), and these may enable even better paths to be found from node i.

All of the above proofs rely solely on the insertion operation. Additionally considering the

find-children and random-improve operations does not affect the correctness of the proofs because

each modifies a node/nodes to have even less distance-to-root than they started with—preserving

the inductive reasoning steps. It is important to note that all three theorems are defined in terms

of a list of random nodes being added to a tree—and we have ignored the time required to insert

a particular node. In practice, the faster-per-node Any-Time RRT could conceivably insert more

nodes in the same amount of time, and perhaps find better paths as a result. On the other hand,

Any-Time RRT is vulnerable to wandering and may require more trees (and thus nodes) to stumble

across a desirable solution. We seek to gain insight into these trade-offs experimentally.

B.3 SPRT experiments

To evaluate Any-Time SPRT vs. various versions of Any-Time RRT, we conduct 3 exper-

iments using multiple robots in simulated environments. Comparison methods include standard

versions of Any-Time RRT and holonomic Any-Time RRT, as well as modified versions that use

130

Figure B.5: The workspaces used for Experiments 1, 2, and 3 (Left to Right), and paths.

path-shortening after each solution is found. We evaluate solution quality and the number of nodes

used by each algorithm.

Non-holonomic variants of Any-Time RRT require the parameter q to define the maximum

distance between new nodes and the current tree. For each environment, we determine q using

a two-step parameter sweep averaged over 10 runs per q value. The first step looks at values on

an exponential scale, while the second performs a fine grained search near the best value from the

first step. We note that, in practice, the optimal value of q for a particular environment is usually

not known a priori. By determining q in this way, we are over-fitting q to each environment (i.e. a

particular q is expected to perform well on the environment is was trained on, but should not be

expected to transfer to other environments). However, we desire to benchmark our method against

the best possible results of the comparison methods.

In all runs of all experiments, robot radius is 0.2 meters, α the probability the goal is used

instead of a random point is 0.05, and δ scene resolution is 0.1 meters. As discussed in Section C.4,

an RRT should be restarted if it is believed incapable of finding a better solution (i.e. due to path

wandering). We record the time τ1 it takes to find the first solution, and then allow 1.5τ1 before

restarting the RRT. For the i-th unsuccessful RRT in a row, we reset τi = 1.5τi−1 in case τi−1 was

too small. After each successful RRT, we reset τ to 1.5 the time it took to create the successful

tree.

Experiment 1 consists of a single robot navigating an environment resembling a pachinko

131

0 5 10

38

40

42

44

46

48

50

Time

S
ol

ut
io

n
Q

ua
lit

y

A−T SPRT
A−T SPRT w/S
A−T RRT
A−T RRT w/S
H. A−T RRT
H. A−T RRT w/S

0 5 10
0

0.5

1

1.5

2
x 10

4

Time

N
od

es
 in

 T
re

e

A−T SPRT
A−T SPRT w/S
A−T RRT
A−T RRT w/S
H. A−T RRT
H. A−T RRT w/S

Figure B.6: Path length (Left) and number of nodes in tree (Right) vs. time for a single run of
Experiment 1. The saw-tooth appearance of nodes in tree is due to tree deletion in the RRT
methods. A-T, H, and w/S denote Any-Time, holonomic, and with path-shortening, respectively.

0 5 10
36

38

40

42

44

46

48

50

P
at

h
Le

ng
th

 M
ea

n

Time

0 5 10
0

1

2

3

4

5

P
at

h
Le

ng
th

 S
ta

nd
ar

d
D

ev
ia

tio
n

Time
0 5 10

10
0

10
1

10
2

10
3

10
4

N
od

es
 in

 T
re

e
M

ea
n

Time
0 5 10

10
0

10
1

10
2

10
3

10
4

N
od

es
 in

 T
re

e
S

ta
nd

ar
d

D
ev

ia
tio

n

Time

A−T SPRT

A−T SPRT w/S

A−T RRT

A−T RRT w/S

H. A−T RRT

H. A−T RRT w/S

Figure B.7: Experiment 1 path length and tree nodes vs. time over 100 runs. A-T, H, and w/S
denote Any-Time, holonomic, and with path-shortening, respectively.

game (Figure B.5-left). µ = 10 seconds. This experiment is designed to illustrate the main

differences between Any-Time SPRT and Any-Time RRT in an easy to visualize low dimensional

spaces. The results of a single run are displayed in Figure B.6. Mean and standard deviation over

100 runs are displayed in Figure B.7.

132

0 5 10 15 20
24

26

28

30

32

34

36

38

40
P

at
h

Le
ng

th
 M

ea
n

Time

0 5 10 15 20
0

5

10

15

20

P
at

h
Le

ng
th

 S
ta

nd
ar

d
D

ev
ia

tio
n

Time
0 5 10 15 20

10
0

10
1

10
2

10
3

N
od

es
 in

 T
re

e
M

ea
n

Time
0 5 10 15 20

10
0

10
1

10
2

10
3

10
4

N
od

es
 in

 T
re

e
S

ta
nd

ar
d

D
ev

ia
tio

n

Time

A−T SPRT
A−T SPRT w/S
A−T RRT
A−T RRT w/S
H. A−T RRT
H. A−T RRT w/S

0 20 40 60

50

60

70

80

90

100

P
at

h
Le

ng
th

 M
ea

n

Time

0 20 40 60
0

5

10

15

20

25

30

P
at

h
Le

ng
th

 S
ta

nd
ar

d
D

ev
ia

tio
n

Time
0 20 40 60

10
0

10
1

10
2

10
3

10
4

10
5

N
od

es
 in

 T
re

e
M

ea
n

Time
0 20 40 60

10
−1

10
0

10
1

10
2

10
3

10
4

N
od

es
 in

 T
re

e
S

ta
nd

ar
d

D
ev

ia
tio

n

Time

A−T SPRT

A−T SPRT w/S

A−T RRT

A−T RRT w/S

H. A−T RRT

H. A−T RRT w/S

Figure B.8: Experiment 2 path length and tree nodes vs. time over 100 runs. 3 (Top) and 5 (Bottom)
robots. A-T, H, and w/S denote Any-Time, holonomic, and with path-shortening, respectively.

0 20 40 60
0

20

40

60

80

100

Time

N
um

be
r

of
 T

ria
ls

 R
ep

or
tin

g

A−T SPRT
A−T SPRT w/S
A−T RRT
A−T RRT w/S
H. A−T RRT
H. A−T RRT w/S

Figure B.9: The number trials that have found their first solution vs. time using 5 robots in Exper-
iment 2, A-T, H, and w/S denote Any-Time, holonomic, and with path-shortening, respectively.

Experiment 2 consists of a random cluttered environment and the addition of more robots.

10 by 10 meter workspace is randomly populated with 40 obstacles—each randomly sized between

.1 and .5 meters. Two tests are performed, with 3 and 5 robots and µ = 20 and µ = 60 seconds,

133

0 5 10
30

31

32

33

34

35

36
P

at
h

Le
ng

th
 M

ea
n

Time

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

P
at

h
Le

ng
th

 S
ta

nd
ar

d
D

ev
ia

tio
n

Time
0 5 10

10
0

10
1

10
2

N
od

es
 in

 T
re

e
M

ea
n

Time
0 5 10

10
−1

10
0

10
1

10
2

N
od

es
 in

 T
re

e
S

ta
nd

ar
d

D
ev

ia
tio

n

Time

A−T SPRT
A−T SPRT w/S
A−T RRT
A−T RRT w/S
H. A−T RRT
H. A−T RRT w/S

Figure B.10: Experiment 3 path length and tree nodes vs. time over 100 runs. A-T, H, and w/S
denote Any-Time, holonomic, and with path-shortening, respectively.

respectively. All robots must move 8 meters. 100 runs are performed per test. The workspace is

identical for both tests (Figure B.5-center), but every-other robot is used for the 3-robot test. This

experiment is designed to push the limits of our algorithm in high dimensional spaces. Results

are displayed in Figure B.8. Length results are omitted at times when less than half the runs

of a particular method do not have a solution (remaining results reflect the mean and standard

deviation of runs with at least one solution). Figure B.9 shows the number of runs with at least

one solution vs. time for the 5-robot series.

Experiment 3 consists of an uncluttered environment with robots starting on one side of a

3 meter circle and ending on the opposite side. We perform 100 tests using 5 robots and µ = 10

seconds. This experiment is designed to asses performance in a nearly-convex configuration space

(it is not convex due to robots-robot collisions). The environment is shown in Figure B.5-right.

Results are shown in Figure B.10.

B.4 Discussion of SPRT results

Figure B.6-right from Experiment 1 illustrates a main difference between Any-Time SPRT

and Any-Time RRT—the former gradually improves a single tree, while the latter restarts a new

tree each time the goal is achieved. Frequent tree-chopping is observed as a saw-tooth pattern for

the RRT based methods. Subsequent figures do not have the saw-tooth pattern because they are

134

averaged over 100 runs, but the effects of tree deletion can be observed as large standard deviations

in node count.

One interesting result is that Any-Time SPRT requires less n average nodes than Any-Time

RRT—an order of magnitude less in the highly-non-convex environments of Experiments 1 and

2. Recall Any-Time SPRT has O(nm) runtime while Any-Time RRT has O(m log n) expected

runtime. Using relatively low n helps Any-Time SPRT equalize the number of iterations it can

perform within a given planning time, relative to Any-Time RRT. We believe Any-Time SPRT

uses fewer average nodes due its aggressive pruning strategy. In addition to removing a particular

node from further consideration, pruning also prevents irrelevant new nodes from being added

as its descendants. Also, by minimizing path wandering, Any-Time SPRT finds low bstln values

early on, tightening the search envelope and enabling even more pruning. Small search envelopes

tend to decrease node count because the maximum number of tree-nodes is proportional to the

hyper-volume of the search envelope.

Node usage is irrelevant if an algorithm fails to find decent shortest-paths. Luckily, Any-Time

SPRT finds shorter paths than the comparison methods in all environments—although, results are

only slightly better in Experiment 3. We note that in Experiment 2 with 5 robots Any-Time

RRT struggles to find a single solution, while Any-Time SPRT quickly finds one and refines it

(Figures B.8 and B.9). We believe Experiments 1 and 2 favor Any-Time SPRT because they are

highly-non-convex. Shortest-paths must go around many obstacles, and RRT wanders the wrong

way around many of them (recall the case discussed in Section C.4, Figure B.4). In contrast, Any-

Time RRT performs just about as well as Any-Time SPRT in the nearly-convex environment of

Experiment 3, and requires less nodes per tree. Indeed, both methods require very few nodes in

Experiment 3.

We believe another reason Any-Time SPRT performs well in highly-non-convex spaces is

because it can leverage all previous work, by maintaining nodes that might help it find a better

path, instead of regrowing a new tree from scratch every time the goal is achieved. In such spaces,

simply reaching the goal is difficult and requires substantial effort. Algorithms that regrow a new

135

tree must invest this effort before each better solution is found. In contrast, our algorithm puts

that effort into modifying the old tree to yield better-and-better paths. Modifying the tree requires

substantially less effort than regrowing an entire tree. The effects of this are mainly observable in

Figure B.6 as path-lengths that quickly decrease little-by-little (Any-Time SPRT) vs. long jumps

between larger improvements (Any Time RRT). When results are averaged over many runs, we

believe this behavior translates into path-lengths that asymptote more quickly toward optimality

(Figures B.7, B.8, and B.10).

Another interesting observation is that path-shortening reduces path-length for both Any-

Time RRT algorithms, but does little to improve Any-Time SPRT. While this illustrates Any-Time

RRT should be used with path-shortening, it also provides evidence that Any-Time SPRT is already

finding close-to-optimal paths.

A main assumption of Any-Time SPRT is operation in a metric space. This allows the

heuristic pruning of unhelpful nodes. Whether or not similar ideas can be modified for non-metric

spaces is beyond the scope of this paper—but an interesting possibility for future work. Another

assumption is the multi-rover planning paradigm. This allows collision detection vs. obstacles by

projecting a potential path into R2 (or R3) per each particular robot. Runtime may be negatively

affected if collision were performed in a higher dimensional space. Many high dimensional collision

detection algorithms have runtime dependent on path segment length, and our method uses longer

path-segments to reach the goal as quickly as possible. Therefore, it remains to be seen whether

or not Any-Time SPRT is applicable to other the higher dimensional path-search problems (e.g.

manipulators).

B.5 SPRT conclusions

The main contributions of our work are the presentation, explanation, analysis, and experi-

mental evaluation of a new algorithm for multi-rover mutual shortest-path planning in non-convex

high-dimensional metric spaces. We call our algorithm the Any-Time Shortest Path Random Tree

(or Any-Time SPRT). Any-Time SPRT is unique from but inspired by Any-Time RRT, and devel-

136

oped in parallel to RRT*. Any-Time RRT is built directly on RRT, which was designed to perform

coverage in non-convex high-dimensional spaces. We observe that a side effect of the latter property

is that RRT based algorithms tend to wander, sometimes the wrong way around obstacles, which

increases the resulting path-lengths. Any-Time SPRT attempts to correct these issues, and also to

reuse as much work as possible between individual any-time solutions.

The two main differences between Any-Time SPRT and Any-Time RRT are: (1) Any-Time

SPRT adds nodes such that their distance-to-root is minimized, while Any-Time RRT minimizes

distance to tree. (2) Any-Time SPRT maintains and improves a single tree, while Any-Time RRT

grows a new tree each time the previous tree reaches a goal. In addition to connecting new nodes

such that they receive the least possible distance-to-root, Any-Time SPRT performs three other

operations designed to gradually improve the search tree over time, with respect to distance-to-

root. The first is to reroute old nodes through newly added nodes if doing so will improve the

distance-to-root of the rerouted nodes. The second is to periodically reroute randomly selected

nodes through their best parent. The third is to prune all nodes that cannot possibly lead to better

solutions (after each solution is found).

The main difference vs. RRT* is that RRT* depends on using a kd-tree as a subroutine, and

therefore is only suited to operate in configuration spaces in which Euclidean distance can be used to

determine nearest neighbors. In contrast, Any-Time SPRT can be used in any configuration space

that obeys the triangle inequality but is arguably less well suited for use in Euclidean configuration

spaces due to its greater asymptotic runtime. To combat the greater runtime of Any-Time SPRT

vs. tree size we actively attempt to reduce the latter. This is done by aggressive pruning of nodes

that cannot possibly lead to a better solution.

Given a sequence of random nodes to insert, we prove Any-Time SPRT always finds a path

at least as short as Any-Time RRT. However, Any-Time SPRT has O(mn) run-time while Any-

Time RRT has expected runtime O(m log n), where n is the number of nodes in an average tree.

Therefore, it is possible Any-Time RRT may outperform Any-Time SPRT with respect to planning

time. To evaluate the practical performance of Any-Time SPRT vs. Any-Time RRT, we perform 3

137

experiments.

We observe Any-Time SPRT finds better solutions in less time than Any-Time RRT. In

highly-non-convex environments (Experiments 1 and 2) we find Any-Time SPRT maintains less

n—by at least an order of magnitude—which makes up for its larger per-node runtime. We believe

Any-Time SPRT uses fewer nodes, on average, for two reasons: (1) It actively prunes nodes that

cannot lead to better solutions. (2) By minimizing path wandering early on, it quickly shrinks the

hyper-volume of the search envelope and therefore avoids considering many irrelevant nodes. On

the other hand, we observe Any-Time SPRT requires more nodes, on average, in nearly-convex

metric spaces (Experiment 3)—although both algorithms require very few nodes (and Any-Time

SPRT still finds marginally better solutions than Any-Time RRT). We believe Any-Time RRT

performs relatively well in this case because there are no obstacles for the search-tree to wander

the wrong way around.

As a secondary contribution, we evaluate path-shortening as a post-processing step for Any-

Time RRT (after each individual RRT is found). We find path-shortening significantly improves

path quality because it reduces the natural wandering of RRT, and enforces tighter search en-

velopes on subsequent trees. Path-shortening does not significantly improve our method—evidence

it already finds close-to-optimal paths.

Appendix C

On the expected length of greedy paths through random graphs

As was the case with Appendix-B, Appendix-C, contains a previously unpublished paper,

written by myself under the direction of my advisor Nikolaus Correll, that is self-contained and

retains the original paper’s nomenclature and voice—unique from the rest of my dissertation. This

appendix describes work that I have done on the expected lengths of random paths. The theory

that is presented here is used as a rationalization for the particular parameter selection I use to

tune the random trees in Chapters 3-5.

Much work has gone into inventing and empirically testing randomized path planning algo-

rithms. Meanwhile, theoretical analysis is usually limited to proving guarantees on completeness,

coverage, feasibility, and/or asymptotic optimality. While these are important contributions, much

less work has gone into finding theoretical answers to questions like:

• How does the convergence rate of one algorithm compare to another?

• How does an algorithm’s performance change vs. the dimensionality of the search-space?

• How do algorithmic parameters such as edge length affect convergence?

Although many algorithms exist that can find a solution, we do not know a priori which

algorithm is likely to work best in a particular domain. Further, there is usually only a limited

theoretical understanding of how parameter tuning will affect performance, given a particular al-

gorithm. These two problems are currently addressed in practice via empirical evaluation. That is,

139

by running repeated experiments comparing algorithms and/or parameters for whatever targeted

problem domain the author is currently investigating.

We believe that a better theoretical understanding of path planning algorithms will lead to

the development of better algorithms and improve the use of current algorithms. In this paper we

present an analytic technique that can be used to answer targeted questions about an algorithm’s

performance. In particular, we show how to obtain bounds on the expected performance of random-

ized path planning algorithms using statistics derived from an algorithm’s geometry. For example,

finding the expected path length returned by an algorithm after it has sampled N random nodes

from the environment.

The main contribution of this paper is the analytical tool itself. The algorithms used to

demonstrate the tool’s use are relatively simple. While we hope the technique will be applied to

more complex algorithms in the future, the current demonstration indeed provides useful insights

despite the simplicity of the algorithms studied.

The rest of this paper is organized as follows: In the remainder of this section we outline re-

lated work. In Sections C.1, C.2, and C.3 we provide problem formulation, define our nomenclature,

and provide a high-level overview of our technique, respectively. Section C.4 is devoted to applying

our technique to simple problems, and Section C.5 we extend analysis to more complex problems.

In Section C.6 we examine the applications and implications of the analytical results, with respect

to commonly used algorithms. In Section C.7 we perform a series of experiments to demonstrate

the accuracy of our analytical methods. Discussion and conclusions are given in Section C.8.

C.0.1 Related Work

Early graph algorithms found optimality guarantees with respect to a graph [34, 52], while

other planning algorithms were shown to have theoretical convergence to a goal state [83, 110]. More

recently, work on proving bounds on the probability of failure for probabilistic road-maps (PRMs)

has been done in [58] using the concept of expansiveness. Completeness, as well as an inverse

exponential bound on the chance of failure for PRM is given by [71]. Random graph reachability is

140

covered by [66]. The Rapidly Exploring Random Tree (RRT) algorithm is presented in [75], where

guarantees on its coverage are given. The RRT* algorithm is presented in [64], along with proof

of its asymptotic optimality. Much work, too numerous to mention, has focused on experimental

evaluation of algorithm performance. [25] provides a good survey, while a summary containing

many useful lessons for single-query planning is given by [122].

C.1 Random path problem formulation

We assume that the configuration space is Euclidean, and that random sampling is uniform

and i.i.d.. We believe our technique can be modified to handle many non-Euclidean spaces, and/or

non-uniform sampling. However, the current paper is intended as an introduction, and leaves these

more difficult cases for future work.

A graph G is defined by a set of nodes (i.e., vertices) GV and a set of edges GE . Let vi

represent the i-th node. An edge is an ordered pair of nodes [vi, vj] that signifies connectivity

between vi and vj . In a directed graph, edge connectivity is unidirectional and the ordering of

an edge pair [vi, vj] means that the edge goes from vi to vj . In an undirected graph, edges allow

movement in either direction. Often each edge is defined to have a cost c(vi, vj).

A path P is any sequence of Np nodes connected by Np − 1 edges with the property that for

i = 1...Np − 1 the edge [vi, vi + 1] ∈ P . The cost of a path cP is found by summing the cost of its

edges.

cP =
∑

[vi,vi+1]∈P
c(vi, vj)

With respect to a set of paths, the minimum cost path Pmin (often called the best path P ∗), is

the particular path that has the least total cost. That is Pmin = arg minP (cP).

In this paper we are concerned with graphs that model the connectivity of a Euclidean

configuration space. Cost is defined as Euclidean distance. We are interested in finding paths that

move between a starting state and a goal state, where state is defined as either a point or region

in the configuration space (or a set of points and/or regions).

141

The graph is a tool we use to find a path through the configuration space, and is only an

approximation to reality. In general, movement through a configuration space is not restricted to

the edges of a graph; however, by using a graph to solve the problem we are doing exactly that.

The main point here is that an optimal path with respect to the graph may be (and probably is)

suboptimal with respect to the configuration-space. Therefore, we are interested in path length

relative to space optimality—not graph optimality—because the former is more relevant to the real

world.

Complicating matters is the fact that graph creation and path extraction are often combined

in modern planning algorithms. Paths are dependent on the algorithm used to extract them from a

graph, as well as the underlying properties of graph. The latter are dependent on the process used

to build the graph. For example, the original RRT algorithm causes all edges to have a length less

than r, for some r > 0. The same is true of RRT*, except edges are also further limited to be less

than min(r, rN), where N is the number of nodes in the graph, and rN is a decreasing function of

N .

C.2 Random path nomenclature

This section is intend to provide a quick reference for the variables we use in the rest of the

paper. The reader may opt to skip this section, as each variable is also described as it is introduced

in the text.

vi is a node (vertex). [vi, vj] is an edge between vi and vj , and has edge cost c(vi, vj). The

Euclidean distance between two nodes is d(vi, vj). A graph G is defined by a set of vertices GV

and a set of edges GE . ni is the number of neighbors of vi. The number of nodes in a graph is N .

A path P is defined as a connected sequence of Np = ℓP + 1 nodes (by ℓP edges). The best

path, or one found using a particular algorithm, is P ∗ (context dependent). The best space path

is S∗ (and has ℓ∗S + 1 nodes). The total path cost is cP . The best total path cost is c∗P , and its

expectation is Ec∗P
. Analogous quantities exist for S∗. Often we will abbreviate cP and c∗P by c and

c∗, respectively, when it is clear from context that we are talking about a path or a partial-path.

142

vstart and vgoal are the start and goal nodes, respectively, assuming that we are defining these as

points.

v∗S and v∗G are nodes that are space-optimal and graph-optimal, respectively, where optimality

is context dependent. ~vi,j is the vector from vi to vj , and g(vi, vj) = ‖~vi,j‖ is its length (Euclidean

distance). v̂∗
S is a unit vector that points in the space-optimal direction (i.e., along ~vi,goal if there

are no obstacles). φ measures angle away from v̂∗
S , φi,j is the φ as defined from vi to its neighbor

vj . φi,j is shortened to φj when it is clear we are starting at vi. φ
∗ denotes the best (minimum) φj .

When talking about a specific path, the shorthand gi = ~vi,j denotes the i-th edge in the path,

and gi its length (or si and si, if the path is space-optimal). Similarly, oi is the projection of gi onto

the x axis, and oi is the length of oi. When referring to concepts in general, edge length is denoted

g, and the length of a best edge g∗ (context dependent). o and o∗ represent the x components of

g, and g∗, respectively. E (g∗) and E (o∗) represent the expected values of g∗ and o∗, respectively.

A particular algorithm (i.e., combination of graph creation and path extraction) is denoted

A. The probability density of c using A is denoted fc, while Fc is the corresponding distribution

function. fc∗ is the probability density function of c∗. The expected value of c∗ is Ec∗ . Analogous

functions and expectations can be found by substituting φ, secφ, cosφ, etc. for c.

C is the configuration space, Cfree is the obstacle free portion of C. The dimensionality of

the configuration space is D. The x-axis is located along the D-th dimension. y is used to denote

an axis perpendicular to the x-axis (context dependent). r is the maximum edge length and the

radius of the D-ball B. The particular half of B for which x > 0 is denoted B1/2. η is the number

of non-vi nodes in B1/2. Φ is the hypersector described by B and φ. L is the distance between

start and goal, where L = d(vstart, vgoal). Ψ is the Subset of B1/2 bounded by the ellipsoid traced

by vi, where c = d(vstart, vi) + d(vi, vgoal). xc is the x coordinate of the intersection of the ellipsoid

with B1/2. The Lebesgue measures of Cfree, B1/2, Φ, and Ψ are denoted λCfree
, λB1/2

, λΦ, and λΨ,

respectively. The ratio of free space to total space is τ = λCf
/λC .

ιi denotes the runtime function of the node insertion function in terms of i nodes already in

the graph. Time itself is denoted t. Various subscripts are added to ιi and t to distinguish between

143

different runtime-order insertion functions (e.g., ιN,linear or tconstant.

C.3 Outline of technique

In order to evaluate algorithmic properties, we would like to know how a particular algorithm

A might be expected to perform in a particular environment over many trials. Let c quantify a

particular property of the path returned by an algorithm (e.g., c might represent path length). Let

fc be the probability density function of c, assuming algorithm A is used in a particular environment.

Given fc, it is straightforward to calculate Ec the expected value of c for A in that environment

[104]. Let Fc represent the corresponding distribution function of c. Note that fc is the derivative

of Fc with respect to c.

Often we are more interested in c∗, the best (as defined by the minimum or maximum) c.

For example, the length of a shortest-path with respect to G, start, and goal. Let fc∗ denote the

probability density function of c∗, over all graphs through a particular environment using algorithm

A. The function fc∗ can be calculated from fc and Fc using order statistics [11]. Therefore, Ec∗

the expected value of c∗ can also be found.

Given our assumption that sampling is uniform and i.i.d., the chance of picking a point out

of any region of space is proportional to its Lebesgue measure (e.g., ‘hypervolume’). This provides

a straightforward way to calculate Fc in Euclidean space. Namely, Fc = q is given by the Lebesgue

measure of space associated with paths that have cost c ≤ q.

The analytical technique that we present uses the geometry of an algorithm to calculate the

expected value of c∗. It is summarized as follows:

• Find Fc by analyzing the Lebesgue measure of space associated with c ≤ q.

• Find fc by differentiating Fc with respect to c.

• Use order statistics to find fc∗ from fc and Fc.

• Find Ec∗ using fc∗ and c∗.

144
RandomGraph()

1: Add vstart and vgoal to G
2: for i = 3 to N do
3: add random point vi to G
4: for all vj ∈ G s.t. d(vi, vj) ≤ r do
5: add edge [vi, vj] to G.

GreedyPath(G, vstart, vgoal)

1: vi = vstart
2: while not(vi = vgoal do
3: j = arg minj(φj) s.t. [vi, vj] ∈ G
4: v∗ = vj
5: if φj ≤ π/2 then
6: vi = v∗

7: else
8: no solution

Figure C.1: RandomGraph() constructs graph G, while GreedyPath() navigates G from vstart
to vgoal, the start and goal nodes, respectively. The subroutine d(vi, vj) returns the Euclidean
distance between vi and vj . The quantity r represents the maximum edge length.

• Use Ec∗ for simple algorithms to find bounds on Ec∗ for more complex algorithms.

C.4 Expected quantities of simple algorithms

We now demonstrate the application of our method on a few simple examples. Assume a

graph of N nodes exists in an obstacle-free, D dimensional, Euclidean configuration space (c-space)

such that each node vi is connected to all other nodes vj for which d(vi, vj) ≤ r, where r represents

the maximum edge length, and vstart and vgoal are the start and goal nodes, respectively. This is

the graph that would be created using algorithm RandomGraph() in Figure C.1.

Let a graph-optimal path be a path through the graph that minimizes the Euclidean distance

traveled through the graph. Let a space-optimal path be a path through the configuration space

that minimizes the Euclidean distance traveled through the configuration space. In general, these

two types of optimality are not the same—while we would like to have a space-optimal path, we

must settle for a graph-optimal path (since G is a subset of the entire c-space). A space-optimal

145

vi

~vi,j

v̂∗
S

φj

vgoal
r

vj
B

~v∗

v∗

φ∗

Figure C.2: v∗ (green) is the ‘best’ (locally-optimal) neighbor of vi, another neighbor is vj (red).
The unit vector v̂∗

S points at the goal. Angles away from v̂∗
S and vectors to v∗ and vj are also

depicted. All neighbors of vi are within D-ball B of radius r (blue).

path is the best graph-optimal path over all possible graphs through the configuration-space.

C.4.1 Expected angle to a desired heading Eφ∗

Assuming a graph has been created using RandomGraph(), we consider movement near a

particular node vi. We assume the goal is further than r from vi so that it is not a direct neighbor,

d(vi, vgoal) > r. Let v∗S denote a locally space-optimal neighbor of vi. Since there are no obstacles,

v∗S is any neighbor of vi that is along ~vi,goal, the vector from vi to vgoal. We shall refer to this

direction as the locally-optimal heading, and denote it with the unit vector v̂∗
S (See Figure C.2).

Similarly, let the vector from vi to its neighbor vj be denoted ~vi,j .

Assume that a greedy algorithm is used to extract a path from the graph, such that movement

from vi is to the neighbor v∗, where:

v∗ = arg min
vj

(

arccos

(

v̂∗
S · ~vi,j

‖~vi,j‖

))

Where ‘·’ denotes the dot product and ‖~vi,j‖ is the length of ~vi,j . Let φ denote the angular distance

away from v̂∗
S . Let φj denote the angle between v̂∗

S and ~vi,j , and let φ∗ denote the angle between

v̂∗
S and ~v∗.

φ∗ = min (φj) = arccos

(

v̂S∗ ·
~v∗

‖~v∗‖

)

In other words, the greedy algorithm attempts to minimize φ, subject to the movement constraints

146

vi x

B1/2

vgoal

φ

Φ

Figure C.3: Cross-section of problem. Φ is the hypersector (green) defined by φ measured from the
x axis, the goal vgoal is located along the x axis, and vi is located at x = 0. B1/2 is the portion of
the D-Ball located in the positive x direction.

imposed by graph edges.

C.4.1.1 Finding the distribution function Fφ

We would like to know Eφ∗ the expected φ∗. Following our procedure outlined in Section C.3,

the first step is to use our knowledge of the problem’s geometry to find the distribution function

Fφ.

We know that all neighbors of vi exist within the D-ball of radius r centered at vi. Let B

refer to the D-ball. Note that a D-ball is the D-dimensional analog of a ball, it represents all points

contained within a hypersphere of radius r. Without loss of generality, we assume that vi is at the

origin, and the optimal heading points along the D-th dimension, which we will also call the x-axis

(see Figure C.3). We consider only the case where movement occurs in the positive x direction—In

other words, if no neighbor of vi is closer to the goal than vi, with respect to the x-axis, then path

extraction algorithm returns ‘no solution.’ Let B1/2 refer to the half of the D-ball that exists in

the positive x direction.

Note that φ is measured as the angular distance from the x-axis, where 0 ≤ φ ≤ π/2. Let

Φ denote the hypersector of B that is bounded by the revolution of φ around the x-axis (e.g., if

d = 2 then Φ is a sector and if d = 3 then Φ is a spherical cone). Let λB1/2
and λΦ represent the

147

Lebesgue measure of B1/2 and Φ, respectively. Since the probability a point is sampled from any

particular region of space is proportional to the Lebesgue measure of that region, the distribution

function Fφ is given by:

Fφ =
λΦ

λB1/2

(C.1)

From [60], we know an equation for λB1/2
is given by:

λB1/2
=

rDπD/2

2Γ(D/2 + 1)

where Γ(·) is the well-known gamma function. Note λB = 2λB1/2
. Similarly, [80] describes λΦ as

follows:

λΦ = λB1/2
Isin2 φ

(

D − 1

2
,
1

2

)

Where Isin2 φ
(

D−1
2 , 12

)

is the regularized incomplete beta function Iz
(

D−1
2 , 12

)

evaluated at z =

sin2 φ.

Isin2 φ

(

D − 1

2
,
1

2

)

=
B
(

sin2(φ); D−1
2 , 12

)

B
(

D−1
2 , 12

)

Where B
(

D−1
2 , 12

)

and B
(

sin2(φ); D−1
2 , 12

)

are the corresponding beta function and incomplete beta

function, respectively [96]. Substituting the integral form of the beta functions yeilds:

Isin2 φ

(

D − 1

2
,
1

2

)

=

∫ sin2(φ)
0 t(D−3)/2(1− t)−1/2dt
∫ 1
0 t(D−3)/2(1− t)−1/2dt

When performing this calculation it is convenient to notice that φ ranges from 0 to π/2, with the

consequences that | sin(φ)| = sin(φ) and | cos(φ)| = cos(φ).

C.4.1.2 Finding fφ the pdf of φ

The probability density function of φ is given by:

fφ = F ′
Φ

where F ′
Φ is the derivative of fΦ with respect to φ.

148

d Eφ∗ Esec(φ∗) Ecos(φ∗)

2 π
2(1+η)

3

(η−1)!!
η!! if η is odd η

η−1
η

η+1

π
2
(η−1)!!

η!! if η is even

Table C.1: Special cases of Eφ∗ , Esec(φ∗), and Ecos(φ∗)

C.4.1.3 Finding fφ∗ the pdf of φ∗

It is now possible to use order statistics to find the probability density function of φ∗.

Let C denote the configuration space, and let Cfree denote the obstacle free portion of the

configuration space. Let λCfree
denote the Lebesgue measure of Cfree. Let η denote the number of

nodes (other than vi) in B1/2. Nodes are uniformly random and i.i.d. in Cfree, so η is expected to

be:

η = N
λB1/2

λCf

− 1

2
(C.2)

Where the negative 1/2 term accounts for the existence of vi on the flat boundary of B1/2 at x = 0.

Since φ∗ represents the minimum φ over a set of size η, we are interested in the first order

statistic of φ, given by:

fφ∗ = η(1− Fφ)
η−1fφ (C.3)

C.4.1.4 Finding Eφ∗ the expected φ∗

The expected value for φ∗ can now be computed as follows:

Eφ∗ =

∫ π/2

0
φfφ∗dφ (C.4)

This appears to be the simplest form of Eφ∗ that is generally applicable over all D and η

(due to the η exponent in Equation C.3). However, we have been able to find special cases for

D = {2, 3} that are applicable over all η. These appear in Table C.1. For D > 3 the integral form

of Eφ∗ can be solved separately for each combination of D and η. As η gets large, we have found

149

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

2
3
4
5

10
0

10
2

10
4

10
6

10
8

10
10

0

0.2

0.4

0.6

0.8

1

1.2

2
3
4
5

η N

E
φ
∗

E
φ
∗

L = 10r, side length=10r

Figure C.4: Expected angle to desired heading Eφ∗ vs. η and N (number of nodes in B1/2 and
graph, respectively), left and right, respectively. Different colors represent different configuration
space dimensionality D.

numerical integration to become a practical necessity. Figure C.4-Left displays values of Eφ∗ vs. η

and D = {1, ..., 5}.

Figure C.4-Left shows us what to expect assuming that each B1/2 contains η nodes. However,

in practice the number of nodes N required to achieve a particular η is exponentially dependent on

the dimensionality of the c-space (Further discussion is postponed until Section C.6). We plot Eφ∗

vs. N in Figure C.4-Left assuming that the configuration space is bounded by a hyper-cube that

spans 10r in each dimension.

C.4.2 Expected secant of angle to a desired heading Esec(φ∗)

Although Eφ∗ (calculated in the previous section) is of academic interest, it is not the most

useful quantity for evaluating algorithmic performance. A more useful quantity is Esec(φ∗), the

expected secant of φ∗. Esec(φ∗) is interesting because it represents the expected ratio between

the distance that is actually traveled, and the component of that movement in the space-optimal

direction of travel.

It is important to note that Esec(φ∗) 6= sec (Eφ∗) due to the functional non-invariance of the

150

expectation operator. In fact, we know Esec(φ∗) ≥ sec (Eφ∗) from Jensen’s inequality, and the con-

vexity of the secant function on the range [0, π/2].

Fortunately, sec(φ) is monotonically increasing vs. φ on the range φ = [0, π/2]. Since ‘*’ is

being used to denote the minimum value over a set of η values, it follows that:

sec (φ∗) = sec (φ)∗ (C.5)

In other words, the secant of the minimum angle in a set is the same as the minimum secant over

all angles in the same set. In order to calculate Esec(φ∗) we follow the same steps as in the previous

section.

C.4.2.1 Finding the distribution function Fsec(φ)

Since sec(φ) is a monotonically increasing function of φ over the range we are considering, 0

to π/2, the distribution functions for sec(φ) and φ are identical.

Fsec(φ) = Fφ

C.4.2.2 Finding fsec(φ) the pdf of sec(φ)

The probability density function of sec(φ) is given by:

fsec(φ) = F ′
sec(φ)

where F ′
sec(φ) is the derivative of Fsec(φ) with respect to φ. Note that fsec(φ) = fφ.

C.4.2.3 Finding fsec(φ∗) the pdf of sec(φ∗)

It is now possible to use order statistics to find the probability density function of sec(φ∗).

From Equation C.5 we see that fsec(φ∗) is equivalent to fsec(φ)∗ , which is given by the first order

statistic of sec(φ) as follows:

fsec(φ∗) = fsec(φ)∗ = η(1− Fsec(φ))
η−1fsec(φ)

151

10
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2
3
4
5

10
0

10
2

10
4

10
6

10
8

10
10

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2
3
4
5

η N

E
se
c
(φ

∗
)

E
se
c
(φ

∗
)

L = 10r, side length=10r

Figure C.5: Expected secant of angle to desired heading Esec(φ∗) vs. η and N (number of nodes
in B1/2 and graph, respectively), left and right, respectively. Different colors represent different
configuration space dimensionality D.

C.4.2.4 Finding Esec(φ∗) the expected sec(φ∗)

The expected value of sec (φ∗) over φ = [0, π/2] can now be calculated as follows:

Esec(φ∗) =

∫ π/2

0
sec (φ) fsec(φ∗)dφ (C.6)

As with Eφ we are unable to simplify the integral forms of Esec(φ∗) in a way that is generally

applicable over all D and η. However, we have found a simplified version for the special case d = 3,

which is presented in Table C.1. We also note that Esec(φ∗) = ∞ for the special case η = 1 (for any

D). Indeed, it is still possible to solve Esec(φ∗) separately for each combination of D and η. In our

personal experience, we have found numerical integration techniques to become necessary much

earlier (with respect to D and η) than in the previous section. Values of Esec(φ∗) for D = {1, ..., 5}

are plotted vs. η and N in Figure C.5-Left and -Right, respectively.

C.4.3 Expected cosine of angle to a desired heading Ecos(φ∗)

Another interesting and related quantity is Ecos(φ∗), the expected cosine of φ. Although

cos(φ∗) = 1/ sec(φ∗), we note that Ecos(φ∗) 6= 1/Esec(φ∗).

152

In this case, the function cos(φ) is monotonically decreasing vs. φ on the range φ = [0, π/2].

This mean that while ‘*’ is being used to denote the minimum value with respect to φ, it will denote

the maximum value with respect to cos(φ). We again apply our procedure to obtain Ecos(φ∗).

C.4.3.1 Finding the distribution function Fcos(φ)

Since cos(φ) is a decreasing increasing function of φ over the range we are considering, the

distribution functions for cos(φ) and φ must sum to one.

Fcos(φ) = 1− Fφ

C.4.3.2 Finding fcos(φ) the pdf of cos(φ)

The probability density function of cos(φ) is given by:

fcos(φ) = F ′
cos(φ)

where F ′
cos(φ) is the derivative of Fcos(φ) with respect to φ.

C.4.3.3 Finding fcos(φ∗) the pdf of cos(φ∗)

As before, we now use order statistics to find the probability density function of cos(φ∗).

Note that fcos(φ∗) is equivalent to fcos(φ)∗ , although ‘*’ represents the minimum and maximum,

respectively. The maximum value fcos(φ)∗ is given by the η-th order statistic of cos(φ) as follows:

fcos(φ∗) = fcos(φ)∗ = η(Fcos(φ))
η−1fcos(φ)

C.4.3.4 Finding Ecos(φ∗) the expected cos(φ∗)

The expected value of cos (φ∗) over φ = [0, π/2] can now be calculated as follows:

Ecos(φ∗) =

∫ π/2

0
cos (φ) fcos(φ∗)dφ (C.7)

As with the other expected quantities, the integral form of Esec(φ∗) cannot be simplified

in general way for all D and η. A simplified version for the special case d = 3 is presented in

153

10
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

10
0

10
2

10
4

10
6

10
8

10
10

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2
3
4
5

2
3
4
5

η N

1
E

s
e
c
(
φ
∗
)

1
E

s
e
c
(
φ
∗
)

L = 10r, side length=10r

Figure C.6: The inverse of the expected cosine of angle to desired heading 1
Ecos(φ∗)

vs. η and

N (number of nodes in B1/2 and graph, respectively), left and right, respectively. Different colors
represent different configuration space dimensionalityD. Note that the inverse of Ecos(φ∗) is plotted.

PostProcess()

1: for all [vstart, vi] ∈ G do
2: add edge [vi, vgoal] to G.

Figure C.7: A post processing routine that links all neighbors of vstart to vgoal

Table C.1. In contrast to Esec(φ∗), 1/Ecos(φ∗) has finite values for η = 1 (for any finite D). As

before, it is still possible to solve Ecos(φ∗) separately for each combination of D and η, and we find

numerical integration necessary for moderately largeD and η. Values of 1/Ecos(φ∗) forD = {1, ..., 5}

are plotted vs. η and N in Figure C.6-Left and -Right, respectively. It is important to note that

the inverse of Ecos(φ∗) is plotted (the reasons for this will become apparent in the next section).

C.4.4 Minimum bound on expected path length with 2 edges

Assume that a random graph is created using RandomGraph() in Figure C.1, and then

the post processing procedure PostProcess() is used to connect all neighbors of vstart to the

goal. Let c denote the length of any path between start and goal. Let c∗ denote the minimum c

over G. Running PostProcess() will never increase c∗. This means that any c∗ found over the

154

post-processed graph is a minimum bound on the c∗ of the original graph.

Lemma C.1: After using PostProcess(), the best path in G contains (only) two edges: [vstart, v
∗
G]

and [v∗G, vgoal].

By construction, any path with c∗ must contain vstart, vgoal, and at least one other node.

Let v∗G,1 denote the neighbor of vstart in the shortest path before post processing. Running post

processing will not increase the graph distance between v∗G,1 and vgoal. Further, it may cause paths

through other neighbors of vstart to decrease such that the path with c∗ goes through v∗G,2 a different

neighbor of nstart than v∗G,1. Regardless, the best path must go through either v∗G,1 or v∗G,2 since

PostProcess() only attaches neighbors of vstart to vgoal. �

We now apply our procedure to find Ec∗ the expected length of the shortest path over all

graphs created using RandomGraph() followed by PostProcess() in obstacle free Euclidean

configuration spaces.

Without loss of generality, we make the same assumptions as in the previous three sections.

Further, we assume that the start is further than r away from the goal, d(vstart, vgoal) > r (this is

done to ensure that the best path is non-trivial).

C.4.4.1 Finding the distribution function Fc

Let L = d(vstart, vgoal) be the Euclidean distance between the start and goal. The shortest

graph distance between start and goal is c∗. Note that c∗ ≥ L by the triangle inequality. By

Lemma C.1 we know that

c = d(vstart, vi) + d(vi, vgoal) (C.8)

where vi is some neighbor of vstart. We also know two things about the geometry of the problem

that can help us find Ec. The first is that vi exist in the half D-ball defined by r (by construction

of the first edge). The second is that Equation C.8 describes an ellipsoid in the configuration space

with foci located at vstart and vgoal (See Figure C.8). The major semi-axis of the ellipsoid is along

the x-axis, all minor semi-axes are orthogonal to the major semi-axis, and located along the axes

155

v s
ta

r
t

vgoal

B1/2

ellipsoid

x

y d(vi , vgoal)

d(
v s

ta
r
t
, v

i
)

vi

xc

Ψ

L

r

Figure C.8: Cross-section of problem. Ψ (grey) is the region defined by the intersection of B1/2

with the region contained in the ellipsoid defined by c = d(vstart, vi) + d(vi, vgoal) with vstart and
vgoal as its foci. Their respective bounding surfaces intersect at x coordinate xc. L is the distance
between vstart and vgoal. The radius of B1/2 is r.

of the remaining dimensions.

Let the intersection of the space inside the ellipsoid with B1/2 be denoted Ψ. Let λΨ be the

Lebesgue measure of Ψ. Assuming that L and r are constant, λΨ is a monotonically increasing

function of c. Therefore, Fc is given by:

Fc =
λΨ

λB1/2

Ψ is symmetric about the x axis, and so a function for λΨ is obtained by integrating the cross-

section of Ψ along x. The integration must be performed in two steps to account for the different

bounding surfaces of Ψ (i.e., due to the ellipsoid and B1/2, respectively).

Let the x coordinate of the intersection manifold be denoted xc. Given a particular c, the

entire intersection manifold has the same xc due to symmetry.

xc =
L2 + 2cr − c2

2L

Let y represent the perpendicular distance from the x axis to the bounding manifold at a particular

156

x. The Lebesgue measure of the cross-section is given by λBD−1,y
, where BD−1,y is the (D− 1)-ball

of radius y (i.e., D-ball in one lower dimension than D). The equation for y in terms of x and c

will be different depending on if we are considering limits imposed by the ellipsoid or d-ball. We

denote the former as y1 and the latter as y2, and their equations are:

y1 =
1

2

(

(

L2 − c2
)

(

1− (c− 2x)2

L2

))1/2

(C.9)

and

y2 = (r2 − x2)1/2 (C.10)

respectively. Note that λBD−1,y1
and λBD−1,y2

are found by substituting Equations C.9 and C.10

for the radius variable in λBD−1
. For example, λB1,y2

= (r2 − x2)1/2, while λB2,y2
= π(r2 − x2) and

λB3,y2
= 4

3π(r
2 − x2)3/2. The hyper-volume λΨ is calculated as:

λΨ =

∫ xc

0
λBD−1,y1

dx+

∫ r

xc

λBD−1,y2
dx

C.4.4.2 Finding fc the pdf of c

The probability density function of c is given by:

fc = F ′
c

where F ′
c is the derivative of fc with respect to c. Note the derivative is taken with respect to c

and not x.

C.4.4.3 Finding fc∗ the pdf of c∗

Order statistics can now be used find the probability density function of c∗. Since c∗ is the

smallest c in a set of size η, we care about the first order statistic.

fc∗ = η(1− Fc)
η−1fc

157

10
0

10
1

10
2

10
3

10
4

10

10.1

10.2

10.3

10.4

10.5

10.6

2
3
4
5

10
0

10
2

10
4

10
6

10
8

10
10

10

10.1

10.2

10.3

10.4

10.5

10.6

2
3
4
5

η N

c∗c∗

L = 10r, side length=10r

Figure C.9: The expected path length of a greedy 2-node path Ec∗ vs. η and N (number of nodes
in B1/2 and graph, respectively), left and right, respectively. Different colors represent different
configuration space dimensionality D. The distance between start and goal is L = 10r.

C.4.4.4 Finding Ec∗ the expected c∗

By its definition Fc must range from 0 to 1. This happens when λΨ is between 0 and λB1/2
,

due to the geometry of the problem. Therefore, the limits of integration are given by the c that

cause this to happen: L and L+ (r2 + L2)1/2, respectively. This can be understood intuitively

as the minimum and maximum path lengths that can possibly exist given the problem that we

have defined. L is the straight-line distance between start and goal, while r + (r2 + L2)1/2 is the

distance found by moving as far as possible (r) perpendicular to the desired direction of travel,

before moving to the goal. We now have all the quantities necessary to find Ec∗ the expected c∗:

Ec∗ =

∫ r+(r2+L2)1/2

L
cfc∗dc (C.11)

We are unable to find a more simple form of Equation C.11. As with the other expected

values we have found, Equation C.11 can be solved given particular values of r, L, η, and d. Again,

numerical integration is a practice necessity. Figure C.9 depicts Ec∗ vs. η and N for d = {1, ...5}

for the particular problem where r = 1 and L = 10.

158

C.4.5 Checking our work

To verify that our expressions for Eφ∗ , Esec(φ∗), Ecos(φ∗), and Ec∗ are giving us reasonable

values, we can check our work by performing Monte Carlo experiments using a particular d and

η (and L in the case of Ec∗). In each trial we draw η points uniformly at random and i.i.d. from

within B1/2, and record the observed values of φ∗, sec(φ∗), cos(φ∗), or c∗. Averaging the results over

t trials gives estimates of Eφ∗ , Esec(φ∗), Ecos(φ∗), and Ec∗ , respectively. The Monte Carlo estimated

values appear to approach values obtained using Equations C.4, C.6, C.7, and C.11, respectively,

as t → ∞. For example, the average values of φ∗, sec(φ∗), cos(φ∗), and c∗ over t experiments are

displayed in Figure C.10 top to bottom, respectively. For c∗ we assume that L = 10.

C.5 Bounds on more complex algorithms

We begin with a few proofs that will help us later. Let g represent edge length, in general,

and let g∗ represent the edge length of the locally optimal edge (the one that is φ∗ away from

the desired direction of travel), in general. Let o and o∗ represent the x components of g and g∗,

respectively.

Lemma C.2: The distributions of φ and g are statistically independent.

Each half-hypersphere shell of B1/2 is associated with a particular g, and has the same

distribution of φ as any other half-hypersphere shell of B1/2 associated with a different g. Therefore,

all g have exactly the same distribution of φ. �

Corollary C.1: The distributions of φ∗ and g∗ are statistically independent.

Lemma C.3: The distributions of cos(φ) and g are statistically independent.

Each g is associated with a particular half-hypersphere shell of B1/2, and all shells have

identical distributions of φ and cos(φ). �

Corollary C.2: The distributions of cos(φ∗) and g∗ are statistically independent.

159

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

E
φ
∗

Monte Carlo estimation of Eφ∗ for D=4, η=10

Number of trials

Monte Carlo estimate

calculated value

10
0

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

E
se
c
(φ

∗
)

Monte Carlo estimation of Esec(φ∗) for D=4, η=10

Number of trials

Monte Carlo estimate

calculated value

10
0

10
1

10
2

10
3

10
4

10
5

0.78

0.8

0.82

0.84

0.86

0.88

E
c
o
s(
φ
∗
)

Monte Carlo estimation of Ecos(φ∗) for D=4, η=10

Number of trials

Monte Carlo estimate

calculated value

10
0

10
1

10
2

10
3

10
4

10
5

10.1

10.15

10.2

E
c
∗

Monte Carlo estimation of Ec∗ for D=4, η=10, L=10

Number of trials

Monte Carlo estimate

calculated value

Figure C.10: Monte Carlo estimation of Eφ∗ , Esec(φ∗), Ecos(φ∗), and Ec∗ (Top to Bottom, respec-
tively) for d = 4 and η = 10 (and L = 10 for c∗). The horizontal axes denote number of trials.

160

vstart

goal

vi

vi+1

φi,i+1

oi

x

gi

L

Figure C.11: Path between vstart and a goal defined by the plane at x = L. gi is the vector from
vi to vi+1, oi is the projection of this vector onto the x axis.

Theorem C.1: E(g∗ cos(φ∗)) = E(g∗)E(cos(φ∗)).

The expectation operator supports multiplicativity between statistically independent vari-

ables. Corollary C.2 shows that g∗ and φ∗ are statistically independent. �

Corollary C.3: E(o∗) = E(g∗)E(cos(φ∗)).

This follows directly from the definition of cos(φ∗) = o∗/g∗. �

C.5.1 Lower bound on greedy algorithm from point to plane in an obstacle free

environment

Assuming a random graph has been created as in the previous section (by making two nodes

neighbors if they are within r), we now investigate the particular problem of moving from a node

vstart located at the origin to a goal that is defined by the hyperplane at x = L. In this case, both

the globally and locally space-optimal directions of travel are parallel to the x axis. Therefore, the

greedy algorithm moves to the neighbor that has φ∗, where φ∗ measured as the angle between an

outgoing edge and the x axis.

Let P ∗ represent the path found using the greedy algorithm, and let c∗P be the cost of this

path. We now calculate a lower bound on Ec∗P
the expected c∗P . Although this can be done with

161

the use of Ec∗ from Section C.4.4, the resulting bound becomes quite loose as L/r increases. We

can achieve a much tighter bound by using Ecos(φ∗).

Let gi represent the vector defined by the i-th edge [vi, vi+1] along P ∗. Let oi represent the

projection of gi onto the x axis (See Figure C.11). Let gi and oi represent the magnitude of gi and

oi, respectively. φi,i+1 is the angle between gi and oi. Note that cos(φi,i+1) = oi/gi. Let ℓP ∗ be

the number of edges in P ∗. By construction we have:

c∗P =

ℓP∗
∑

i=1

gi

Taking the expectation of each side gives:

Ec∗P
= E

ℓP∗
∑

i=1

gi

It is possible to move the expectation operator inside the summation due to its linearity property.

Ec∗P
=

ℓP∗
∑

i=1

E (gi) (C.12)

We now make three assumptions that we will discuss in-depth later. For now, assume that

they hold. The first is that the expected φi,i+1 of each edge except the last, is equal to the expected

φ∗. That is E (φi,i+1) = Eφ∗ , for 1 ≤ i < ℓP ∗ . The second and third are similar, but for edge

length gi and oi. Namely, E (gi) = E (g∗) and E (oi) = E (o∗), for 1 ≤ i < ℓP ∗ . We assume that the

last edge (i.e., i = ℓP ∗) is parallell to the x axis so that it moves toward the goal with the least

ammount of length possible. This means that φℓP∗ ,goal = 0, and so gℓP∗
= oℓP∗

Theorem C.2: The expected path length from the greedy algorithm between a point and a plane is,

with the previous assumptions, Ec∗P
= E(gℓP∗

) +
L−E(gℓP∗

)

Ecos(φ∗)
.

Using the second assumption along with Equation C.12, and moving the last edge outside

the summation gives:

Ec∗P
= E(gℓP∗

) +

ℓP∗−1
∑

i=1

E (g∗)

Substituting E (g∗) = E (o∗) /E (cos(φ∗)), by Corrilary C.3:

Ec∗P
= E(gℓP∗

) +

ℓP∗−1
∑

i=1

E (o∗)
E (cos(φ∗))

162

vi

vi+1

x

x

Φi,i+1

Figure C.12: Overlap between the B1/2 of nodes vi and vi+1. By construction of the greedy
algorithm, we know no nodes exist in Φi,i+1 (grey).

Factoring 1/E (cos(φ∗)), and substituting E (oi) = E (o∗) by the third assumption above gives:

Ec∗P
= E(gℓP∗

) +

∑ℓP∗−1
i=1 E (oi)

E (cos(φ∗))

Realizing
∑ℓP∗−1

i=1 E (oi) = E
(

∑ℓP∗−1
i=1 oi

)

= L − E(oℓP∗
), by definition, and replacing E(oℓP∗

) =

E(gℓP∗
), by construction, finishes the proof. �

Corollary C.4: Ec∗P
≥ r + L−r

Ecos(φ∗)

We know E(gℓP∗
) ≤ r. We also know that Ecos(φ∗) ≤ 1, which means that E(gℓP∗

) ≤ E(gℓP∗
)

Ecos(φ∗)
.

Thus, by inspection we can see that replacing E(gℓP∗
) with r leads to a lower bound on Ec∗P

. �

We now examine whether or not it is fair to make the assumptions that lead to Theorem C.2.

At first glance they seem reasonable, reflecting a belief that the local properties of nodes in the

greedy-path are similar to the local properties of nodes in the entire graph. However, it turns out

that this is not accurate. Consider Figure C.12. We see the two B1/2 that are associated with

neighboring nodes in P ∗. By definition, the right-most point vi+1 is located along the best heading

from the left-most node vi. This means that we know no nodes exist within Φi,i+1 defined by re-

volving φi,j around the x axis at vi. Thus all three of our assumptions are violated! However, we see

163

vstart

vgoal

vi

vi+1

φi,i+1

oi

x

gi

L

Figure C.13: Paths between vstart and vgoal. Top: gi is the vector from vi to vi+1, oi is the
projection of this vector onto the locally optimal path (at vgoal). Middle: rotation of the sub-path
between vi and vgoal does not increase path length. Bottom: performing rotation for all nodes such
that oi is parallel to the x axis for all i.

that they are violated in a special way. Namely, for 1 < i < ℓP ∗ we expect E(cos(φi,i+1)) ≤ cos(φ∗),

with the inequality decreasing with D due to a higher concentration of volume near the surface

of B. This means that we can expect paths to be longer than what is predicted by theorem C.2

(since dividing by Ecos(φ∗) instead of E(cos(φi,i+1)) gives too small of a result. Therefore, we have

the following theorem.

Theorem C.3: A lower bound on the expected path length from the greedy algorithm between a

point and a plane is given by Ec∗P
≥ r + L−r

Ecos(φ∗)
.

C.5.2 Lower bound on greedy algorithm from point to point

We now consider the case of planning between two points in an obstacle free environment.

Without loss of generality, assume that both points are located on the x-axis and separated by L.

In this case the locally optimal direction oi from node vi is directly at vgoal.

Lemma C.4: Rotating the subpath vi...vgoal around vi will not change
∑ℓP∗

i=1 oi.

164

Rotation of gi does not change gi. Since the goal is also rotated the quantity φi,i+1 does not

change, and so neighter does oi. � (see Figure C.13-middle)

Theorem C.4: A lower bound on the expected path length from the greedy algorithm between two

points is given by Ec∗P
≥ r + L−r

Ecos(φ∗)
.

This is a consequence of the triangle inequality and can be observed by examining a series

of problems that are equivalent with respect to path length. Starting at node v1 and working

forward, each successive equivalent problem is obtained by rotating the rest of the path (including

the goal) around node vi (where 0 < i < ℓP ∗) so that oi is parallel to the x-axis, and points

in the positive direction (see Figure C.13-bottom). Since rotations are performed around nodes,

path length remains unchanged by Lemma C.4. Each rotation moves the goal in a non-decreasing

manner with respect to the x-axis, so
∑ℓP∗

i=1 oi ≥ L. By construction, we have modified the problem

so that the desired direction of movement is parallel to the x-axis from any node vi. This is exactly

what was done when moving between a point and a plane (the requirement last edge moves directly

to the goal parallel to the x-axis is met). Therefore, the lower bound described in Theorem C.3 is

applicable, except that L must be replaced by
∑ℓP∗

i=1 oi. Using L instead of
∑ℓP∗

i=1 oi gives a slightly

looser lower bound. �

A more intuitive but less rigorous proof (that is also applicable to optimal paths) is that,

movement to a single point constrains the problem more than moment to a plane. Since there

are less ‘good’ movement options from any particular node, with respect to the goal, overall path

length tends to increase.

C.5.3 Lower bounds with obstacles

So far we have considered only obstacle free configuration spaces. We now examine how

adding obstacles can effect path length. Let M represent the number of nodes that we attempt to

add to C. Nodes are invalid if they intersect with obstacles. M ≥ N since invalid nodes are not

added to the graph.

165

Lemma C.5: Adding obstacles (vs. no obstacles) will not decrease expected path length, with respect

to M .

This is true by the triangle inequality. Obstacles invalidate possible neighbors, with respect

to a non-obstacle case. While paths may have increased length or become invalid, their length

cannot be expected to increase. �

Given an environment with obstacles, paths fall into different homotopy classes depending

on the relative direction they move around each obstacle. For example, in a 2D space, going above

or below an obstacle produces two different homotopy classes. Each homotopy class has its own

minimum path length associated with it. A path of minimum length, with respect to a particular

homotopy class, can be described by placing nodes as close to the limiting surfaces of the obstacle

as possible, and then connecting those nodes with edges.

Convergence to an optimal path can be broken into three separate categories as follows:

(1) Discovering paths in better and better homotopy classes, until a path is found in the

homotopy class of the optimal path.

(2) Finding nodes that are closer and closer to the bounding surfaces of obstacles.

(3) Connecting distant nodes with more direct sub-paths.

In practice all of these things happen simultaneously.

This provides intuition as to how we might achieve a lower bound on the expected path length

in obstacle environments, given a lower bound in obstacle free environments. Namely, assume that

we are provided with the nodes on the limiting surfaces a priori, but that they are not—and can

never be—directly connected. Next, we build the graph in the standard way. The starting nodes

on the limiting surfaces can be connected via neighbors. If we re-sample the location of a starting

node, then the new node is connected with distance 0 to that starting node. Note that the latter

case effectively allows connections between a re-sampled starting node positions and other starting

nodes that happen to exit within r of them.

166

This procedure removes the first two types of convergence, replacing them with a priori

optimality. Thus, the only form of convergence that the new problem has is that of converging

toward straight sub-paths between each seed node.

Lemma C.6: Seeding the graph with nodes on the limiting surfaces will not increase the expected

path length, vs. a non-seeded problem, with respect to M .

This follows from the fact that we have removed two of the three convergence modalities and

replaced them with optimality. �

Let S∗ be the space optimal path that contains the fewest possible nodes Let ℓ∗S be the

number of edges in S∗. The number of nodes in S∗ is ℓ∗S +1. Let si be the vector between the i-th

and (i+1)-th nodes in the space optimal path. Let si be the length of si. The length c∗S of a space

optimal path is given by:

c∗S =

ℓ∗S
∑

i=1

si (C.13)

Lemma C.7: A lower bound on the expected sub-path found by the greedy algorithm between vi and

vi+1 in the new problem is given by E(ci) ≥ r + si−r
Ecos(φ∗)

First, we consider the reduced problem of planning between the two points vi and vi+1 in

obstacle free space. Using Theorem C.4, we obtain the lower bound E(ci) ≥ r + si−r
Ecos(φ∗)

. Next,

Lemma C.6 allows us to use this as a lower bound for the case with obstacles. �

This leads to the following theorem.

Theorem C.5: A lower bound on the expected path length from the greedy algorithm between two

points in a Euclidean space is given by Ec∗P
≥ rℓ∗S +

c∗S−rℓ∗S
Ecos(φ∗)

.

Lemma C.6 tells us that a lower bound on the actual graph path is found by the new problem

described above.

Ec∗P
≥ E

ℓ∗S
∑

i=1

ci

167

We move the expectation inside the summation (allowed by linearity of expectation), and replace

E(ci) according to Lemma C.7 to obtain a slightly looser bound:

Ec∗P
≥

ℓ∗S
∑

i=1

(

r +
si − r

Ecos(φ∗)

)

= rℓ∗S +

ℓ∗S
∑

i=1

si − r

Ecos(φ∗)

We can factor the 1/Ecos(φ∗), since it is the same for each term:

Ec∗P
≥ rℓ∗S +

∑ℓ∗S
i=1(si − r)

Ecos(φ∗)
=

(

∑ℓ∗S
i=1 si

)

− rℓ∗S

Ecos(φ∗)

Substituting by Equation C.13 completes the proof �.

C.6 Applications and implications

In the previous section we showed that for many different problems, a lower bound on the

expected path length found by the greedy algorithm has the following form:

E(c∗P) ≥ rℓ∗S +
c∗S − rℓ∗S
Ecos(φ∗)

(C.14)

where c∗P , is the length of the current path, c∗S is the length of a space-optimal path that solves

the problem, and Ecos(φ∗) measures the expected ratio between the lengths of the ‘best’ possible

local edge and the best edge that we are able to find given the current graph. ℓ∗S is the number of

edges in the particular space-optimal with the least edges. In other words, ℓ∗S − 1 is the minimum

number of times an optimal path must change heading to avoid obstacles. We now discuss possible

applications and implications of this lower bound.

C.6.1 Estimation of optimal path length

Noting that E(c∗S) = c∗S , we can rewrite Equation C.14 as follows:

E(c∗S) ≤ rℓ∗S + (E(c∗P)− rℓ∗S)Ecos(φ∗)

Substituting, c∗P ≈ E(c∗P) gives an approximation to the upper bound on the expected optimal path

length in terms of the current path length. This can be useful for estimating the expected minimum

improvement if we continue planning forever. Although perhaps not as useful as an estimation for

the maximum improvement, this can still be used as a possible stopping criterion.

168

C.6.2 Evaluation of algorithmic performance vs. D

As noted in the introduction, one of the main motivations for pursuing analytical algorithmic

bounds is for improved understanding of how algorithmic performance is effected by the properties

of the configuration space. This section is dedicated to doing this for D, η, and N . The only

quantity in Equation C.14 that depends on these things is Ecos(φ∗). Therefore we now examine the

behavior of Ecos(φ∗).

We begin by noticing that λB1/2
cancels from λΦ in the distribution function Fφ. Therefore,

Fφ is equal to the incomplete regularized beta function evaluated at sin2(φ).

Fφ = Isin2 φ

(

D − 1

2
,
1

2

)

Taking the derivitive gives, for the range 0 ≤ φ ≤ π/2:

fφ =
2
(

sin2(φ)
)(d−1)/2

sin(φ)B
(

D−1
2 , 12

)

As noted in Section C.4.3, Fcos(φ) = 1− Fφ. Which which implies fcos(φ) = −fφ. Substituting into

Equation C.7 and rearranging gives the following expression for Ecos(φ∗):

∫ 0

π/2

2 cos(φ)η
(

1− Isin2 φ
(

D−1
2 , 12

))η−1
(sin(φ))d−2

B
(

D−1
2 , 12

) dφ

Note that we have switched the limits of integration to remove the negative sign introduced by

fcos(φ)

We desire to find Bachmann-Landau bounds of this quantity in terms of D (see [30] for details

on Bachmann-Landau notation, the original German versions are [10, 72]). This is straightforward

for D = {2, 3}, because the expression inside the integral reduces to a relatively simple formula in

these cases. However, we would like to know a bound for all D. We observer that the main difficulty

in evaluating the integral is the
(

1− Isin2 φ
(

D−1
2 , 12

))η−1
factor. However, for the range of φ that

we are considering we know that 0 ≤ sin(φ) ≤ 1, which implies that 0 ≤ sin2(φ) ≤ 1, and therefore

0 ≤ Isin2 φ
(

D−1
2 , 12

)

≤ 1. It follows that 0 ≤
(

1− Isin2 φ
(

D−1
2 , 12

))η−1 ≤ 1, for all η. Therefore we

can replace the problematic factor with 1 to obtain an upper bound on the entire integral that is

169

applicable over all η.

Ecos(φ∗) ≤
∫ 0

π/2

2η cos(φ)(sin(φ))D−2

B
(

D−1
2 , 12

) dφ

Now the integral can be performed with relative ease:

Ecos(φ∗) ≤
2η

(D − 1)B
(

D−1
2 , 12

) (C.15)

Theorem C.6: B
(

D−1
2 , 12

)

= k
√
2
√
π
√
D

(D−1) , where k is a constant.

Using the gamma form of the beta function [9] leads to:

B

(

D − 1

2
,
1

2

)

=
Γ
(

D
2 − 1

2

)

Γ
(

1
2

)

Γ
(

D
2

)

By definition Γ
(

D
2 − 1

2

)

=
√
π. Substituting, and also multiplying by a convenient form of 1 gives:

B

(

D − 1

2
,
1

2

)

=

(

D
2 − 1

2

)

(

D
2 − 1

2

)

Γ
(

D
2 − 1

2

)√
π

Γ
(

D
2

)

By construction the gamma function satisfies the relation (x−1)Γ(x−1) = Γx. Using this property

and rearranging:

B

(

D − 1

2
,
1

2

)

=
2
√
π

(D − 1)

Γ
(

D
2 + 1

2

)

Γ
(

D
2

)

In [47] it is shown that Γ(J+1/2)
Γ(J) =

√
Jk, where k is the sum of an asymptotic series. This allow is

the following substitution:

B

(

D − 1

2
,
1

2

)

=
2
√
π

(D − 1)

√

D

2
k

Rearranging finishes the proof. �

Substituting the result from Therorm C.6 into Equation C.15, and rearranging:

Ecos(φ∗) ≤
2η

k
√
2
√
π
√
D

This implies the following bounds:

Ecos(φ∗) = O

(

η√
D

)

and

1

Ecos(φ∗)
= Ω

(√
D

η

)

(C.16)

170

Recall that η is the number of nodes within B1/2, the half D-ball of radius r. For algorithmic

analysis purposes, we are more interested in how an algorithm behaves vs. N , the number of nodes

in the graph. By Equation C.2 we see that η is related to N by the ratio λB1/2
/λCf

, which means

that the relationships η vs. N and EφG∗
vs. N are dependent on both the radius r and the particular

configuration space being used.

Recall that we assumed the radius of the D-ball was fixed at a particular r. In practice r is

often defined to be small (e.g., with respect to the size of the c-space in any direction)—for now,

we assume this is the case. Let Blittle denote the largest D-ball that can fit in the c-space (ignoring

obstacles), let λBlittle
and rlittle be the Lebesgue measure and radius of Blittle, respectively. Let τ

be the ratio of obstacle free c-space to total c-space, τ = λCf
/λC . Note that by definition:

λBlittle
≤ λC

Dividing λCf
by either side gives:

λCf

λBlittle

≥
λCf

λC
= τ

Rearranging gives:

τλBlittle
≤ λCf

which leads to the following inequality:

λB1/2

τλBlittle

≥
λB1/2

λCf

Substituting in equations for volume, and simplifying:

1

2τ

(

redge
rlittle

)D

≥
λB1/2

λCf

Substituting into Equation C.2:

η ≤ N

2τ

(

redge
rlittle

)D

− 1

2
(C.17)

Similarly, Let Bbig denote the smallest d-ball that completely surrounds the c-space.

λBbig
≥ λC

171

Dividing λCf
by either side gives:

λCf

λBbig

≤
λCf

λC
= τ

Rearranging gives:

τλBbig
≥ λCf

which leads to the following inequality:

λB1/2

τλBbig

≤
λB1/2

λCf

Substituting in equations for volume, and simplifying:

1

2τ

(

redge
rbig

)D

≤
λB1/2

λCf

Substituting into Equation C.2:

η ≥ N

2τ

(

redge
rbig

)D

− 1

2
(C.18)

Let k1 = rlittle/redge and k2 = rbig/redge. Given our assumption that redge is small, with

respect to the c-space we know that k1 ≥ 1 and k2 ≥ 1. Substituting into Equations C.17 and C.18

leads to bounds on η as follows:

N

2τkD2
− 1

2
≤ η ≤ N

2τkD1
− 1

2
(C.19)

Alternatively:

η = O

(

N

kD1

)

(C.20)

and

η = Ω

(

N

kD2

)

Combining Equation C.20 with Equation C.16 leads to the following:

1

Ecos(φ∗)
= Ω

(

D1/2kD1
N

)

Combining with Equation C.14 gives a lower bound on the expected path length of the greedy

algorithm.

E(c∗P) = Ω

(

rℓ∗S + (c∗S − rℓ∗S)
D1/2kD1

N

)

(C.21)

172

Examining Equation C.21 we find a number of intuitive trends. As we might expect, increasing

the number of nodes N tends to decrease path length. It is increasingly hard to find a good path

as the number of dimensions increases. The factor ℓ∗S can be thought of as a measure of obstacle

congestion, and as ℓ∗S increase, using large r becomes less advantageous. The next section is devoted

to the study both r and the relationship between N and time.

C.6.3 Evaluation of algorithmic performance vs. time and r

By inspection of Equation C.21 we can see that the lower bound on E(c∗P) decreases as r

increases. This is due to the construction of scenario from which we constructed the lower bound.

Specifically, because the last edge travels directly to the goal, or to each seed point in environments

with obstacles . Obviously the graph is not seeded with optimal points in practice; however,

assuming the current best path is located in the same homotopy class as the space-optimal path,

there will still be nodes located near the corners of obstacles, and these will approach the optimal

points as N → ∞ (in fact, a result from [insert ref] shows that as N increases, the chances that

a particular region of space is not sampled decrease exponentially). The main point here is that

increasing r to enable direct connection between distant nodes will never increase path length, with

respect to N , and it may decrease it.

Based on this logic, it seems natural to define r = ∞. However, there are logical reasons this

is not done, and they differ depending on if we are considering a single or multi-query algorithm.

For multi-query planners like PRM, the average branching factor of the graph is directly related to

r. Therefore, increasing r can exponentially increase the time required to solve the optimal search

problem. So although we will find better paths per query, each query will take longer.

The branching factor is less of an issue for single query planners like RRT and RRT*. This is

because back pointers are updated as the graph is built, thus eliminate the need for post-processed

graph search. However, in single query planners r actually effects the growth rate of N vs. time.

Focusing on single query algorithms, we believe that the most important evaluation metric

is solution quality vs. time. New nodes are added via an insert function. Therefore, in order to

173

attach a new node vi, one must first locate the appropriate neighbors (i.e., all other nodes within

r of vi). Using kd-trees this takes time O(ni logN), where ni is the number of potential neighbors

we wish to locate. Modifying Equation C.2 to return the number of nodes in B instead of B1/2, for

a fixed r we expect ni to be:

ni = N
λB

λCf

Where λB ≤ λCf
, and we assume that N is the number of nodes in the graph before adding vi.

Assuming that λCf
is static, and noting λB = k3r

D, where k3 is a constant dependent on D, we

get ni = Nk4r
D, where k4 is a constant dependent on D. It is also important to note that ni ≤ N ,

since we can at most look at all of the nodes in the graph. Therefore, the insertion time per node

for the graph building algorithm that we have been working with is:

min(N, k4NrD) logN

We can immediately see why many algorithms actively try to keep r small. In particular, RRT*

defines r such that the ni is bounded in order to maintain the same order insertion time as RRT

(which only needs to locate a single node per insertion).

To reiterate, for single-query planners, we have the following conflicting views about the ideal

size of r.

• Larger r correlates to better path quality.

• Larger N correlates to better path quality.

• The growth of N is inhibited by the size of r.

As we have already mentioned, previous investigation into this problem by [rrt*] attempt to keep the

runtime of the insertion function logarithmic. The underlying assumption here is that a logarithmic

insertion function causes the best possible interaction betweenN and r, with respect to path quality.

Based on our analysis in the previous sections, we believe there is evidence to support a contrary

interpretation, at least for the greedy algorithm that we are currently investigating.

174

We now focus on the interplay between N , r, and E(c∗P). The first step is to find the

relationship between N and time. We assume that the insertion function has a runtime given by

ιN per node insertion, where ιN is a function of the N nodes already in the graph.

The time directly after the first node is inserted is given by t1 = ι0. The time directly after

the second node is inserted is t2 = ι0+ ι1. Following this pattern, the time t directly after the N -th

node is inserted is:

t =
N−1
∑

i=0

ιi (C.22)

Therefore, for constant insertion time functions ιN,const = k, we have:

tconst = kN

In terms of runtime bounds we get:

tconst = Θ(N)

For linear insertion time functions ιN,linear = kN we get:

tlinear = k
N(N − 1)

2
= Θ(N2)

For logarithmic insertion time functions ιN,log = log(N + 1), where we add 1 so that t ≥ 0 for

N ≥ 1, this is:

tlog =
N−1
∑

i=0

log(i+ 1) = log

(

N
∏

i=1

i

)

= Θ(log(N !))

And for the case of searching for a set of n neighbors, assuming that n is small enough that the set

size is less than N (and being a bit sloppy with the fact that for i < n we find only i neighbors).

ιN,nlog = n log(N + 1)

tnlog = Θ(n log(N !))

However, a more pertinent case for the greedy algorithm we have been considering is finding all

neighbors within radius r. Again assuming that r is small enough that the set size is less than N

175

(and again being sloppy with i < n). ιN,r = k4NrD log(N + 1), where k4NrD < 1.

tr = k4r
D
∑N−1

i=0 i log(i+ 1) = k4r
D
∑N−1

i=0 log((i+ 1)i)

= k4r
D log

(

∏N
i=1 i

i+1
)

= k4r
D log

(

N !
∏N

i=1 i
i
)

= k4r
D log (N !K(N + 1))

= k4r
D (log(N !) + log(K(N + 1)))

= Θ(rD log(K(N + 1))

WhereK() represents the K-function. Note thatK(N + 1) = Ω(N !) and alsoK(N + 1) = o((N !)N),

where the later is a ‘little-o.’

Solving the preceding runtime bounds for N in terms of the various t gives:

N = Θ(tconst)

N = Θ(
√
tlinear)

N = Θ
(

Γ−1(2tlog)
)

N = Θ
(

Γ−1(2tnlog/n)
)

N = Θ
(

K−1
(

2tr/(r
D)
))

Where Γ−1 and K−1 are the inverse Gamma- and K-functions, respectively. Although, it should be

noted that simple closed forms (i.e., non-numerical solutions) of these two functions are unknown

to the authors.

Regardless, one can obtain a theoretical lower bound on expected solution length vs. time,

by substituting the appropriate form of N into Equation C.21 (depending on the type of insertion

function used).

When studying the preceding expressions for N it is important to remember that they are

all located somewhere on the spectrum between the constant and linear cases. Thus, despite their

non-intuitive forms, ιN,log, ιN,nlog, and ιN,r will never take longer than ιN,linear case or less time

than ιN,constant to build a graph of N nodes. One important assumption here is that r is small. An

alternative assumption is that the insertion algorithm knows when n ≥ N (for ιN,nlog) and when r

176

is larger than the environment (for ιN,r), so that it can simply use a list of all nodes in those cases

(i.e., instead of extracting them from the kd-tree and incurring an additional logarithmic cost per

node).

Another observation is the runtime dependency that tr has on rD.

Turning now to look again at Equation C.21, but substituting N = t(N) to represents the

number of nodes in terms of the cumulative time required to insert them.

E(c∗P) = Ω

(

rℓ∗S + (c∗S − rℓ∗S)
D1/2kD1
f(N)

)

(C.23)

Equation C.23 shows that a change in runtime order can have a significant effect on expected path

quality. However, for all the insertion functions we have considered Θ(
√
tlinear) ≤ t(N) ≤ Θ(tconst),

so although the benefit is significant, it is limited. On the other hand, we see that by increasing r

until r = c∗S/ℓ
∗
S , we get E(c

∗
P) = Ω(c∗S), thus wiping out all other variables of the convergence lower

bound.

It must be noted that much of this is due to our specific construction of the lower bound.

Specifically, the fact that in the scenario we used to define it, we have removed two types of

convergence and replaced them with optimality. Because the third type of convergence does not

apply to the last edge, making that edge as long as possible can be beneficial. For this to apply to

practical problems the goal must be sampled with more than 0 probability. Therefore, if a point

goal is used, then it must be explicitly sampled—for instance, a small percentage of the time. This

is already common practice in many algorithms.

We believe that the specific type of convergence that we have evaluate here is the one that

tends to limit path quality the most in practice. However, we have no proof of this belief, as of yet,

and hope in future work to evaluate how the other two types of convergence compare to the one

we are currently examining.

Regardless, we are certain that the latter plays a significant role in the overall convergence—

due to the fact that the overwhelming majority of all paths contain sub-paths that move between

points unobstructed by obstacles. For this reason, we believe that the analysis provided can lead to

177

useful insight and better algorithm design. The next section is devoted to experimentally validating

what we have obtained analytically.

C.7 Random path experiments

In order to verify that the predicted lower bound is correct, we perform experiments in which

we run the greedy algorithm in D = {2...4}. The environment is euclidean and obstacle free, and

each dimension spans 10 meters. We evaluate the lower bounds for edge lengths r = {1...10}.

Regardless of dimension, the robot is required to move 10.5 meters. Note that this means that goal

will not be a direct neighbor of the goal for the r that we are using. 50 runs of each parameter

combination are run. Experimental results appear in Figure C.14

Although these plots are admittedly cluttered, the important thing to realize is that the pre-

dicted lower bounds are indeed less than the corresponding mean path lengths for all experiments.

They are, in fact, lower than the mean minus one standard deviation in most cases (not shown).

While the bounds are relatively loose, they do appear to track relatively well, and appear to become

tighter as either r decreases or D decreases.

C.8 Random path discussion and conclusions

The main contribution of this paper is the introduction of an analytical method that can be

used to calculate expected algorithmic performance. It is our hope that this tool will enable better

algorithms to be developed and current algorithms to be more useful.

The method can be summarized as follows: use the geometry of a problem to find the

distribution function Fc of the relevant quantity c, then use that to find the probability density

function Fc. Assuming that we want to know about c∗, the best c∗, we can use fc and Fc to compute

the probability density function of fc∗ . This can be used to find the expected value of c∗. Finally,

we use the expected c∗ to prove bound on more complex quantities.

Doing this allows us to answer question such as: how can we expect different algorithmic

178

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

11

12

13

14

15

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

N

c∗
D = 2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

12

14

16

18

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

N

c∗

D = 3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

12

14

16

18

20

22

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

N

c∗

D = 4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

15

20

25

 2
 3
 4
 5
 6
 7
 8
 9
10

N

c∗

D = 5

Figure C.14: Path lengths returned by the greedy algorithm in an obstacle-free environment. Dif-
ferent colors correspond to different maximum edge lengths r. Sub-figures correspond to dimen-
sionality D. Mean and standard error over 50 runs appear as points and error bars, respectively.
The calculated lower bounds appear as dashed lines. The start is 10.5 meters away from the goal.
The predicted lower bounds are less than the actual path lengths (as expected). Points are not
shown if less than half of the runs failed to find a solution.

179

parameters to perform vs. each other? and how might the dimensionality of the search space effect

an algorithms performance?

In Section C.4.5 we use Monte Carlo techniques to verify that simple expected quantities we

predict are accurate. In Section C.5 we use these simple quantities to prove bound on a greedy

algorithm that always moves to the locally optimal neighbor—where local-optimality is defined

as moving as close to the direction of the goal as possible. Finally, in Section C.7 we verify

experimentally that the lower bound we predict are accurate.

Both the theory provided by our analytical method and the experiments that we perform

show that, for the greedy algorithm we evaluate, performance tends to increase vs. decreasing

maximum edge length r. This effect becomes more important in high dimensions, and is due to

the fact that larger r allow the algorithm to short-cut unnecessary movement. This is a departure

from previous work that attempts to keep r small to decrease insertion tome and accelerate graph

growth. While we do find that adding more nodes to a graph tends to decrease path length, our

analysis also suggests that by using the nodes we already have better, we can often achieve better

paths than by simply adding more nodes to the graph.

The obstacle-free example we highlight in our experiments is more relevant than one might

suspect at first glance, since it demonstrate a pure best-case scenario. In other words, the bounds

we achieve on the obstacle free case are immediately applicable to cases with obstacles because the

latter still require movement through free-space.

Finally, we note that in the course of our investigations we obtained a bound on a heretofore

unknown quantity. In particular, the secondary effect that dimensionality has on path quality is

exhibited by theD1/2 factor in Equation C.14. This factor appears because adding more dimensions

gives paths more of a chance to meander. We believe we are the first to quantify this effect for any

algorithm, although it has been documented in the past.

