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Abstract

Path planning systems using graph-search algorithms such as A* usually oper-

ate in uniform plan-view occupancy grids. However, the sensors used to con-

struct these grids observe the environment in their own sample space based

on sensor type and viewpoint. In this paper we present an image space tech-

nique for path planning in unknown unstructured outdoor environments. Our

method differs from previous techniques in that we perform path search di-

rectly in image space—the native sensor space of the imaging sensor. After an

image space path has been found, it is used for navigation in the real world.

By operating at the resolution of the image sensor, image space planning fa-

cilitates accurate robot vs. obstacle localization, and enables a high degree of



movement precision. Our image space planning techniques can potentially be

used with many different kinds of sensor data, and we experimentally evaluate

the use of stereo disparity and color information. We present an extension

to the basic image space planning system called the cylindrical planner that

simulates a 2π field-of-view with a cylindrically shaped occupancy grid. We

believe image space planning is well suited for use in the local subsystem of

a hierarchical planner, and implement a hybrid hierarchical planner that uti-

lizes the cylindrical planner as a local planning subsystem and a 2-dimensional

Cartesian planner as the global planning subsystem. All three systems are im-

plemented and experimentally tested on a real robot. We evaluate the failure

modes of image space planning, and discuss how to avoid them. We find that

image space enables precise real-time near-field planning.

1 Introduction

Autonomous robot navigation is the search for a series of actions that move a robot from

an initial state to a goal state. Typically, an internal representation of the world is used

to select actions from a movement set defined by the robot’s kinematics. For autonomous

navigation in unstructured environments, the world representation is often encoded in a

map. Navigation is achieved by finding a map-based path between map-based start and

goal locations, extrapolating that path to the real world, and then following it. Occupancy

grid maps are discretized environmental representations in which each grid cell stores data

about a particular piece of the real world [Herman, 1986,Elfes, 1989,Goldberg et al., 2002,

Kolski et al., 2006]. Occupancy grids are traditionally uniform 2D or 3D Cartesian models

containing traversability data (e.g. cost or obstacle probability). A path is found between the

occupancy grid start and goal locations using a graph-search algorithm [Dijkstra, 1959,Hart

et al., 1968, Stentz, 1995, Krishnaswamy and Stentz, 1995, Koenig and Likhachev, 2002,

Ferguson and Stentz, 2006], a finite element potential field model [Khatib, 1986,Koren and



Borenstein, 1991], or a combination of the two [Murray and Little, 1998]. We focus primarily

on the former paradigm, where variants of A* and D* are commonly used.

In unknown environments, the occupancy grid is not known a priori and must be created

as the robot observes the world with its sensors. Computer vision methods like 3D stereo

reconstruction can be used to obtain depth information [Murray and Jennings, 1998,van den

Mark et al., 2001,Matthies, 1992]. Map building techniques that project stereo or laser depth

data into a Cartesian model of the world depend on pose estimates that may be inaccurate

in the short term. We investigate using the sensor image to guide robot motion without

projection, particularly for real-time near-field obstacle avoidance.

Planning in the space of image sensor samples, or image space, presents several challenges.

Due to a sensor’s pose and projection, the sensor sample array does not represent a uniform

grid in the world; i.e., near- and far-field samples arise from regions of differing size (several

square centimeters to meters, respectively). We exploit occupancy grid planning methods

in image space by using nonuniform graph-search edge costs. Once an image space path is

computed, motion control is defined based on the first-person relative position of a near-field

path waypoint. Since the image changes with the motion of the robot, the use of memory

offers interesting trade-offs. In order to avoid oscillation as obstacles move in and out of the

field-of-view, we present a method for accumulating image data in a cylindrical panorama

as the robot moves. We call this type of system a cylindrical planner.

A hierarchical planner (as considered here) is a planning system that divides the path plan-

ning problem into the two parallel tasks of local planning and global planning. The global

planner finds an approximate path to the goal based on a coarse world representation, while

the local planner is concerned with obstacle avoidance and navigation toward sub-goals (pro-

vided by the global planner) through a more precise world representation. A hierarchical

planner allows the global map to expand as the robot encounters new parts of the envi-

ronment, while facilitating time-bounded obstacle avoidance in the near field via the local



map. A diverse variety of hierarchical planning systems have been proposed in the liter-

ature [Sugiyama et al., 1994, Chen, 1990, Krogh and Thorpe, 1986, Hong et al., 1991, Gat

et al., 1990, Carsten et al., 2007] and many others. A common implementation uses two

2D Cartesian occupancy grids. The local planner maintains a fixed-size high-resolution map

that is centered on the robot, while the global planner accumulates a low-resolution map

that expands with exploration and is anchored to a global frame of reference. We propose a

hybrid hierarchical planner that performs local navigation in a cylindrical planner and global

navigation in a 2D Cartesian occupancy grid. We believe the strengths of image planning

(discussed in Section 2.1) justify its use as a local planner, while Cartesian space is better

suited to long-distance planning tasks requiring persistent memory. A hybrid hierarchical

planner combines the strengths of both planning paradigms in a single system.

This paper is organized as follows: Section 2 contains an overview of image planing, a survey

of related work, and a discussion on cost maps motivating our method. The basic image

planner is introduced in Section 3, and the cylindrical and hybrid hierarchical planners are

described in Sections 4 and 5, respectively. In Section 6 we outline our hardware, and in

Section 7 we perform a series of experiments to evaluate the image planner, the cylindrical

planner, and the hybrid hierarchical planner against a state-of-the-art 2D Cartesian hier-

archical planer. Specific system parameter values are also stated in Section 7. Results are

presented in Section 8 and conclusions in Section 9.

2 Background

2.1 Image space path planning

A grid-based sensor or image sensor captures multiple simultaneous observations about the

world via a grid of sensor elements [Sonka et al., 2008]. An image is the instantaneous output

of an image sensor and can be represented as a matrix, the elements of which are called

pixels. Image space is a coordinate space of the sensor grid with unit vectors defined by pixel
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Figure 1: A projection of pixels from image space S onto a flat level groundplane Rf .

height and width. In image space planning a path through an image is used for navigation.

Digital cameras are commonly used for image space planning. We experiment with stereo

disparity and RGB (red, green, blue) intensity values—both captured with cameras—and

refer to image sensors as cameras. However, our general methods can also be used with other

grid-based sensors (e.g. LIDAR, SONAR, infrared, etc).

We restrict our discussion to scenarios where a passive image sensor is mounted on an

autonomous robot. We assume that spatial transformations are known between the sensor

and robot coordinate frames, that the sensor-grid observes the ground-surface (or obscuring

obstacles), and that the groundplane parameters (n, d) are known relative to the calibrated

camera frame. Only one real-world path can be described by projecting an image space path

onto the real-world ground-surface. We assume that connectivity along the image space path

implies connectivity along that real-world path. Finally, we assume basic prior knowledge

about traversability given a sensor type (e.g. stereo disparity or color), and also a known

goal location on the ground-surface.

Image space preserves the accuracy and precision of sampled scene information given an

instantaneous sensor reading. Consequently, image space planning minimizes the number

of map locations needed to accurately represent a scene projection captured by an image

sensor. Map size is fixed by the properties of the sensor, which guarantees real-time ob-

stacle avoidance by placing upper-bounds on the time required for graph-search. Due to

foreshortening and perspective projection, near-field pixels capture scene information at a

higher resolution than far-field pixels, although both are represented at the finest granular-

ity available (Figure 1). As a result, image space provides robust localization of near-field



obstacles, enabling navigation through tight passages and cluttered environments.

If other information is available, in addition to the current image, then image space may

not provide the most accurate world representation. For example, there is a point beyond

which a grid-based Cartesian map will have a higher resolution than an image space map.

This is because the granularity of a Cartesian map is fixed, relative to the real world, while

the granularity of an image space map becomes coarser toward the horizon (Figure 1). In

general, image space projections cannot represent what is behind view obstructions. This

problem is initially encountered by any system that must discover the world. However, image

space lacks the ability to remember previously explored areas that are currently outside the

field-of-view. We discuss this problem, including solutions, in Section 3.4.4.

2.2 Related work

The most closely related work to our own has been pursued by [Ollis et al., 2008]. In this

work, image space and Cartesian planners operate in parallel. If a low-cost image-based

path is found, then the image planner guides the default Cartesian planner by providing a

waypoint from the image-based path. This technique is used in conjunction with cost from

color data to find paths beyond the range of stereo disparity. In contrast, our approach

focuses on high-resolution near-field planning.

Autonomous highway driving algorithms rely on image features such as lane markings and

road color/texture data to infer knowledge about a scene [Tsugawa et al., 1979,Thorpe et al.,

1988,Pomerleau, 1989, Jochem et al., 1995,Mateus et al., 2005]. A related off-road system

assumes prior vehicle tire tracks or pedestrian footprints [Song et al., 2007]. However, these

features are not guaranteed to exist, or be useful, in all outdoor environments.

Visual servoing methods use the appearance relationship between a camera’s current field-of-

view and a predefined target image to calculate steering commands [Feddema and Mitchell,

1989,Hutchinson et al., 1996,Gaussier et al., 1997,Winters et al., 2000,Cowan et al., 2002,



Matsumoto et al., 2000,Zhang and Ostrowski, 2002,Vidal et al., 2003]. Navigation through

unknown terrain implies we cannot obtain a predefined image of the goal state.

Reactive local planners often use polar models to determine navigational headings. [Boren-

stein and Koren, 1991] create a polar histogram from data accumulated in a global Cartesian

map, and [Minguez and Montano, 2004] build a polar map from a ring of depth sensors. In

either case, the local map is a 1D vector and each element represents the cost of moving

in a particular direction. These techniques are similar to our cylindrical planner in that

they utilize polar coordinates. However, the additional dimension of the cylindrical planner

enables it to formulate an entire path between the robot and goal.

Range data from stereo vision is frequently used in conjunction with Cartesian planning

systems [Murray and Little, 1998, van den Mark et al., 2001, Goldberg et al., 2002, Sabe

et al., 2004, Carsten et al., 2007]. These approaches project data into top-down or 3D

Cartesian representations of the world, instead of planning directly in image space.

2.3 Cost vs. distance

Each cell or map element in an occupancy grid map represents a unique subset of the real

world, or world element, and has a value associated with the cost of movement through the

corresponding world element. Map elements are usually arranged in rows and columns of

unit-length squares. This configuration can be stored as a 2D array G, where Gn,m maintains

the cost associated with the row n column m map element. If a graph structure is imposed

on the map, then a path between two map locations can be found with a graph-search

algorithm. The former is typically achieved by recasting map elements as graph nodes, and

then creating edges from each node to its neighbors. Common structures include the 4-

and 8-connected graphs. Let the graph formalization of the cost map be denoted GΓ to

differentiate it from the map array G. The graph node GΓ

n,m is associated with the row n

and column m map element. Graph search algorithms operate on edges, not nodes; therefore,



a method of determining edge cost must be devised. This is often done by defining edge

cost to be the map cost value Gn,m or Gk,j associated with the nodes GΓ
n,m and GΓ

k,j that

an edge connects, or the average value of Gn,m and Gk,j.

Consider a uniform world such that all elements in a 2D top-down Cartesian map have iden-

tical cost. Let the map graph be 8-connected. The Euclidean distance between neighboring

world element centers is given, to a scale factor, by the distance between the corresponding

map elements. The scale factor can be ignored without affecting search results, so we assume

it is 1. If edge cost is defined as the map cost Gn,m of the node GΓ

n,m that the edge is directed

to (or from or their mean), then it costs 1 to move between neighboring nodes. An edge

cost of 1 reflects the 1 Euclidean distance between horizontal and vertical neighbors, but is

inaccurate with respect to the
√

2 distance between diagonal neighbors. Edge cost should

reflect both map cost and real world distance. Therefore, we redefine edge cost to be map

cost integrated over the Euclidean distance between map elements. In a discretized map this

reduces to map cost multiplied by the distance through a map element.

The idea of integrating cost over distance is used in [Ferguson and Stentz, 2006] and else-

where; however, we have found little discussion in the literature as to why this is a good

idea. In fact, it is supported by a geometric argument and a physical analogy. (Geometric)

Let point cost be a measure of traversability associated with a point. Let the integration

of point cost over a grid element’s area yield that grid element’s map cost. Grid elements

are assumed to be unit-length squares of uniform point cost; thus, point cost is equal to the

map cost of the grid element containing a particular point. Edges are defined as line seg-

ments spanning neighboring grid element centers, and one-dimensional line cost is found by

integrating point cost over a segment’s length. Thus, edge cost is map cost integrated over

Euclidean distance. (Physical) Assume map cost is a force opposing movement within a map

element. The most efficient way through a map is along the path of minimum work. Work

is force integrated over distance; therefore, the most efficient path is found by minimizing

map cost integrated over Euclidean distance.



To disambiguate between map cost (i.e. point cost, force) and edge cost (i.e. line cost, work),

we employ the terms used in the physical analogy—we refer to map cost as force and edge

cost as work. The concepts of force, distance, and work are integral to our image space

planning system. Due to perspective, image space world elements are not square and vary in

size from the near- to far-field. We hypothesize that image space paths will be more useful

for navigation if the distance quantity reflects real world spatial relationships.

2.4 Memory and myopic behavior

Let rotational memory and translational memory denote, respectively, an ability to remem-

ber map data after an arbitrarily large rotation or translation. Local Cartesian maps do not

have translational memory because data is forgotten after a translation beyond the map’s

fixed size. They do have rotational memory because the robot can pivot without loosing

information. Global Cartesian maps have both rotational and translational memory. Lack

of translational or rotational memory can induce myopic behavior in the form of translational

or rotational oscillation, as the robot repeatedly moves away from, forgets, and then returns

to a goal blocking obstacle. Myopic behavior is not the only cause of oscillation; e.g. [Carsten

et al., 2007] observe oscillation from conflicting votes in a vote-based planner.

3 The basic image planner

We call our basic image space planner the image planner. It creates an image space occu-

pancy grid from pixel data, and makes no additional assumptions to those in Section 2.1.

3.1 Occupancy grids and cost functions in image space

Let S be the h row and w column output of an image sensor. Pixels are denoted Sn,m, where

1 ≤ n ≤ h and 1 ≤ m ≤ w, and n = 1 and m = 1 correspond to the top row and left column,

respectively. O is the image space occupancy grid built from S. Map values are determined
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Figure 2: Image space paths through grayscale images and corresponding occupancy grids.

as a function of the corresponding image pixel data, and in the most basic implementation

there is a one-to-one and onto mapping from pixels to grid locations.

On,m = f(Sn,m)

Let OΓ be the 8-connected graph of O. Node OΓ
n,m is associated with map element On,m,

and is a neighbor of OΓ

k,j for all k = n± 1 and j = m± 1, where 1 ≤ k ≤ h and 1 ≤ j ≤ w.

Let arc i connect OΓ

k,j to OΓ

n,m. The length of i is Di. We interpret On,m as a force Fi

impeding progress along i, and define the edge cost of i as work Wi.

Wi = FiDi

Let R denote the real world. To move from the current world location Rs to a goal location

Rg, the system transforms Rs and Rg into their image space graph equivalents OΓ
s and OΓ

g,

respectively, and then uses a variant of the A* algorithm to find the minimum work path

Pmin
O between OΓ

s and OΓ
g.

WPmin
O

= min
PO





∑

i∈PO

FiDi





The optimality of A* is only insured if f(Sn,m) returns nonnegative values over the entire

range of Sn,m allowed by the sensor; thus, f(Sn,m) is system dependent. Figure 2 shows two

examples of Pmin
O projected into O and the corresponding grayscale images.

OΓ
s represents the robot’s projected location in the image S, and depends on the relationship

between the robot and the camera. If the camera is forward facing and fixed in the center of

the robot, then OΓ
s is the bottom center graph node OΓ

h,⌊w/2⌋. The method used to position



OΓ
g is task dependent. A system designed to seek a specific color/pattern target may extract

the coordinates of OΓ
g directly from an RGB image. Goals defined by GPS coordinates must

be projected into image space, implying the existence of a transformation function. The

robot is programmed to rotate toward Rg whenever Rg is outside the field-of-view (FOV).

3.2 Force metrics

The map value On,m is a function of pixel data Sn,m and determines the force Fi required to

move along arc i toward node OΓ
n,m.

Fi = On,m = f(Sn,m) (1)

Equation 1 is a force metric defining the relationship between sensor data and force in OΓ.

To be useful, f(Sn,m) should be representative of real world traversability. Obstacles should

have high (or lethal) values relative to flat terrain. We experiment with two force metrics.

The first metric F d
i assumes that pixel Sn,m contains disparity information. The second

metric F c
i assumes that Sn,m is a triple of RGB intensity values.

3.2.1 Force from stereo disparity

Given two images of a scene from different viewpoints, stereo disparity is the difference

between the image locations to which a point is projected. Given rectified images and

cameras of equal focal length, disparity Sn,m is related to depth z(Sn,m) by:

z(Sn,m) =
cfcb
Sn,m

where cf and cb are focal length and the baseline between optical centers, respectively [Sonka

et al., 2008]. Disparity approaches zero as depth approaches infinity and vise-versa. However,

given a finite camera resolution, disparity may go to zero at less than 30 meters for practical

w, h, cb, and cf . We define a force metric from disparity as follows:

F d
i = On,m = 1 + cscl

∣

∣

∣Sn,m − Sf
n,m

∣

∣

∣ (2)



where Sf
n,m is the disparity observed from a known flat level groundplane Rf , and cscl is a

scaling constant. cscl is tuned so that F d
i will be greater than a threshold cthd for obstacles

within stereo range. A concept of lethality is added by explicitly resetting F d
i to 108cthd if

F d
i is greater than 1.5cthd. Distance may be used as an admissible heuristic for estimating

work during graph-search because F d
i ≥ 1.

3.2.2 Force from color

Our color data is composed of three dimensions, red Sred
n,m, green Sgrn

n,m, and blue Sblu
n,m. Values

range between 0 and 255. In practice, a force from color metric can be provided by a machine-

learning sub-system that is trained on-line [Grudic et al., 2007, Procopio et al., 2007,Ollis

et al., 2008]. We implement a predefined metric F c
i as a proof of concept. Any predefined

force from color metric is only valid in a subset of environments, and the simple technique

described here is even brittle in a single environment. Hand labeled training examples, one

each for traversable terrain and obstacles, are provided to the system prior to a run. The

color dimension of largest magnitude is denoted gnd or obs for the traversable or obstacle

example, respectively, gnd, obs ∈ {red, grn, blu}. This method of determining an example’s

associated color dimension is simple and works in practice, but it may not be superior to

any other. Ŝ is a normalized version of S with values between 0 and 1. Ŝobs
n,m and Ŝgnd

n,m are

normalized intensity values along the obs and gnd dimensions, respectively.

F c
i = On,m = 1 + cscl

(

Ŝobs
n,m − Ŝgnd

n,m

)

(3)

F c
i is scaled between 1 and cthd using cscl, and defined as lethal if greater than cthd/3.

Distance may be used as an admissible heuristic for estimating work during graph-search

because F c
i ≥ 1. F c

i fails if obs = gnd, and is only valid in environments where obstacles

and traversable terrain differ in color. It is worth reiterating that F c
i is used as a proof of

concept. Our goal is to show that the image planner can navigate using color data.



3.3 Distance metrics

Di is defined to be the length of arc i from node OΓ
k,j to node OΓ

n,m in the graph OΓ. In

general, Di is a function of grid coordinates.

Di = f(k, j, n,m)

Di must be nonnegative for the optimality of A*, and nonzero to insure that A* is useful

(A* ignores all force information and degenerates into an uninformed breadth-first search

when Di = 0). We now discuss two distance metrics used in our experiments.

3.3.1 The L2 norm in image space

In 2D top-down Cartesian systems, the L2 norm in map space is a constant multiple of the

L2 norm in the real world (assuming elevation can be ignored), and it makes sense to define

arc length as the Euclidean distance between grid element centers. We experiment using the

L2 norm of image space as a distance metric DS
i .

DS
i =

√

(n− k)2 + (m− j)2 (4)

DS
i is the distance between Ok,j and On,m, assuming that grid element side lengths are 1. The

distance between horizontal, vertical, and diagonal neighbors is 1, 1, and
√

2, respectively.

DS
i does not accurately model the distances between image space world elements—which

increase toward the horizon.

3.3.2 The flat world distance metric

We define the flat world distance metric DRf

i to be the Euclidean distance between the

two points x1 and x2 on a flat groundplane Rf that are projected to the centers of pixels

Sk,j and Sn,m, respectively (Figure 3). To calculate the positions of x1 and x2, we find the

intersection of Rf and the rays extending from pixel centers through the camera’s optical

center. These are nominal world grid distances, assuming traversable regions of the scene lie
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Figure 3: A 3D view of the relationship between image space arc i and the distance DRf

i .

on Rf . Tracing pixel rays to the groundplane reverses the projection process by following

the line of sight from the pixel. Given the known camera intrinsic matrix K we convert from

pixel coordinates to normalized coordinates Rd.

Rd = K−1 [m,n, 1]T

The rays emanate from the camera center R0 which is the origin of the camera coordinate

frame. We assume the groundplane parameters Rf = (nf , d) are known in the camera

coordinate frame. nf = [nf
x, n

f
y, n

f
z]

T is the plane normal and d is the perpendicular distance

from the origin to the plane. nf
xx+ nf

yy + nf
zz = d for points on the plane described by the

vector x = [x, y, z]T. To find the intersection such that R0 + tRd lies on the plane, we need

to solve nf · (R0 + tRd) − d = 0 for t. Recall that R0 = [0, 0, 0]T is the origin.

t =
nf · R0 + d

nf · Rd

=
d

nf · Rd

We can compute the desired intersection points using x = tRd. Finally, DRf

i is computed as

the Euclidean distance between x1 and x2.

DRf

i =
√

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 (5)

DRf

i defines arc lengths in OΓ as the flat level ground-surface distances they represent.

Although the ground-surface in unstructured outdoor environments may not be flat or level,

we hypothesize that DRf

i more accurately models the world than DS
i . Movement through OΓ

becomes easier toward the bottom of the graph because DRf

i increases toward the horizon

line. DRf

i also reflects the fact that image space world elements become increasingly elongated

toward the horizon (see Figure 1).



Creation of an Image Space Cost Map (OΓ)

(a) Grayscale (b) Disparity (c) Force F d
i

(d) Denoised (e) Width Dilation

Figure 4: A grayscale scene image, the corresponding stereo disparity, and various stages of

the F d
i cost map. Light to dark corresponds to high to low disparity and cost, respectively.

3.4 Preprocessing

3.4.1 Noise reduction

Small regions of noise are observed with both stereo and color data. We erode and then dilate

O to remove errors introduced by this noise. The same mask is used for both operations. To

eliminate small variations in nearly-flat terrain, we reset map values less than a threshold

cflt to 1. Figures 4c and 4d show O before and after noise reduction, respectively.

3.4.2 Obstacle width dilation

The A* search algorithm assumes the robot is a point particle. As suggested by [Kolski

et al., 2006,Sugiyama et al., 1994,Kelly, 1994], we increase obstacle width in the occupancy

grid by performing a dilation of radius α, where α is the map space equivalent of one half

robot width cwth/2 plus a buffer cbuf . This ensures that paths through OΓ will cause the

robot to avoid obstacles by at least cbuf . The dilation equation is given by:

On,m = max
j

(On,m±j)

where ⌊−α⌋ ≤ j ≤ ⌈α⌉ and 1 ≤ (m± j) ≤ w. The apparent robot width in the image S, and

therefore O, varies due to perspective. Our dilation function assumes a flat level plane Rf

and approximates each pixel as an equal portion of θw, where θw is the horizontal FOV. Let

DRf

0→n,m be the distance along Rf from the robot to the projected center of On,m. Equation 5
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value. This creates an artificial conception of obstacle

depth that enables both paths to go around the tree.

Figure 5: Image space paths based on the DS
i and DRf

i distance metrics (solid and dotted

lines, respectively), through grayscale scene images and the corresponding occupancy grids.

can be used to calculate DRf

0→n,m by letting x1 = [0, 0,−d]T. α is a function of DRf

0→n,m.

α =
w

θw

arcsin

(

cwth/2 + cbuf

DRf

0→n,m

)

(6)

α can be calculated off-line. The flat level plane assumption provides a useful approximation

to reality. An alternative is to perform dilation as a function of depth, assuming depth data

exists (an idea not explored in this paper). Figures 4d and 4e show O before and after robot

width dilation, respectively.

3.4.3 Enabling rotation

If S does not capture the area immediately adjacent to the robot, then obstacles in the

bottom grid row Oh,1...w can prevent rotation, despite the existence of maneuvering space.

We explicitly allow rotation by defining the bottom row to have the minimum force value 1.

Oh,1...w = 1

3.4.4 Accounting for finite obstacle depth

If the goal is a coordinate in R, then a problem can arise when it is obscured by an obstacle.

The goal will appear inside the obstacle in OΓ, requiring the path to penetrate the obstacle.



The cheapest path may go ‘up’ the obstacle in OΓ, leading the robot to collide with the

obstacle in R (see Figure 5a). Obstacles defined as infinitely lethal will cause the goal to be

unreachable. Ollis, et al. [Ollis et al., 2008] have addressed this problem by allowing cheap

horizontal movement in the goal row of the image space map. This encourages paths to

go around the obstacle before entering horizontally, causing the robot to travel around the

obstacle as it moves. We modify our force values in a similar fashion. Let OΓ
ng,mg

= OΓ
g. The

goal row ng of the map O is defined to have minimum force value 1.

Ong,1...w = 1

Figures 5a and 5b display image space paths through identical occupancy grids, except that

the latter has been preprocessed to account for obstacle depth.

3.5 Navigation

We control the robot based on the relative graph locations of OΓ
s and a target node

OΓ
ntgt,mtgt

= OΓ
tgt located a predetermined distance ctgt along Pmin

O . We find this to be simple

and functional; however, Cartesian-based control can alternatively be used by projecting OΓ
tgt

into robot coordinates. Assuming a center-mounted forward-facing camera, OΓ
s = OΓ

h,w/2.

In this case, we define forward velocity as a function of the image-space cosine between the

column w/2 and the vector from Os to Otgt:

speed =
speedmax (h− ntgt)

√

(w/2 −mtgt)
2 + (h− ntgt)

2

where speedmax is the maximum forward velocity allowed by the robot. Speed increases

as Otgt approaches the center of the FOV. In other words, the robot slows during turning

maneuvers, which are likely to occur near obstacles. For turns in safe terrain, we increase

the speed of the robot by reseting speed = speedmax if all force values in the bottom half of

the center column ⌊w/2⌋ are less than cthd/3 after map dilation. Turning angle is defined as

the relative horizontal displacement between Os and Otgt, normalized by the FOV θw.

turn =
θw (mtgt − w/2)

w
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Figure 6: Image space path through the cylindrical occupancy grid. The robot is facing

southwest and the goal is east of the robot. It is easier for the robot to turn counter-

clockwise, which takes the image space path across the south-south border.

This causes the robot to turn proportionally as the target approaches the edge of the FOV.

4 The cylindrical image planner

A shortcoming of the image planner is that the goal can exist outside the FOV. One solution

is to use a sensor with a 2π radian FOV. In the absence of an omnicam or other panoramic

sensor, we can map images to a synthetic panorama over time, based on direction of capture.

We call a planner that uses a 2π radian panoramic image-space map a cylindrical planner.

In addition to the assumptions outlined in Section 2.1, our cylindrical planner assumes the

existence of global pose information, including orientation. This is necessary to populate and

update the cylindrical panorama. One challenge with temporally accumulating panoramas is

that information outside the camera’s FOV becomes outdated with movement. In Section 4.2

we describe two techniques for updating data to reflect the robot’s movement.

4.1 Panoramic considerations

The cylindrical planner uses a cylindrical occupancy grid C. C is similar to O but contains

additional columns to remember information outside the current FOV. Each column in C

represents a specific compass direction, and data is inserted based on the camera’s orientation

at the time of capture. C is a radial panorama of what the robot has experienced. Radial

panoramas and other forms of mosaics have previously been used for landmark detection and



pose estimation [Chen, 1990,Kelly, 1994,Kelly, 2000,Argyros et al., 2005]. Let ϕ represent

rotation about the vertical axis (yaw) relative to the compass direction North. Information

is placed into C as a function of ϕ.

Cn,m+f(ϕ) = f (Sn,m)

Recall that f (Sn,m) is a force metric (Section 3.2). Let wp be the number of columns of

C. We associate columns 1, ⌊wp/4⌋, ⌊wp/2⌋, ⌊3wp/4⌋, and wp with the cardinal directions

South, West, North, East, and South, respectively (see Figure 6). f(ϕ), the mapping from

yaw angles to map columns is given by:

f(ϕ) =

⌊

wp (ϕ− π)

2π
mod wp

⌋

(7)

Our robot has two stereo camera rigs that are angled toward the ground. For a virtual

cylinder with radius r aligned with the vertical (Z) axis we can identify the intersections

of camera pixel rays with the cylinder. For camera position p = [px, py, pz]
T and pixel ray

v = [vx, vy, vz] in the robot coordinate frame we want:

px + kvx = r cos θ,

py + kvy = r sin θ.

for scale k. We square these expressions and add to yield:

(p2
x + p2

y) + 2k(pxvx + pyvy) + k2(v2
x + v2

y) = r2.

This is a quadratic equation which can be solved for k in the standard way.

a = (v2
x + v2

y)

b = 2(pxvx + pyvy)

c = (p2
x + p2

y) − r2

k = −b+
√

b2−4ac
2a

We now determine where each image-pixel ray intersects the cylinder using p + kv. This

allows us to identify a range of height and angular values that bound the elements of the

cylindrical image. Constructing a tessellation on the cylinder, we project these cylinder



image points to the camera image to yield a mapping between the camera and cylinder

images. Values are inserted into the cylinder using this mapping and Equation 7.

Given depth data, another approach is to define a cylinder image origin on the yaw axis, and

then reproject reconstructed depth points [Xw, Yw, Zw] to this coordinate frame [Xc, Yc, Zc].

[Xc, Yc, Zc] =
1

√

X2
w + Y 2

w

[Xw, Yw, Zw].

Maintaining the 3D locations of points from which cylinder values arise simplifies techniques

for propagating and updating cost information as the robot moves.

Let CΓ be the 8-connected graph of the occupancy grid C. We add arcs between the first

and last columns of the occupancy grid graph so that paths can travel across the south-

south border of CΓ. Arcs exist between CΓ
n,1 and CΓ

k,wp
for all k = {n− 1, n, n+ 1} and all

n = {k − 1, k, k + 1}, subject to 1 ≤ n ≤ h and 1 ≤ k ≤ h. The goal node CΓ
g is determined

in a similar manner to OΓ
g, unless the goal is too close to be projected into the cylinder—in

which case we define the goal as achieved. The start node CΓ
s = CΓ

h,f(ϕ) is a function of yaw.

Figure 6 shows a path from CΓ
s to CΓ

g, projected into the occupancy grid C used to create

CΓ (the path traverses the south-south border).

As with O, C is preprocessed to remove noise and improve path quality. Obstacle width

dilation is modified to extend across the south-south border:

Cn,m = max
j

(Cn,j)

where j is defined as follows:

1 ≤ j ≤ m+ α

m− α + wp ≤ j ≤ wp

}

if m ≤ α

m− α ≤ j ≤ m+ α if α < m ≤ wp − α

1 ≤ j ≤ m+ α− wp

m− α ≤ j ≤ wp

}

if wp − α < m

(8)

α is defined in Equation 6. The denoising operations are similarly modified. Rotation is



explicitly allowed by resetting values in the bottom row of C to the minimum force:

Ch,1...w = 1

Similarly, finite obstacle depth is accounted for by resetting goal row values to the minimum

force if they are within ⌊wp/4⌋ columns of mg:

Cng,j = 1

where j is calculated by substituting α = ⌊wp/4⌋ and m = mg into Equation 8.

Care must be taken to satisfy the constraints of the A* algorithm. If distance is defined by

DS
i , the L2 norm in image space is no longer an admissible heuristic for estimating work

because it neglects the possibility of crossing the south-south border. Instead, we use a

similar quantity L2
C that replaces the horizontal component of the L2 norm with the shorter

of the two horizontal candidates. The L2
C norm between Cn,m and Ck,j is calculated:

L2
C =

√

(n− k)2 + min
(

(m− j)2 , (wp −m+ j)2
)

DRf

i can be used as an admissible heuristic for estimating work because it is found by com-

puting pixel ray intersections with the groundplane model and then computing the Euclidean

distances between these points (Section 3.3.2). For the virtual cylinder camera, we compute

the groundplane intersections for the cylinder image pixels directly.

4.2 Updating techniques

4.2.1 Translation based forgetting

Information in C is captured when the robot is at a specific location and facing a particular

direction. As the robot moves from that location, the data in C will cease to be an accurate

representation of the associated direction. We propose forgetting data in C as a function of

translation, and call this technique translation based forgetting. We assume that changes in

elevation can be ignored to a first approximation and idealize the world as a flat level plane



Rf . Let Rf
bot and R̃f

bot be the current position of the robot and the position of the robot

during the previous update, respectively. C̃ and C denote the cylinder after the updates at

R̃f
bot and Rf

bot, respectively. Let ∆N , ∆E be the North and East components of the vector

from R̃f
bot to Rf

bot, respectively. T is the magnitude of the same vector.

T =
√

∆N2 + ∆E2

The incremental updating function is given by:

Cn,m = max

(

1, C̃n,m
cfgt − T

cfgt

)

(9)

where cfgt is the translation distance required to erase all information in a single update.

Cn,m cannot decay to less than 1, the minimum force value. cfgt is tuned for the desired

system behavior—small values of cfgt cause the robot to forget information more quickly

than large values. The relationship between long-term decay behavior and translation is

influenced by the frequency with which Equation 9 is applied. C should be updated at a

constant rate of time to insure predictable decay vs. distance and velocity.

4.2.2 Depth based updating

If depth data exists for S, then C can be updated by calculating the motion of depth points

relative to the robot. It is convenient to store depth data in a separate ‘cylindrical’ array Q.

For each force value f(Sn,m) placed into C as a function of pixel data Sn,m, a corresponding

3D position Rp (Sn,m) in the local robot frame is placed into Q at the same location. Let Q̃

and Q denote the depth cylinder at the robot’s previous location R̃f
bot and current location

Rf
bot, respectively. We assume that depth Q̃ñ,m̃ was generated from a point projected to the

center of pixel Sñ,m̃ when the robot was at R̃f
bot. Let Rp be the point in R that generated

Q̃ñ,m̃. As the robot moves, the image projection of Rp will change. When 3D points are

retained for the cylinder image, we use Rf
bot and R̃f

bot to compute the differential position

R∆ between frames. We then apply R−1
∆ to the points in Q̃ and propagate the points to

their new positions in Q if they are within the bounds of the cylinder. This provides a



mapping from Q̃ñ,m̃ to Qn,m. Information from multiple locations in Q̃ may migrate to Qn,m

as one obstacle is occluded by another. Qn,m is updated with the nearest point because

closer obstacles present a more immediate navigational hazard. If a non-depth force metric

is used to populate C, then C is updated as follows:

Cn,m = C̃ñ,m̃

If a depth based force metric is used, then C is a synthetic disparity calculated from Q by

modifying Equation 2 to operate on Qn,m instead of Sn,m:

F d
i = Cn,m = 1 + cscl

∣

∣

∣

∣

∣

cfcb
Qn,m

− cfcb
Qf

n,m

∣

∣

∣

∣

∣

where Qf
n,m is the depth cylinder observed from a flat level plane.

5 Hierarchical planners

Image planning provides a variable world view that maximizes map resolution and minimizes

the number of map elements required to model the world, given an image sensor reading.

However, environmental knowledge is constrained by the current line of sight and far-field

data is less refined than near-field data. We believe that the shortcomings of image planning

are complimented by the strengths of Cartesian planning and combine the two in a hybrid

hierarchical planner. The global planner uses a 2D top-down Cartesian occupancy grid G

to find a coarse path Pmin
G , while the local cylindrical planner navigates toward subgoals

Rsub a predetermined distance along Pmin
G . To determine what advantages (if any) the local

cylindrical planner provides to the hybrid hierarchical planner, we evaluate the proposed

system against a double 2D top-down Cartesian hierarchical planner. We refer to the latter

system as the Cartesian hierarchical planner. Both hierarchical systems use an identical

global planner that runs independently on its own processor.

In addition to the assumptions outlined in Section 2.1, the hierarchical planners assume

knowledge of global position and orientation. This is necessary to populate, update, and



place start and goal positions in the global map, and to place Rsub in the local map. Because

Rsub is defined to be a specific distance along Pmin
G , any particular Rsub will be replaced by

a new Rsub before the former is actually reached (except when the robot converges on the

global goal). This method of planner interaction works well in practice, as long as Rsub is

within the sensor range of the robot.

5.1 The global Cartesian planner

As with the image planner (Section 3) and the cylindrical planner (Section 4), our global

Cartesian planner separates the ideas of work, force, and distance. Let GΓ represent the

8-connected graph of G. The cost of traveling from node GΓ
k,j to node GΓ

n,m along arc i

is determined by work Wi = FiDi, where force Fi = Gn,m and distance Di are determined

by force and distance metrics, respectively. Map grids are square and we use the L2 norm

(Equation 4) as a distance metric. Values are added to G by projecting O onto the ground-

plane using the robot’s position, orientation, and stereo disparity information. Therefore, Fi

is determined by the force metric used to populate O. G is preprocessed by a dilation of α,

the map equivalent of a robot half width cwth/2 plus a buffer cbuf :

On,m = max
k,j

(On±k,m±j)

where ⌊−α⌋ ≤ k ≤ ⌈α⌉, 1 ≤ (n± k) ≤ h, ⌊−α⌋ ≤ j ≤ ⌈α⌉, and 1 ≤ (m± j) ≤ w. h and w

represent the number of rows and columns in G, respectively. α is calculated

α = cscl (cwth/2 + cbuf)

where cscl is the map scale. The A* algorithm is used to find the minimum work path Pmin
G

from the start node GΓ
s = GΓ

ns,ms
to the goal node GΓ

g = GΓ
ng,mg

, where GΓ
s and GΓ

g are found

by projecting robot and goal coordinates into map space, respectively. Pmin
G is transformed

into GPS coordinates P gps
R before being passed to a local planner.



5.2 The local cylindrical planner

The local cylindrical subsystem of the hybrid hierarchical planner is identical to the system

described in Section 4, except that CΓ
g is found by projecting Rsub into image space, where

Rsub is the first position along P gps
R that is at least csub away from the robot, and csub is a

system parameter. Due to the relative frame rates of the local and global planners, the same

P gps
R may be used to determine multiple Rsub.

5.3 The local Cartesian planner

The local Cartesian subsystem of the baseline hierarchical planner is similar to the global

planner (Section 5.1), except for five differences: (1) GΓ
g is found by projecting Rsub into

local map space, (2) the local path Pmin
G is used for servo control, (3-5) the map has a

higher resolution, is fixed in size, and centered on the robot. Rsub is defined to be the first

position along P gps
R that is at least csub from the robot, and the same P gps

R may be used to

determine multiple Rsub. Servoing is accomplished by steering at Rtgt, where Rtgt is found

by projecting GΓ
tgt = GΓ

ntgt,mtgt
into the real world, and GΓ

tgt is defined to be ctgt along the

local path Pmin
G . csub and ctgt are a system parameters. Forward velocity and turning angle

are defined:

speed = speedmax max (0, cos (ψR))

turn = ψR

where ψR is the angular distance between the current heading and Rsub, and −π ≤ ψR ≤ π.

Speed will increase as the target point approaches a position in front of the robot, and

turning angle will steer the robot toward the target point.

6 The LAGR robot

Our mobile robot platform is provided in conjunction with the DARPA Learning Applied to

Ground Robotics (LAGR) program. The length, width, and height dimensions of the robot



Figure 7: The LAGR robot platform.

are approximately 1.2 x .75 x 1.0 meters, respectively. Sensors include: two forward facing

Point Grey BumbleBee 2 stereo camera pairs, a Garmin GPS receiver, a magnetic compass,

wheel odometers, two forward facing infrared sensors (unused in this work), and a front

bumper sensor. The stereo camera pairs output stereo disparity and RGB color data. We

have found disparity data to have a maximum range of approximately 15 meters; although

the usable range is generally between 5 and 10 meters. There are four processing units: one

dedicated to each of the two stereo camera pairs, one for path planning, and one that is

a servo controller (the former three computers have dual-core processors). Translation and

rotation are achieved via two independently driven front wheels.

7 Experiments

All of the methods we have proposed are experimentally evaluated, including: two force

metrics (F d
i and F c

i of Sections 3.2.1 and 3.2.2, respectively), two distance metrics (DS
i and

DRf

i of Sections 3.3.1 and 3.3.2, respectively), and four planning systems (image, cylindrical,

hybrid hierarchical, and Cartesian hierarchical from Sections 3, 4, 5, and 5, respectively).

We also test two cylindrical updating techniques (translation based forgetting and depth

based updating from Sections 4.2.1 and 4.2.2, respectively). Our toy color force metric

F c
i requires that safe terrain and obstacles be different colors; therefore, we only evaluate

F c
i in environments where this is the case. As previously stated, F c

i is not useful in most

environments and is only used to test if our image space systems can function using color.
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Figure 8: Cost maps with paths, light to dark represents low to high cost, respectively.

The depth based cylindrical updating scheme assumes the existence of depth information;

therefore, it is only evaluated in conjunction with the disparity force metric F d
i .

We test the following three hypotheses: (1) The flat world distance metric DRf

i will outper-

form the image distance metric DS
i because DRf

i more accurately models real world distances.

(2) The cylindrical planner is susceptible to translational oscillation near large obstacles, due

to a lack of translational memory. (3) A local image space planner will outperform a local

2D Cartesian planner as a subsystem of a hierarchical planner because the former represents

near-field information at a higher resolution.

7.1 System parameters

We achieve an effective FOV of 110 degrees (61 grid elements) by having each camera insert

information into the cost map (image or cylinder) based on its relative pose. In order to

achieve a frame rate of at least 10 hertz, we define the size of the image planner map O

to be h = 40 grid elements high and w = 61 grid elements wide. Similarly, the cylindrical



cost map C is defined to be h = 40 high and wp = 200 wide (i.e. around the perimeter). In

either case, the image from a particular camera is 40 grid elements wide. This resolution is

achieved by sub-sampling S. Map updates do not incorporate old information. The most

recent image determines map values at positions of camera overlap. There is no longer a

one-to-one mapping from S to Q or C. However, there is a one-to-one mapping from the

subsampled version of S to Q and C. The mask used for denoising the cost map is defined to

be 4 pixels high by 1 pixel wide, and is chosen to modify obstacle width as little as possible

while still eliminating noise. A cost map from the image planner is displayed in Figure 8a,

and a cost map from the cylindrical planner is displayed in Figure 8b.

We set the maximum speed of the robot to 1 meter per second in all experiments. The

parameter csub (Section 5.2) used to place the local subgoal Rsub is defined to be 5 meters.

This distance was chosen to make the local subsystem responsible for navigation around

small to medium sized obstacles (e.g. trees, rocks, bushes, and boulders). The image and

cylindrical planner parameter ctgt (Section 3.5), used to place OΓ
tgt, is defined to be the

twelfth node along Pmin
O , or the goal node if the path contains fewer than twelve nodes. The

parameter cscl (Section 3.2) is defined to be 10 or 30 if force is determined by disparity or

color, respectively. The parameter cthd (Section 3.2) is defined to be 10, and the parameter

cflt (Section 3.4.1) is defined to be 3. The parameter cfgt used in Equation 9 to control

translation based forgetting is defined to be 0.4 meters (obstacles are remembered further

than 0.4 meters because the frame rate is at least 10 hertz). The values of ctgt, cscl, cthd, cflt,

and cfgt have been tuned by human evaluation of the system’s ability to navigate around a

simple obstacle that is 0.5 meters wide, 0.5 meters tall, and 0.25 meters deep.

The local Cartesian planner used in the Cartesian hierarchical system models an 18 by 18

meter square of the world, and the robot is always located in the center of the map graph

GΓ. This ensures at least 5 meters of the world is modeled between the robot and Rsub,

and at least 4 meters is modeled between Rsub and the map boundary. We believe these

distances are suitable for navigation around small to medium sized obstacles. A cost map



(a) Experiment 1 (b) Experiment 2a (c) Experiment 3

Figure 9: Photos of test courses from the start positions.

 

 

Start

Goal

East (meters)

N
o
rt

h
(m

e
te

rs
)

Experiment 1, Image Planner, F
d

i

D
S

i

D
R

f

i
20

15

10

10

5

5

0

0-5-10

(a) The F
d
i force metric.

 

 

Start

Goal

East (meters)

N
o
rt

h
(m

e
te

rs
)

Experiment 1, Image Planner, F
c

i

D
S

i

D
R

f

i
20

15

10

10

5

5

0

0-5-10

(b) The F
c
i force metric.

Figure 10: The image planner in Experiment 1, runs using the DS
i or DRf

i distance metrics

appear solid or dashed, respectively. The axes are in meters.

from the local Cartesian planner is displayed in Figure 8c. In order to make the comparison

between the two hierarchical planners as fair as possible, we define the granularity of the

local Cartesian occupancy grid G to be 0.2 meters. Thus, GΓ has 8100 nodes and the local

cylindrical map graph CΓ has 8000 nodes. The areas of local Cartesian map world elements

are 0.04 meters squared. The areas of image cylindrical map world elements vary from 0.019

to ∞ meters squared, from the near- to far-field, respectively. The frame rate of the local

Cartesian planner is comparable to that of the local cylindrical planner.
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Figure 11: The cylindrical planner in Experiment 1. Runs using the DS
i or DRf

i distance

metrics appear solid or dashed, respectively. Runs using depth based updating or translation

based forgetting are black or gray, respectively. The axes are in meters.

7.2 Experiment 1: shakeout course

Experiment 1 consists of the NIST (National Institute of Standards and Technology) LAGR

shakeout course (Figure 9a). The goal is placed 20 meters north of the starting location. The

course contains three obstacles constructed out of 4, 6, and 6 large plastic tubs, respectively.

The first obstacle is placed 5 meters toward the goal, directly in front of the robot. The

next two obstacles are placed 5 meters further, separated by 3 meters. The width of the

obstacles are 1.2, 1.8, and 1.8 meters, respectively, and the length and height of the obstacles

are 0.4 and 0.8 meters, respectively. The planning systems tested in Experiment 1 include

all combinations of the image and cylindrical planners, F d
i and F c

i force metrics, and DS
i and

DRf

i distance metrics. Additionally, both cylindrical updating schemes (translation based

forgetting and depth based updating) are tested in conjunction with a F d
i cylindrical planner.

Each combination is run 3 times, resulting in 30 total runs.

The primary purpose of Experiment 1 is to show that image planning is possible over a wide

range of system implementations. Additionally, we hope to observe some discriminating



Table 1: Experiment 1 runtimes in seconds

Image Planner

System Runs 1-3 Mean

F d
i DS

i 30.60 31.07 30.26 30.64

F d
i DRf

i 24.89 25.17 25.28 25.11

F c
i D

S
i 34.06 33.00 32.02 33.03

F c
i D

Rf

i 24.94 25.16 25.11 25.07

Cylindrical Planner

System Runs 1-3 Mean

DU F d
i DS

i 30.66 34.43 33.15 32.75

DU F d
i DRf

i 25.25 28.62 25.02 26.30

TF F d
i DS

i 30.75 30.54 31.87 31.05

TF F d
i DRf

i 24.19 26.02 25.09 25.10

TF F c
i D

S
i 31.14 30.25 29.40 30.26

TF F c
i D

Rf

i 25.64 25.22 25.43 25.43

Table 2: Experiment 2a runtimes in seconds

Image Planner

System Runs 1-3 Mean

F d
i DS

i ∞ ∞ ∞ ∞

F d
i DRf

i ∞ ∞ ∞ ∞

F c
i D

S
i 35.31 ∞ ∞ ∞

F c
i D

Rf

i ∞ ∞ ∞ ∞

Cylindrical Planner

System Runs 1-3 Mean

DU F d
i DS

i 41.72 46.37 44.94 44.34

DU F d
i DRf

i ∞ ∞ 53.92 ∞

TF F d
i DS

i 39.52 ∞ 49.07 ∞

TF F d
i DRf

i 65.84 ∞ 46.51 ∞

TF F c
i D

S
i 39.46 40.42 49.22 43.03

TF F c
i D

Rf

i ∞ 69.26 ∞ ∞

trends along the different dimensions of our system space. GPS data from each run is

superimposed on an illustration of the course in Figures 10 and 11 and runtimes are displayed

in Table 1 (note that TF and DU denote translation based forgetting and depth based

updating, respectively). Image planning systems are displayed in Figure 10, while cylindrical

planning systems appear in Figure 11. Figures 10a and 11a display tests using the F d
i force

metric, while Figures 10b and 11b show tests using the F c
i force metric. The DS

i and DRf

i

distance metrics are plotted with solid and dashed lines, respectively.

7.3 Experiment 2: walls of 10 and 50 meters

Experiment 2a consists of a single wall placed 10 meters east of the starting location. The goal

is positioned another 10 meters east of the wall. The width, length, and height dimensions
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Figure 12: The image planner in Experiment 2a, runs using the DS
i or DRf

i distance metrics

appear solid or dashed, respectively. The axes are in meters.
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Figure 13: The cylindrical planner in Experiment 2a. Runs using the DS
i or DRf

i distance

metrics appear solid or dashed, respectively. Runs using depth based updating or translation

based forgetting are black or gray, respectively. The axes are in meters.

of the wall are 10, 0.4, and 0.6 meters, respectively. A photo of the course is displayed in

Figure 9b. The course consists of the aforementioned blue tubs and grassy field. The same

planning systems are tested as in Experiment 1, and trials are repeated 3 times. The actual
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Figure 14: Experiment 2b, the F d
i cylindrical planner using DS

i and depth based updating.

Table 3: Experiment 3 runtimes in seconds

Image Planner

System Runs 1-3 Mean

F d
i DS

i 20.53 33.01 56.42 36.65

F d
i DRf

i 57.98 22.76 38.62 39.79

F c
i D

S
i 23.11 22.80 22.07 22.66

F c
i D

Rf

i 21.69 23.14 22.13 22.32

Cylindrical Planner

System Runs 1-3 Mean

DU F d
i DS

i 19.82 32.91 22.24 24.99

DU F d
i DRf

i 26.35 32.68 22.81 27.28

TF F d
i DS

i ∞ 68.15 38.18 ∞

TF F d
i DRf

i 21.74 74.90 49.85 48.83

TF F c
i D

S
i 24.17 23.06 24.63 23.96

TF F c
i D

Rf

i 21.46 32.47 32.78 28.90

Table 4: Experiment 2b runtimes in seconds

Cylindrical Planner

System Runs 1-3 Mean

DU F d
i DS

i ∞ ∞ ∞ ∞

Table 5: Experiment 4 runtimes in seconds

Hybrid Hierarchical Planner

System Runs 1-2 Mean

DU F d
i DS

i 122.4 116.7 119.55

DU F d
i DRf

i 104.2 106.1 105.15

TF F d
i DS

i 120.9 132.4 126.65

TF F d
i DRf

i 102.3 103.6 102.95

Cartesian Hierarchical Planner

System Runs 1-2 Mean

Cartesian 140.9 121.4 131.15

GPS data from each run is superimposed on an illustration of the course in Figures 12 and

13. The planning systems displayed in Figures 12a, 12b, 13a, and 13b are identical to those

displayed in Figures 10a, 10b, 11a, and 11b, respectively. Runtimes are displayed in Table 2.

Experiment 2a is designed to test our hypothesis that the cylindrical planner is vulnerable

to translational oscillation when large obstacles obscure the goal. Additionally, we expect

to observe rotational oscillation when the goal is blocked by obstacles wider than the FOV.
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Figure 15: The image planner in Experiment 3, runs using the DS
i or DRf

i distance metrics

appear solid or dashed, respectively. The axes are in meters.

A test is halted if the robot oscillates 8 times without making any forward progress toward

the goal (the oscillation count resets to 0 whenever progress is made). Elapsed time values

of ∞ denote that a system did not complete the course.

Experiment 2b consists of a single wall placed 5 meters north of the starting location. The

goal is positioned another 5 meters north of wall. The width, length, and height dimensions

of the wall are 50, 0.1, and 1 meters, respectively (Figure 14). We test the cylindrical planner

using the force-from-disparity metric F d
i in conjunction with DS

i distance and depth based

updating. The system is run 3 times. Experiment 2b is designed to test the limits of this

particular planner because it completed Experiment 2a all three times.

7.4 Experiment 3: V shaped course

Experiment 3 consists of a symmetrical ‘V’ shaped obstacle placed 10 meters north of the

starting location. The ‘V’ consists of two 2.4 meter long walls joined at an angle of 97

degrees. The depth and height of the obstacles are 0.4 and 0.8 meters, respectively. The

goal is centered between the far ends of the two walls. A photo of the course is displayed
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Figure 16: The cylindrical planner in Experiment 3. Runs using the DS
i or DRf

i distance

metrics appear solid or dashed, respectively. Runs using depth based updating or translation

based forgetting are black or gray, respectively. The axes are in meters.

in Figure 9c. The course uses the same blue tubs and grassy field as Experiments 1 and 2a,

and the same planning systems are also tested. Trials are repeated 3 times. The actual

GPS data from each run is superimposed on an illustration of the course in Figures 15

and 16. The planning systems displayed in Figures 15a, 15b, 16a, and 16b are identical to

those displayed in Figures 10a, 10b, 11a, and 11b. Experiment 3 evaluates the image and

cylindrical planners on a controlled course not specifically designed to induce pathological

behavior. The runtimes are given in Table 3.

7.5 Experiments 4-7: natural terrain courses

Experiments 4-7 are in natural terrain. They are conducted to demonstrate that the hy-

brid and Cartesian hierarchical systems actually perform in unknown unstructured outdoor

environments, and also to determine if the behavior of the stand-alone cylindrical planning

systems transfers to hybrid hierarchical systems. Experiment 4 consists of boulders and trees

on a lightly undulating ground surface with grass. The course is 95 meters long. GPS paths
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Figure 17: Experiment 4 GPS paths. The axes are in meters.

(a) Experiment 5 (b) Experiment 6 (c) Experiment 7

Figure 18: Photos of Experiments 5, 6, and 7 from the goal, start, and start, respectively.

are displayed in Figure 17a. An approximate representation of the course can be seen in

Figure 17b. All systems are tested twice. The runtimes are displayed in Table 5.

Experiments 5 and 6 contain shrubs, trees, and dead grass ranging in height from 3 centime-
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Figure 19: Experiment 5 and 6, hybrid hierarchical runs using DS
i or DRf

i are solid or dashed,

respectively, runs using depth based updating or translation based forgetting are black or

gray, respectively, and all use F d
i . Runs from the Cartesian hierarchical planner are dotted

gray. The axes are in meters.

Table 6: Experiment 5 runtimes in seconds

Hybrid Hierarchical Planner

System Runs 1-3 Mean

DU F d
i DS

i 35.99 48.54 47.03 43.85

DU F d
i DRf

i 37.81 39.99 39.55 39.12

TF F d
i DS

i 63.36 41.05 36.78 47.06

TF F d
i DRf

i 37.38 35.48 36.26 36.37

Cartesian Hierarchical Planner

System Runs 1-3 Mean

Cartesian 40.40 41.56 39.61 40.52

Table 7: Experiment 6 runtimes in seconds

Hybrid Hierarchical Planner

System Runs 1-3 Mean

DU F d
i DS

i 53.64 48.65 43.96 48.75

DU F d
i DRf

i 53.24 46.69 42.76 47.56

TF F d
i DS

i 44.39 45.15 48.91 46.15

TF F d
i DRf

i 41.56 44.10 45.46 43.71

Cartesian Hierarchical Planner

System Runs 1-3 Mean

Cartesian 47.77 48.36 43.64 46.59

ters to 0.5 meters. The terrain is rocky, with rocks protruding above the ground surface 4 to

12 centimeters. Photos of the courses are displayed in Figures 18a and 18b, respectively. In

Experiment 6 there is a 10 meter wide stand of interwoven trees blocking the robot’s view

of the goal from the starting position. The courses are 30 and 35 meters long, respectively.
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Figure 20: GPS paths of the hybrid and Cartesian hierarchical planners in Experiment 7.

GPS paths are displayed in Figures 19a and 19b, respectively. All systems are tested three

times, and the runtimes are given in Tables 6 and 7, respectively.

Experiment 7 evaluates the hierarchical planners on a grass and dirt field with trees and

boulders as obstacles. A photo of the course is displayed in Figure 18c. The course is

19 meters long. The purpose of Experiment 7 is to compare the best performing hybrid

hierarchical planners (as determined by previous experiments) against the Cartesian hier-

archical planner with enough trials to provide statistical significance. Hybrid hierarchical

planners using the DRf

i distance metric with either cylindrical updating strategy are tested.

We selected this course because we believe cluttered environments give hybrid hierarchical

planners an advantage over the Cartesian hierarchical planner. All systems are tested 10

times. GPS paths are displayed in Figure 20, and the runtimes are given in Table 8.

8 Discussion

8.1 Force metrics: F d
i , F c

i

We use force metrics from disparity F d
i and color F c

i to evaluate the effects of different

sensors and force definitions on image planning. Comparison between F d
i and F c

i is only



Table 8: Experiment 7 runtimes in seconds

Hybrid Hierarchical Planner

System Runs 1-10 Mean Std.

27.41 26.35 25.59 29.78 32.47

DU F d
i DRf

i 31.40 27.38 28.84 28.82 26.59 28.46 2.24

24.40 27.33 35.89 25.59 42.84

TF F d
i DRf

i 44.58 35.69 25.96 26.07 25.53 31.39 7.71

Cartesian Hierarchical Planner

System Runs 1-10 Mean Std.

37.38 30.45 40.83 30.53 33.15

Cartesian 34.78 42.55 51.09 34.23 57.64 39.26 9.01

possible on the subset of courses for which F c
i is tested: Experiments 1, 2a, and 3 (the NIST

shakeout, 10 meter wall, and V shaped courses, respectively). In Experiment 1, both F d
i

and F c
i are effective and there is no clear winner with respect to runtime. In contrast, Ex-

periments 2a and 3 show F c
i systems encountering oscillation less frequently and progressing

further when oscillation does occur. This suggests F c
i has an advantage over F d

i , which

we attribute to the greater range of color vs. disparity. Systems using F c
i are more likely

to see and avoid an obstacle before moving close enough to induce oscillation. It is worth

restating that any predefined color force metric is only useful in a subset of environments.

The obstacle and ground colors of Experiments 1, 2a, and 3 were chosen to be compatible

with F c
i ; therefore, the superiority of F c

i to F d
i may be due to course appearance.

8.2 Distance metrics: DS
i , D

Rf

i

DS
i and DRf

i define distance as the L2 norm in image space and its projected distance along

a flat level groundplane, respectively. We have hypothesized that DRf

i will outperform DS
i

because the former better approximates real world distances than the latter. Our experiments
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Figure 22: Image space paths using the DS
i and DRf

i distance metrics, solid and dotted,

respectively, through a scene image (left) and corresponding occupancy grid (right). In an

empty field, DS
i causes the path to change direction further away from the robot than DRf

i .

validate this hypothesis for cases without rotational or translational oscillation. However,

they also show that DS
i is less susceptible to oscillation than DRf

i . In experiments free from

oscillation, systems using DRf

i achieve the goal faster than those using DS
i . Examples include

the NIST shakeout and natural terrain courses (Experiments 1, 4-6, respectively). On the

other hand, in cases where terminal oscillation is observed, DS
i explores more terrain despite

the oscillation (e.g. the Experiment 2 wall courses). Thus, DS
i sometimes allows a system to

discover a transition out of an oscillatory state and achieve the goal when DRf

i cannot. This

exploratory behavior also means that DS
i risks wasting fuel and time if such a transition

is never found. The observed trends extend to the V shaped course (Experiment 3), with

the exception of the DRf

i translation-based-forgetting cylindrical planner. In the latter case,

one DS
i run is terminated after oscillating 8 times, while similar behavior in the DRf

i system
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Figure 23: Translational oscillation caused by a large obstacle. Panes 1-4 show the paths

through the cylinder that are generated at the respective locations in the bottom diagram.

(1) The robot decides to move west. (2) Directional change reinforces the decision to go

west. (2-3) Westward translation causes the goal to move east, relative to the robot. (3) It

becomes cheaper to go east. (4) Directional change reinforces the decision to go east.

resolves itself before 8 oscillations. An interesting difference between the two distance metrics

is that, in the absence of obstacles, DRf

i induces the robot to move directly toward the goal,

while DS
i tends to produce navigation along ‘hook’ shaped trajectories. This behavior can be

observed in all experiments. The extra distance traveled by systems using DS
i is the primary

reason they tend to achieve the goal more slowly than systems using DRf

i .

All of the observed differences are explained by the characteristics of the two metrics. DS
i

defines the distance between vertically or horizontally neighboring nodes as 1 and diagonally

neighboring nodes as
√

2. The combined distance required to move horizontally from OΓ
n,m

to OΓ
n,j then vertically to OΓ

k,j is equal to the distance required to move vertically from OΓ
n,m

to OΓ
k,m then horizontally to OΓ

k,j. In contrast, DRf

i represents distance as the projected

length of ground-surface between pixels centers in S, and the distance required to move

between two vertically, horizontally, or diagonally neighboring nodes increases as grid row

n approaches the horizon. Thus, if n > k (i.e. n is closer to bottom of the FOV than k),

then the combined distance required to move horizontally from OΓ
n,m to OΓ

n,j then vertically

to OΓ
k,j will be less than the combined distance required to move vertically from OΓ

n,m to

OΓ
k,m then horizontally to OΓ

k,j (see Figure 21). This is because if n > k, then the distance



between OΓ
n,m and OΓ

n,j is less than the distance between OΓ
k,m and OΓ

k,j.

Given constant force values, DRf

i will cause a path to perform as much horizontal movement

in the bottom of the FOV (i.e. the near-field) as possible. Thus, DRf

i encourages a system to

steer toward the goal immediately, while DS
i allows turning movement to be postponed until

later. This is illustrated in Figure 22. The DS
i ‘hook’ shaped real-world robot trajectories

(shown in Section 7) are a result of this belated steering behavior, as is the propensity for

increased exploration in situations that cause oscillation.

DRf

i is relatively susceptible to translational oscillation because arc distance in OΓ increases

as a function of image height. Small changes in far-field information, including the relative

position of the goal, can trigger large corrections in near-field portions of the path. This is

observed on the 10 meter wall course (Experiment 2a, Figure 13). Consider the case where

a large obstacle exists between the robot and the goal (Figure 23). The initial rotation away

from the obstacle reinforces the decision to move in a particular direction by decreasing

the optimal path length. As the robot moves, the relative location of CΓ
g moves in the

opposite direction of travel. Eventually, DRf

i induces a near-field correction and the robot

changes direction. Assuming a unit force associated with non-obstacle portions of C, this is

guaranteed to repeat whenever the distance added to the path in the far-field (due to the

relative movement of the goal vs. the robot) is greater than the near-field distance required

to change direction. Although, DS
i is susceptible to oscillation given a large enough obstacle

(e.g. the 50 meter wall in Experiment 2b), it allows movement to continue further along

the obstacle before a direction reversal occurs. This is because near-field movement involves

the same amount of distance as far-field movement, and a simple rotation can substantially

change the length of a path. The apparent location of CΓ
g must approach the opposite edge

of the obstacle before a direction reversal occurs.



8.3 Cylindrical updating: translation based forgetting, depth based updating

Translation based forgetting decreases the force of an obstacle as a function of robotic dis-

placement, while depth based updating explicitly tracks obstacle movement relative to the

robot. The former is tested in conjunction with all cylindrical and hybrid planners, while

the latter is only tested with systems using the F d
i force metric. Translation based forgetting

slightly outperforms depth updating in situations without translational oscillation, but depth

updating is more robust to translational oscillation. On the 10 meter wall course (Experi-

ment 2a, Figure 13a) the F d
i D

S
i cylindrical planner experiences translational oscillation and

systems using depth based updating always escape, while systems using translation based

forgetting only escape twice. These trends extend to the V shaped course (Experiment 3,

Figure 16a, Table 3), where translation based forgetting experiences more severe oscillation

than depth based updating.

With translation based forgetting, the robot will always forget an obstacle of a particular

force On,m after moving a predetermined distance cdst at a constant speed speed. cdst is

calculated by recursively expanding Equation 9, assuming it is used at a constant rate crt:

1 ≤ On,m

⌈ cdstcrt
speed ⌉
∏

u=1

cfgt − speed
crt

cfgt

where speed/crt is the distance traveled between calls to Equation 9. The oscillation am-

plitude can be tuned by adjusting cfgt, crt, and speed; however, it will be constant given a

parameter set. If the robot encounters an obstacle longer than this distance, then the robot

will turn back toward the goal before it has circumvented the obstacle. Oscillation occurs

because the robot must turn around before rediscovering the forgotten portion of the obsta-

cle. After the turn, it requires less graph distance to reach the goal by traveling in the new

direction—especially in the case of DS
i . Depending on the specific system parameters and

apparent location of CΓ
g, translational oscillation may be induced by the distance metric be-

fore it is caused by translation based forgetting. Force values are stored at constant headings

in the cylinder; therefore, after turning away from an obstacle, the robot will avoid turning



back toward its original heading until the obstacle is forgotten. Large values of cfgt and slow

frame-rates tend to cause the robot to over-avoid small obstacles (i.e. move unnecessarily

far around them). The forgetting parameters must be tuned to elicit the desired balance

between oscillation and obstacle over-avoidance.

In Experiment 7 (the natural terrain course where each system is tested 10 times), depth

based updating has a quicker mean runtime than translation based forgetting—although,

not by a significant amount (using the student’s t-test with the null hypothesis that the

two systems’ runtimes are sampled from the same normal distribution gives a p-value of

0.26). We attribute this (non-significant) performance difference to the slight overestimation

of obstacle size by the depth based updating system. If the cylindrical planner is used as the

local planning subsystem of a hierarchical planner, then forgetting enabled oscillation can be

avoided by using appropriately close subgoals. However, depth updating has no parameters

to tune, is less susceptible to translational oscillation, and will never overestimate the size

of an obstacle—although its use is limited to systems with depth data.

8.4 Planning systems: image, cylindrical, hierarchical

The wall and V courses (Experiments 2 and 3) show that the basic image planner is suscep-

tible to rotational oscillation whenever an obstacle wider than the FOV obscures the goal.

The cylindrical planner is immune to rotational oscillation, hence, it is more robust than the

basic image planner. Although the latter can succeed in a subset of environments navigable

by the former (i.e. sparsely populated environments containing obstacles narrower than then

FOV), it is still advisable to use the cylindrical planner whenever possible. Both the image

planner and the cylindrical planner exhibit translational oscillation when a wide obstacle

obscures the goal. As discussed in Section 8.2, this is manifested differently depending on

the distance metric being used (DS
i is less susceptible than DRf

i ). A separate type of trans-

lational oscillation, discussed in Section 8.3, is enabled by the translation based forgetting

cylindrical updating method.



All three forms of oscillation observed in our experiments are triggered when a large obstacle

exists directly between the robot and the goal. This reinforces our belief that image planning

is more suited to near-field (local) planning than far-field (global) planning. In order to

provide quick navigation commands for obstacle avoidance, any local planner must limit the

size of its world view. Therefore, any local planner is vulnerable to oscillation from obstacles

larger than its world model. When the cylindrical planner is used as a local subsystem of

a hybrid hierarchical planner, the global planner can maximize the effectiveness of the local

planner by feeding it sub-goals closer than its minimum oscillation amplitude. This ensures

that pathological oscillation will never occur. Further motivation for using the cylindrical

planner locally is provided by the fact that, due to perspective, the accuracy of an image

based representation of the world is maximized in the near-field.

The natural terrain courses (Experiments 4-7) validate our hypothesis that the hybrid hier-

archical planner will outperform the Cartesian hierarchical planner—but only for the specific

planners using the DRf

i distance metric. Results for planners using the DS
i metric are incon-

clusive. This illustrates the importance of choosing the correct representation of distance

when planning in a non-rectilinear projection of the world. With respect to Experiment 7,

using the student’s t-test with the null hypothesis that two systems’ runtimes are sampled

from the same normal distribution, the DRf

i depth based updating hybrid hierarchical plan-

ner vs. the Cartesian hierarchical planner gives a p-value of 0.0017, while the DRf

i translation

based forgetting hybrid hierarchical planner vs. the Cartesian hierarchical planner gives a

p-value of 0.050. It is important to note that the hybrid and baseline hierarchical planners

use an identical global planner, maintain local maps with similar memory requirements,

and achieve comparable local frame-rates. We attribute the positive performance of the

DRf

i hybrid hierarchical planner to the local cylindrical planner’s high resolution near-field

view. This enables accurate robot localization vs. objects in the FOV, and gives the local

cylindrical planner the ability to disambiguate, track, and narrowly avoid obstacles that are

distorted by the local Cartesian planner.



9 Conclusion

Image space path planning is a planning technique used to discover paths through the image

output of a grid-based sensor. We present an image space planning technique for local path

planning in unknown unstructured outdoor environments. The basic method involves creat-

ing an occupancy grid map directly from image data, then using a graph-search algorithm

to find a minimum-cost path through a graph representation of the cost-map. Once found,

the graph path is used for navigation in the real world. Our method differentiates between

the cost values that are stored in the cost map, the cost values assigned to graph edges, and

the distances between cost map elements. Borrowing terms derived from a physical analogy,

we label these as force, work, and distance, respectively

We propose three image based planning systems, and perform experimental evaluation with

a real robot on eight courses. We find that our method of minimizing work, given explicitly

separated notions of force and distance, is robust to various force and distance metrics.

Evaluation is performed with two different force metrics (F d
i and F c

i ) and two different

distance metrics (DS
i and DRf

i ).

The greater usable range of color data, as compared to stereo disparity, gives our naive force

from color metric F c
i a reactive advantage over our force from disparity metric F d

i . Although

the former is only used as a proof of concept, it demonstrates that accurate force from color

data can improve the performance of an image space planning system by enabling it to detect

obstacles sooner.

The distance metric based on the L2 norm in image space (DS
i ) postpones trajectory ad-

justments into the far field, while the flat world distance metric (DRf

i ) prefers trajectory

adjustments in the near field. Consequently, DRf

i causes the robot to follow straighter paths

than DS
i , while DS

i has a greater oscillation amplitude than DRf

i (oscillation amplitude is the

distance along the edge of a goal blocking obstacle that the robot will travel before turning

around). A relatively large oscillation amplitude gives DS
i an advantage in environments



containing obstacles with radii larger than the oscillation amplitude of DRf

i (but smaller

than the oscillation amplitude of DS
i ).

The basic image planner is susceptible to two types of oscillation: rotational oscillation

caused by the goal moving outside the FOV, and translational oscillation caused by the

apparent location of the image space goal shifting as a function of robotic movement. The

simulated 2π radian FOV maintained in the cylindrical planner eliminates rotational os-

cillation; however, it adds the complication of updating data that has moved outside the

camera’s FOV. Despite the cylindrical planner’s immunity to rotational oscillation, it is still

susceptible to translational oscillation. Of the two cylindrical updating techniques evalu-

ated, translation based forgetting can be used in conjunction with any type of sensor input.

However, it must be tuned to balance an additional form of translational oscillation failure

vs. moving unnecessarily far around small obstacles. In contrast, depth based updating does

not require tuning, does not enable additional oscillation, and will never overestimate the

length of an obstacle—but requires depth data.

The hybrid hierarchical planner avoids all forms of oscillation by giving the cylindrical plan-

ner appropriate subgoals from a global Cartesian planner. This framework incorporates the

strengths of both planning paradigms, allowing for better overall path planning. Hybrid

hierarchical planners using the DRf

i distance metric are able to outperform a double 2D

top-down Cartesian planner on four real world courses.

Image space planning provides a convenient framework for maintaining a high-resolution

view of near-field terrain by performing path search at the maximum resolution of the image

sensor. Assuming an image sensor of fixed resolution, other advantages include: guaran-

tees on search-time and a stable memory footprint. A natural application for image space

planning is as the local planning component of a hybrid hierarchical planner. This combina-

tion provides the high-resolution near-field view, precise robot vs. obstacle localization, and

dependable frame rate of a local image space planner with the translational memory and



fixed-resolution far-field view of a global 2D Cartesian planner. Overall, we find that image

space planning is a viable technique for discovering and following paths through unknown

unstructured outdoor environments.
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