
Extracting Paths From Fields Built With Linear Interpolatio n

Michael W. Otte and Greg Grudic

Abstract— Algorithms such as Field-D* [1] use linear interpo-
lation to infer continuous fields of costdistance-to-goal, where
costdistance is cost integrated over distance. Traditionally, field
values have been used as direct input to trajectory planners.
In contrast, we focus on extracting a minimum costdistance
path between two points, given the continuous field. We
identify a suboptimal phenomenon that occurs when standard
path extraction techniques are used on linearly interpolated
quantity-to-goal fields. The phenomenon causes paths to drift
sideways toward their horizontal or vertical bounds, resulting
in increased path length and unnecessary turns. We find that
the sub-optimality is a mathematical consequence of the linear
interpolation used to create thecostdistance-to-goal field. We
present a possible improvement that calculates path segment
directions using an interpolation between thecostdistance-to-
goal gradient vectors, and perform a series of experiments com-
paring this method with the current state-of-the-art. We find
that the proposed method can achieve a significant reduction
in path length error, and we provide discussion and examples
of when it should and should not be used.

I. INTRODUCTION

Traditional graph-search techniques such as Dijkstra’s, A*,
and D* find an optimal path with respect to a graph represen-
tation of the world [2]–[4]. This representation often has a
two dimensional 4- or 8-connected structure. Unfortunately,
the graph structureitself can lead to optimal graph paths that
are sub-optimal with respect to the real world. Movement
must be broken into a combination of horizontal and vertical
transitions in a 4-connected graph, or decomposed along
multiples of 45 degrees in an 8-connected graph.

Many (equally) optimal paths may exist with respect to the
graph. For instance, given a uniform map, a path that moves
through a 4-connected (8-connected) graph horizontally as
far as possible and then vertically (diagonally) will have
the same cost as a path that alternates between vertical and
horizontal (diagonal) movement—see Figure 1. The former
path is suboptimal globally, while the latter is suboptimal
on the scale of a few map grids. The local sub-optimality
of the staircase-like path can be corrected with a simple
local planner, so the staircase-like path is more desirablein
practice. However, given the set of all optimal graph-paths,
the task of finding the best with respect to the real world
is infeasible. A common solution is to break cost ties by
moving toward the goal; however, this fails when the goal is
blocked by an obstacle—see Figure 2.

Algorithms have recently been developed that largely
avoid the tie-breaking problem by operating in the continu-
ous domain that envelopes the 4- or 8-connected graph neigh-

Michael W. Otte and Greg Grudic are with the Department of Computer
Science, University of Colorado at Boulder, 430 UCB, Boulder, Colorado
80309-0430michael.otte@colorado.edu

Start

Goal

Start

Goal

Fig. 1. Optimal paths of identical cost through uniform maps. The left and
right maps use 4- and 8-connected graphs, respectively. The solid paths are
more desirable than the dotted paths with respect to the real world.

Start Goal

Fig. 2. Optimal paths of identical cost through a uniform map with an
obstacle. The map uses a 4-connected graph. The dotted path breaks ties in
cost by moving toward the goal, but the solid path is more desirable with
respect to the real world.

borhood. Graph node values represent a discrete sampling
over a continuous field of either thecostdistance (i.e. cost
integrated over distance) ortime required to reach the goal.
Field-D* [1] operates much like D* Lite [5] (a replanning
version of A*), except that it calculatescostdistance-to-
goal for continuous points on a graph edge using a linear
interpolation between thecostdistance-to-goal of the edge’s
end-nodes. This allows paths to follow trajectories in the con-
tinuous domain. Fast-marching level-set methods propagate
a wave front representing thetime required to reach the goal
[6], [7]. Assuming time exists as an additional dimension,
the front expands in the direction of thetime gradient but is
slowed by obstacles.time gradient approximations at each
node are calculated in the continuous domain given node
values in a narrow band around the current wave front.

Our paper is concerned with the extraction of paths be-
tween map start and goal locations, given acostdistance-to-
goal field. The primary and most significant contribution of
our work is the identification of, explanation of, and solution
to an interesting suboptimal phenomenon that occurs during
the path extraction process. The sub-optimality is an artifact
of the linear interpolation used to create the field, and has
not been previously addressed.

In practice, we use the Field-D* algorithm to build the
cost field. However, our work is of relevance to any field that
uses linear interpolation to estimate quantity-to-goal values
in the continuous domain. Field-D* was originally developed
to providecostdistance-to-goal values for a local trajectory
planner [1]. As such, [1] is primarily concerned with the

replacements

Fig. 3. Grid layout over map grids. Graph nodes and edges are black, map
grids are gray and white. Field-D* places nodes at grid corners (left), while
A*, D*, and D* Lite traditionally place nodes at grid centers(right).

(0, 0)

ρ1

ρ2

ρ3ρ4

ρ5

ρ6

ρ7 ρ8

v
(n, m)

vva

vb
C

D

ρ

Fig. 4. (Left) The 8 edges used to determine thecostdistance-to-goal of
nodev. (Right) Edgeρ connects nodesva and vb. the costdistance-to-
goal of va andvb is ga andgb, respectively. C and D are map grids with
cost c andd, respectively.

creation and maintenance of the field itself, and the extraction
of complete paths is largely beyond its scope. A secondary
contribution of our paper is to fill in the low-level details.

In Section II we provide a high-level description of how
algorithms such as Field-D* populate thecostdistance-to-
goal field. This is also where the low-level details of basic
path extraction are provided. In Section III we explain the
suboptimal phenomenon and describe path extraction mod-
ifications aimed at combating it. In Section IV we perform
a series of experiments to evaluate the effectiveness of our
new techniques vs. prior methods, and discuss their strengths
and limitations. Conclusions are given in Section V.

II. BACKGROUND

A. Field Creation

We now describe how linear interpolation is used to
create acostdistance-to-goal field. We only cover details
relevant to the sub-optimality and path extraction techniques
presented in Section III. A complete algorithmic description
of field generation and modification can be found in the
original Field-D* papers by Ferguson and Stentz [1], [8].

As with D* [4] and D* Lite [5], a heuristic-based best-first
heap is used to guide exploration from a goal node to a start
node. The latter represents the robot’s current position, and
search occurs in the reverse direction of standard Dijkstra’s
[2] and A* [3]. When a node is popped off the top of the
heap—or expanded—its unexpanded neighbors are added
to (or updated within) the heap using a key based on
their actualcostdistance-to-goal plus a heuristic estimate
of their costdistance-to-start. We assume the heuristic is
admissible. Specifically, we use Euclideandistance ≥ 0 to
estimatecostdistance ≥ 0, assumingcost > 0. Recall that
costdistance is cost integrated overdistance.

Unlike D* and D* Lite, graph nodes are placed at the
corners of map grids instead of at their centers (Figure 3-left

vva

vb
C

D

ρ

(n, m)

(y, x)

vva

vb
C

D

ρ

(n, m)

(n, x̃)

(y, x) = (n-1, m-1)

Fig. 5. Two possible ways to get fromv to a point on edgeρ. (Left) The
path goes directly to(y, x) through gridC. (Right) The path goes from
(n, m) to (n, x̃) along the bottom of gridD, and then through gridC to
(y, x) = (n − 1, m − 1) at nodevb.

vs. 3-right, respectively). An 8-connected graph structure is
used to define neighboring nodes; however, travel through the
map is not restricted to graph edges. Linear interpolation is
used to determine thecostdistance-to-goal for points along
grid boundaries, based on thecostdistance-to-goal of the
corresponding horizontal or vertical edge’s two end-nodes.
Let (n,m) be the position of nodev relative to the bottom-
left node (Figure 4-left). Nodes are spaced1 unit apart
vertically and horizontally. Let(y, x) be a point along one of
the8 edges shown in Figure 4-left.(y, x) ∈ ρi for i = 1 . . . 8,
and(y, x) exists in the same continuous coordinate space as
(n,m). Let g(n,m) represent thecostdistance-to-goal ofv.
Whenv is expanded,g(n,m) is calculated as follows:

g(n,m) = min
(

[(n,m) → (y, x)] + g(y,x)

)

where [(n,m) → (y, x)] is the costdistance of moving
from (n,m) to (y, x) and g(y,x) is the linearly interpolated
costdistance-to-goal of (y, x). There are8 edges that must
be examined to determine(y, x) andg(n,m). Without loss of
generality, we restrict our discussion to finding the minimum
costdistance-to-goal given a single edge (Figure 4-right).
Similar calculations are performed for the remaining 7 edges
and the minimumg(n,m) over all 8 is used as the final result.

Let c and d represent the map cost of gridsC and D,
respectively, and letga and gb be thecostdistance-to-goal
of nodesva and vb, respectively. [1] shows two ways a
minimum costdistance-to-goal path may travel fromv to
(y, x) on edgeρ. These are illustrated in Figures 5-left and
5-right and described by Equations 2 and 4, respectively.
Travel directly fromv to va along the bottom of gridD is
handled during the consideration of the edge aboveρ.

g(y)=c

√

1 + (n−y)
2

+ ga(1−n + y) + gb(n−y) (1)

g(n,m) = min
n−1≤y≤n

g(y) (2)

.

g(x̃)=d (m − x̃) + c

√

1 + (x̃ − x)
2

+ gb (3)

g(n,m) = min
m−1≤x̃≤m

g(x̃) (4)

The minimum of Equations 2 and 4 is used as the final result
with respect to edgeρ. The lesser of the two depends on the
specific values ofc, d, ga, andgb. Given the case illustrated
in Figure 5-right, it is proven in [1] that the path will exit
grid C at nodevb.

va

vb
C

D

ρ

(ñ, m̃)

(y, x)

va

vb
C

D

ρ (ñ, m̃)

(n, x̃)

(y, x)
va

vb
C

D

ρ (ñ, m̃)

(y, x)

(n, x̃1)

(n, x̃2)

va

vb
Ĉ

D̂

ρ

(ŷ, m̃)

(y, x)

(ŷ, x̂)
x̃1

(a) (b) (c) (d)

Fig. 6. The three possible ways to get from(ñ, m̃) to a point on edgeρ.
(a) The path goes directly to(y, x) through gridC. (b) The path goes from
(ñ, m̃) to (n, x̃) and then along the bottom of gridD to va. (c) The path
goes from(ñ, m̃) to (n, x̃1) then along the bottom of gridD to (n, x̃2)
before cutting back across gridC to vb. (d) A quantitatively identical case
to (c), with respect tocostdistance-to-goal.

B. Basic Path Extraction

A heuristic is used to focus field generation toward the
robot. When robot position does not coincide with a grid
corner, we must ensure field propagation to all nodes neigh-
boring the robot (4 when the robot is not on a grid boundary
and 6 when the it is on an edge but not a corner). Using
Field-D*, this is achieved by ‘pretending’ the robot moves
successively between the neighboring nodes, replanning at
each. The extra replanning steps tend to execute quickly
becausecostdistance-to-goal of neighboring nodes differs
only by thecostdistance through the shared map grid.

Given a costdistance-to-goal field, a path between the
robot and goal is iteratively extracted by finding the min-
imum costdistance-to-goal point on a nearby edge. Equa-
tions 1 through 4 must be modified to reflect the fact that the
robot can exist at any point within a map grid. Equations 6
and 8 correspond to the cases illustrated in Figures 6-a and
6-b, respectively, and Equation 10 corresponds to the cases
shown in Figures 6-c and 6-d, respectively.

g(y)=c
√

(m̃−x)2 + (ñ−y)2 +ga(1−n+y)+gb(n−y) (5)

g(ñ,m̃) = min
n−1≤y≤n

g(y) (6)

wherex = m − 1.

g(x̃)=c
√

(m̃−x̃)2 + (n−ñ)2 + d (x̃−x)+ga (7)

g(ñ,m̃) = min
m−1≤x̃≤m

g(x̃) (8)

wherex = m − 1.

g(x̂)=d(m̃ − x̂) + c
√

(x̂−x)2 + (ŷ−y)2 +gb (9)

g(ñ,m̃) = min
m−1≤x̂≤m

g(x̂) (10)

where(y, x) = (n − 1,m − 1) and m̃ − x̂ = x̃1 − x̃1 and
ŷ = 2n− ñ. Grids Ĉ andD̂ have costc andd, respectively.

The costdistance-to-goal of the paths in Figures 6-c
and 6-d are quantitatively similar. The latter is created
from the former by removing the first two path segments,
(ñ, m̃)→(n, x̃1)→(n, x̃2), flipping them horizontally, and reat-
taching them to the third segment. The acute angles between
the bottom of gridD and the diagonal path segments in

goal

va vb

(ñ, m̃)

(y, x) (ñ, m̃)(ñ, m̃)

(a) (b) (c)

(ñ, m̃)

Fig. 7. Light to dark grids represent low to high cost, respectively. (Left)
The point (y, x) is the next path point after(ñ, m̃) using basic path
extraction, dotted line. This is suboptimal becausecostdistance-to-gaol
values at nodesva and vb ignore the obstacle between them; thus, linear
interpolation also ignores the obstacle. A better path goesdirectly to va,
solid line. (Right) Three possible ways a path can reenter the bottom cell
after transitioning to the upper left corner, dotted line. In each case, there
is a less expensive path directly to the boundary edge, solidline.

Figure 6-c are equal to the acute angle between the bottom
of grid D̂ and the diagonal path segment in Figure 6-d.

Proof (by contradiction): Assume two different acute an-
gles between the bottom of gridD and the diagonal path
segments in Figure 6-c. When Figure 6-d is created (as
described above) the portion of the minimumcostdistance
path from(ŷ, x̂) to (y, x) will consist of two segments joined
at an angle6= 0 degrees.costdistance obeys the triangle in-
equality becausec > 0 and distance is Euclidean. Therefore,
a better path is found by using a single segment from(ŷ, x̂)
to (y, x). This provides the necessary contradiction.�

If (ñ, m̃) exists on the grid boundary betweenC and D
then the case illustrated in Figure 6-b can be ignored. If
(ñ, m̃) exists inside a grid (i.e.̃n 6= ⌊ñ⌋ or m̃ 6= ⌊m̃⌋) then
paths from(ñ, m̃) to edgeρ may involve the grid belowC
instead of gridD. This is accomplished by substituting the
appropriate coordinates into Equations 7 through 10.

Another consequence of heuristic focused field generation
is the possibility that nodes in Equations 1-10 may not
have been updated to reflect new cost-map changes (or even
expanded). Assuming nodes have a defaultcostdistance-
to-goal of infinity, both cases are detected when the
costdistance-to-goal of neighboring nodes differs by more
than the minimumcostdistance through their shared map
grid(s)—1, 1, and

√
2 times the map grid cost value for

vertical, horizontal, and diagonal neighbors, respectively.
Inconsistent nodes can either be ignored or temporarily reset
to consistency by decreasing the largercostdistance-to-goal
value appropriately. We use the latter method.

C. 1-Step Look-Ahead Path Extraction

In [1] Ferguson and Stentz give two ways to improve basic
path extraction. The first is by using a 1-step look-ahead.
Once the ‘best’ boundary point(ybst, xbst) is found, its
costdistance-to-goal is explicitly calculated by substituting
(ybst, xbst) = (ñ, m̃) in Equations 1 through 10. The re-
sulting minimumcostdistance-to-goal replaces the linearly
interpolatedcostdistance-to-goal value used in the original
calculation of(ybst, xbst). Finally, (ybst, xbst) is only used as
the next path point if the updatedcostdistance-to-goal of the
robot through(ybst, xbst) is still less than going through any

Goal
(0, 0)

i

j

i

j

Start

Goal0 5 10

1
0

Fig. 8. (Left) The portion of the map we are considering, textured. (Right)
The bottom two rows of nodes. The robot starts at(1, 10) and the goal is
at (0, 0).

other candidate boundary point. This eliminates problems
that occur due to linear interpolation between the edges of
an obstacle, such as the case illustrated in Figure 7-left.

The second suggestion is to forbid movement to a corner
(from the interior of a grid) if the next move is back through
the original grid (Figure 7-right). Evaluating corner points
with the 1-step look-ahead strategy will eliminate this type
of error given Euclideandistance ≥ 0 and cost > 0. The
added cost of going back through the grid will be reflected in
the updatedcostdistance-to-goal of the corner point. Paths
that skip the corner point and move directly to the final edge
will be less expensive, due to the triangle inequality.

We use a priority heap to keep track of thecostdistance-
to-goal of(ñ, m̃) for all relevant routs through nearby edges.
The heap is initialized withcostdistance-to-goal values
from linear interpolation (Equations 1 through 10), along
with the points used in their calculation. Next, we pop the
‘best’ value/point off the heap and update its value using 1-
step look-ahead on the first point of the corresponding path
segment (that is,(y, x), (n, x̃), (y, x), (n, x̃), or (n, x̃1) if
the minimumcostdistance-to-goal of(ñ, m̃) was calculated
using Equation 2, 4, 6, 8, or 10, respectively). If the updated
costdistance-to-goal through that point is greater than the
new top-heap value, the point is reinserted into the heap
using the updated value. This is repeated until the updated
costdistance-to-goal of a popped point is less than the top-
heap value (or the heap is empty), yielding the appropriate
next point in the path. In the worst-case, every candidate
point/value needs to be inserted twice.

III. IMPROVEMENT

A. The Problem

Consider a map of uniform costc > 0, and let map
grids be length1. Let i andj denote the position of a node
relative to the goal in the vertical and horizontal directions,
respectively. Due to symmetry we can restrict our discussion
to the part of the map between0 and45 degrees (Figure 8-
left). Thecostdistance-to-goal of a node along thej axis is
cj because it depends only on thecostdistance-to-goal of
a left neighbor plus thecostdistance along the horizontal
length of a grid. Similarly, thecostdistance-to-goal at nodes
along the diagonal is given bycj

√
2 because it depends

on the lower left neighbor plus thecostdistance along the
diagonal of a grid. For now, we limit our discussion to the
bottom two rows of nodes, and assume the robot starts at
position(i, j) = (1, 10). This is illustrated in Figure 8-right.

(a)

0
0

1

2 4 6 8 10

goal

start

(b)

0
0

1

2 4 6 8 10

goal

start

(c)

0
0

1

2 4 6 8 10

goal

start

Fig. 9. Back-pointers used to determinecostdistance-to-goal (dotted
lines)—note that backpointers for the bottom row all point directly left. The
path extracted with 1-step look-ahead (solid black line), and the optimal path
found using prior knowledge (dashed line).

Thecostdistance-to-goal values of nodes(1, j) for j ≥ 2
are calculated using linear interpolation between their left
and lower left neighbors,(1, j−1) and(0, j−1), respectively.
Equation 2 is used because all map cost values are equal.
Figure 9-a displays a back pointer from each node(1, j) to
the point(y, x) = (y, j − 1) at which Equation 1 reaches its
minimum value (for0 ≤ y ≤ 1)). Figure 9-b superimposes
the path that is extracted using the 1-step look ahead process
described in Section II-C. Notice that the path is drawn down
at an increasing rate until it reaches thej axis—at which
point it goes straight to the goal. This is clearly sub-optimal.
Given a uniform map, the leastcostdistance path between
robot and goal is along a straight line (Figure 9-c).

This phenomenon is explained by considering howy is
calculated in Equations 2 and 6. For simplicity, we consider
the latter, noting that Equations 2 is derived from Equation6
by substituting(n,m) = (ñ, m̃). The boundary point through
which we achieve the minimumcostdistance-to-goal is
found by taking the derivative of Equation 2, setting it equal
to 0, and solving fory.

g(y) = c
√

(ñ − y)2 + (m̃ − x)2 +ga(1−n+y)+gb(n−y)

g′(y) = 0 =
c(y − ñ)

√

(ñ − y)2 + (m̃ − x)2
+ ga − gb

(

c

gb − ga

)2

− 1 =
(m̃ − x)2

(ñ − y)2

wherem̃ ≥ x in this part of the map.

y = ñ ± m̃ − x
√

(c/(gb − ga))
2 − 1

(11)

We only need to consider the subtractive case of Equation 11
becausega ≥ gb and ñ ≥ y in this part of the map, and
0 ≤ |gb − ga| ≤ c given a uniform map. Due to the con-
straints of Equation 6,y is reset ton − 1 if y < n − 1 (this
happens at positionj = 4 in Figure 9-b).

Fig. 10. Back-pointers used to determinecostdistance-to-goal. (Left) The
goal is in the center of a uniform map. (Right) The goal is in thebottom
center and there is an obstacle in the center of the map.

(a)

0
0

1

2 4 6 8 10

goal

start

(b)

0
0

1

2 4 6 8 10

goal

start

Fig. 11. Backpointers used to determinecostdistance-to-goal (dotted
lines)—note that backpointers for the bottom row all point directly left, the
path extracted using our gradient interpolation method (solid black line),
the path extracted with 1-step look-ahead (dot-dash line),and the optimal
path found using prior knowledge (dashed line).

Insight is gained from the manipulation of Equation 11:

x − m̃

y − ñ
=

√

(c/(gb − ga))
2 − 1 (12)

Equation 12 shows that the slope of a path segment from
(ñ, m̃) to (y, x) is constant, given|gb − ga| andc. Thus, the
1-step look-ahead path segment has the same slope as the
backpointer from(n,m) = (⌈ñ⌉, ⌈m̃⌉). The path is pulled
downward at an increasing rate as a consequence of changing
backpointer slope withj. This can be seen in Figure 9-
b. Once the path drops ton − 1, the relevant backpointer
changes—this is why the path moves straight to the goal
after reaching the horizontal axis.

If ñ > 1 then (x, y) will transition through the bottom
of a grid whenevery is reset ton − 1, but the overall
behavior is the same. Near the45 degrees axis,|gb − ga|
causes paths to be drawn toward the45 degree axis instead
of the horizontal axis. Near22.5 degrees, the impetuses to
move toward the horizontal and45 degree axes balance, and
suboptimal behavior does not occur. Figure 10-left shows
backpointers for all nodes when the goal is located in the
center of a uniform map.

B. A Possible Solution

By definition, node backpointers point in the same direc-
tion ascostdistance-to-goal gradient vectors. This observa-
tion inspires an alternative path extraction technique. That is,
use linear interpolation between gradient vector directions
(i.e. backpointers) to determine path segment trajectories.
This has the desirable effect of focusing path movement

(n, m)

(ñ, m)

(n-1, m)

(pa, m-1)

(y, x)

(pb, m-1)

(n, m)

(n-1, m)

(pa, m-1)

(y, x)

(pb, m-1)

(ñ, m̃)

Fig. 12. Points used in our gradient direction interpolation method. The
robot starts at point(ñ, m) (left), and (ñ, m̃) (right). Backpointers from
(n, m) and(n-1, m) point to(pa, m-1) and(pb, m-1), respectively, appear
dotted. The next point in the path is calculated as(y, x) = (y, m-1).

(n, m)

(n-1, m)
(pa, m-1)

(y, x)

(pb, m-1)

(ñ, m̃)

(y, x)

(ñ, m̃)

(yr, xr)

Fig. 13. Wheny < n−1, the next path coordinate is reset from(x, y) to
(yr, xr). The latter is the intersection of the interpolated gradient direction
with the grid boundary.

between neighboring backpointers (Figure 11-a). Although
our method does not produce the optimal straight line path
found with prior knowledge, it is often much closer to
optimal than 1-step look-ahead. For instance, in Figure 11-b
path length error is reduced by more than a factor of10.

Gradient direction interpolation may not provide advan-
tages if nearby gradients are parallel or diverging. Diverging
backpointers happen in the presence of an obstacle (Fig-
ure 10-right), and interpolating between them will take the
robot into the obstacle. Therefore, we only use the gradient
interpolation when(ñ, m̃) is between converging backpoint-
ers, defaulting to 1-step look-ahead otherwise. Similarly, we
also default to 1-step look-ahead when a backpointer consists
of more than one segment.

Consider the case illustrated in Figure 12-left. The robot
starts on a vertical edge at(ñ,m) and the backpointers
from nodes on either end of that edge converge—ending
at (pa,m − 1) and (pb,m − 1), respectively. We interpo-
late between the backpointers to find the next path point
(y, x) = (y,m − 1) as follows:

y = pb + (pa − pb)(ñ − n + 1) (13)

In the case that the robot is not on an edge Equation 13 is
modified as follows:

y = pb +
(pa − pb) (ñ − n + 1 + (n − 1 − pb)(m − m̃))

1 + (pa − pb − 1)(m − m̃)

This is illustrated in Figure 12-right, and can only happen
during the calculation of the first path segment. In the event
thaty < n−1, the next path coordinate is reset to(yr, xr) =
(n − 1, xr) the intersection of the vector of travel with the
horizontal grid boundary atn − 1 (depicted in Figure 13).

xr = m̃ − (m̃ − m + 1)(ñ − n + 1)/(ñ − y)

Fig. 14. A goal in the center of a uniform map. Dark nodes show where 1-
step look-ahead is better than gradient interpolation. Light nodes show where
both methods are the same. Nodes are omitted where gradient interpolation
is better. (Left) Basic gradient interpolation. (Right) Defaulting to 1-step
look-ahead for interpolated gradient angles between20 and30 degrees.

replacements

0 10 20
23

24

25

26

27

28

30 40 50 60

Fig. 15. The upper and lower bounds of gradient angles (vertical axis)
that perform poorly when compared to 1-step look-ahead, plotted against
column offset from goal (horizontal axis).

Figure 14-left shows nodes for which gradient interpola-
tion does not outperform 1-step look-ahead, given a uniform
map. The gradient method is sub-par when the robot starts
around22.5 degrees from a vertical or horizontal axis. We
use bisection [9] to locate the lower and upper bounds of
gradient angles associated with positive 1-step look-ahead
performance. These results are plotted in Figure 15. The
bounds appear to converge on24.1 and26.2 degrees, respec-
tively, with lower and upper limits at23.9 and27.6 degrees,
respectively. This suggests we should default to 1-step look-
ahead when an interpolated gradient angle falls within this
range. However, we find it beneficial to use a range of20 to
30 due to interactions between the two methods. Figure 14-
right compares the performance of this final modification to
1-step look-ahead, given a uniform map.

IV. EXPERIMENTS AND DISCUSSION

A. Experiments

Gradient interpolation is often better than 1-step look-
ahead. However, there can exist locations in a random map
where this is not the case. We hypothesize that, on average,
gradient interpolation will outperform 1-step look-ahead, and
conduct a series of experiments to test this hypothesis. We
should reiterate that 1-step look-ahead is used in our gradient
interpolation method whenever gradients do not converge.
We also evaluate the utility of defaulting to 1-step look-
ahead when interpolated gradient angles are between20 and
30 degrees away from horizontal or vertical (henceforth we
refer to this variation asG.I. with angle check). Finally,
we test a combined technique that calculates paths using
all three methods (1-step look-ahead, gradient interpolation,

Fig. 16. Paths through maps from Experiment 1 (left) and Experiment 2
(right). Light to dark represents Low to high cost, respectively.

Fig. 17. Paths through maps from Experiment 3 (left) and Experiment 4
(right). Light to dark represents Low to high cost, respectively.

and G.I. with angle check) and then moves the robot based
on whichever path has the minimumcostdistance-to goal
(henceforth this is referred to the as thecombined method).

We experiment with four different types of randomly
generated maps to determine if performance depends on the
cost structure imposed on the environment. The maps used
in Experiment 1 are created by randomly picking cost values
out of a continuous uniform distribution between 1 and 10
(Figure 16-left). Experiment 2 uses fractal generated maps
[10] with costs ranging from 1 to 10 (Figure 16-right). Maps
in Experiment 3 are generated by thresholding fractal maps
into 4 evenly separated cost classes, and then reassigning
values of 1, 5, 10, and 20 in order of increasing threshold
(Figure 19-left). Experiment 4 uses fractal maps that have
been thresholded to contain two cost classes, these are then
given values of 1 and 1000000 to represent free terrain and
lethal obstacles, respectively (Figure 19-right).

100 trials per method per experiment are performed on
both 100x100 and 400x400 sized maps. The goal and start
locations are placed in columnsw/6 and4w/6, respectively,
wherew is the width of the map. The start and goal rows
are determined by the grids in those columns containing the
minimum (pre-threshold) cost value. This ensures that the
robot starts and ends in relatively safe terrain.

Given the uniform map in Figure 11-b, 1-step look-ahead
produces paths that are0.34% too expensive (i.e. they have
relativecostdistance error of 0.34% when compared to the
optimal path that is knowna priori). This is quite good;
however, gradient interpolation produces paths that are only
0.031% too expensive—a reduction in error of91%. Thus,
although 1-step look-ahead is close to the optimal solution,
gradient interpolation is an order of magnitude closer. We

Experiment 1 Experiment 2

100 x 100 400 x 400 100 x 100 400 x 400

1 2 3 4
−2

0

2

4

6

8
x 10

−3

Method

Experiment

1 2 3 4
1

2

3

4

5

6
x 10

−3

Method
1 2 3 4

−8

−6

−4

−2

0

2

4
x 10

−3

Method
1 2 3 4

−20

−15

−10

−5

0

5
x 10

−4

Method

Experiment 3 Experiment 4

100 x 100 400 x 400 100 x 100 400 x 400

1 2 3 4
−4

−2

0

2

4

6
x 10

−3

Method
1 2 3 4

−5

0

5

10

15
x 10

−4

Method
1 2 3 4

−5

0

5

10

15

20
x 10

−4

Method
1 2 3 4

−5

0

5

10

15
x 10

−4

Method

Fig. 18. Means and standard deviations of path length reductions relative to
basic path extraction for Experiment 1 (top-left), Experiment 2 (top-right),
Experiment 3 (bottom-left), and Experiment 4 (bottom-right). x−axis values
indicate method as follows: (1) 1-step look-ahead, (2) gradient interpolation,
(3) G.I. with angle check, (4) combined method.

TABLE I
RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION:

T-TEST P-VALUES OF 1-STEP LOOK-AHEAD VS. OTHER METHODS

Map Size: 100 x 100
Method Experiment

1 2 3 4
Gradient Interpolation (G.I.) 0.40 < .001 0.27 < .001
G.I. With Angle Check 0.34 < .001 < .001 < .001
Combined Method 0.67 0.46 < .001 < .001

Map Size: 400 x 400
Method Experiment

1 2 3 4
Gradient Interpolation (G.I.) 0.15 < .001 < .001 < .001
G.I. With Angle Check 0.14 < .001 < .001 < .001
Combined Method 0.66 .80 < .001 < .001

TABLE II
RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION:

RATIO OF OTHER METHODS TO1-STEP LOOK-AHEAD

Map Size: 100 x 100
Method Experiment

1 2 3 4
Gradient Interpolation (G.I.) .894 −8.35 2.90 50.5
G.I. With Angle Check .881 −7.92 5.24 48.7
Combined Method 1.05 1.24 5.53 53.2

Map Size: 400 x 400
Method Experiment

1 2 3 4
Gradient Interpolation (G.I.) .897 −8.65 4.08 13.7
G.I. With Angle Check .894 −8.06 4.09 14.0
Combined Method 1.03 1.06 4.87 14.6

would like to be able to perform a similar evaluation given
randomly generated maps. Unfortunately, this is prohibited
by the fact that we do not know the theoretically optimal
costdistance path through a continuous random map. In-
stead, we look at therelative error reductionfrom the naive

TABLE III
RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION:

RAW SCORES FROMHAWAII DATA

Method Hilo Bay to : (x10−5)
Kiholo Hana Kephuli Waikiki

1-step look-ahead 0 0 0 0
Gradient Interpolation 16.84 4.10 1.21 2.51
G.I. With Angle Check 16.16 4.13 1.82 1.93

Fig. 19. Water route from Hilo Bay to Waikiki, Hawaii.

extraction technique presented in (Section II-B). Relative
error reduction is calculated as follows:

relative error reduction =
naivecstdst − othercstdst

naivecstdst

wherenaivecstdst andothercstdst are the totalcostdistance
of a path extracted using the naive and comparison tech-
niques, respectively. The mean relative error reduction over
the 100 trials is plotted for each experiment in Figure 18,
error-bars are plotted 1 standard deviation above and below
the mean. p-values are presented in Table I for a student’s
t-test given the null-hypotheses that relative error reduction
values observed using 1-step look-ahead are generated from
the same normal distributions as those observed using the
gradient interpolation methods.

The ratio between the mean relative error reduction of
gradient interpolation methods to those of 1-step look-ahead
are presented in Table II. For instance, in Experiment 4
on a 100x100 map, the average reduction in error obtained
by using gradient interpolation instead of the naive method
is 50.5 times greater than the average reduction in error
obtained by using 1-step look-ahead instead of the naive
method. Values greater than1 indicate better performance
than 1-step look-ahead, values between0 and 1 indicate
worse performance than 1-step look-ahead, and negative
values indicate worse performance than the naive method.

To demonstrate our method on a real problem we perform
a fifth experiment using geographical data from the United
States Geological Survey (USGS)1. Elevation information is
used to create a map of the Hawaiian islands at a resolution
of XXX. Ocean and land are defined as free and obstacle,
respectively, and water routes are calculated from Hilo Bay
to four other bays/beaches. Relative error reductions vs. the
naive method are presented in Table III. Raw scores are
shown (instead of the ratio to 1-step look-ahead) because
1-step look-ahead has a relative error reduction of0.

1http://seamless.usgs.gov/index.php

B. Discussion

We observe similar trends in all map sizes. Experiment 1
shows that all gradient interpolation based methods perform
statistically similar to 1-step look-ahead on maps that are
created randomly from a continuous uniform distribution.
Despite the statistical similarity, we advise against using gra-
dient interpolation on this type of map unless the combined
method is used, given that the latter is the only technique
providing any improvement over 1-step look-ahead. Experi-
ment 2 illustrates that gradient interpolation methods should
not be used on maps containing gently varying cost values
(again, using the combined method provides a marginal
advantage and will, at least, not handicap a system).

On the other hand, Experiments 3, 4, and 5 show envi-
ronments in which gradient interpolation excels. Namely,
maps with continuous regions of similar cost. Gradient
interpolation has been developed in response to a suboptimal
phenomenon observed on uniform maps; therefore, it is not
surprising that it performs well in these cases. Binary (‘obsta-
cle’ vs. ‘free’) maps and maps with a limited set of discrete
cost regions are commonly used in practice. Also, continuous
cost regions often occur in other maps as the result of two
common algorithmic considerations: (1) Predefined values of
unknown cost at unexplored regions of the environment. (2)
Cost thresholding used to eliminate noise and other small
variations that cause unnecessary meandering.

Restricting our discussion to environments where gradient
interpolation performs well and enough trials exist to perform
analysis (Experiments 3 and 4), G.I. with angle check does
not statistically improve performance vs. normal gradient
interpolation (p > .05). We also observe that larger maps
tend to decrease the amount of improvement provided by
gradient interpolation. That said, in all but one experi-
ment/system combination, the improvement is statistically
significant (p < .001) and provides relative error reduction
> 4 times that of 1-step look-ahead vs. the naive method.
Finally, we note that the combined method always provides
better performance than any of the other methods. This is
observed even in terrain where gradient interpolation does
not tend to perform well, and explained by the fact that
the combined method uses whichever technique provides the
most advantage from a given location.

V. CONTRIBUTIONS AND CONCLUSIONS

The four main contributions of our paper include: (1) We
identify a suboptimal phenomenon that occurs when standard
path extraction techniques are used to find a complete path
through a continuouscostdistance-to-goal field that has
been built using linear interpolation. The phenomenon causes
paths to drift sideways toward their horizontal or vertical
bounds such that path length is increased. A secondary con-
sequence is that paths contain unnecessary turns at positions
where a path meets its horizontal or vertical bound.

(2) We mathematically explain why this sub-optimality oc-
curs. In previous techniques (naive method and 1-step look-
ahead), all extracted path segments traveling directly through
the same grid are parallel. This is suboptimal for points in

the continuous space between nodes and is a consequence of
using linear interpolation to calculatecostdistance-to-goal
values there.

(3) We present a possible solution where path segment
directions are found using linear interpolation between
the costdistance-to-goal gradient directions at neighboring
nodes. A path segment that moves in a direction between the
gradient directions of its neighboring nodes can significantly
reduce overall path length error (over an order of magnitude
for some paths through uniform maps).

(4) We perform a series of experiments to evaluate the util-
ity of three gradient interpolation methods in four different
types of maps and on two map sizes. We also demonstrate
gradient interpolation outperforming 1-step look-ahead on
four free vs. obstacle maps created from real USGS data.

Gradient interpolation provides significant reduction in
path length error on maps containing continuous regions of
identical cost, but little or no advantage on maps containing
gradual cost transitions. Maps where gradient interpolation
excels include: common binary (‘obstacle’ vs. ‘free’) maps,
maps with a finite set of region based costs (e.g. ‘dirt,’
‘grass,’ ‘rock,’ ‘water,’ etc.), and maps where a fixed cost
for unknown terrain or cost thresholding is used. The more
complicated G.I. with angle check does not provide signifi-
cant improvement over gradient interpolation. The combined
method uses gradient interpolation when doing so is advanta-
geous and defaults to 1-step look-ahead otherwise; therefore,
it is recommended when map type is unknown or ambiguous.

Although we have focused on path extraction from
costdistance-to-goal fields created with Field-D* [1], our
techniques and discussion are applicable to other continuous
quantity-to-goal fields built using linear interpolation.

REFERENCES

[1] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The field D* algorithm,”Journal of Field Robotics, vol. 23,
pp. 79–101, 2006.

[2] E. W. Dijkstra, “A note on two problems in connection with graphs,”
in Numererical Mathematics, vol. 1, 1959, pp. 269–271.

[3] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for theheuristic
determination of minimum cost paths,” inProc. IEEE Transactions
On System Science and Cybernetics (SSC-4), 1968, pp. 100–107.

[4] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), 1995.

[5] S. Koenig and M. Likhachev, “Improved fast replanning forrobot nav-
igation in unknown terrain,” inProc. IEEE International Conference
on Robotics and Automation (ICRA’02), 2002.

[6] J. A. Sethian, “A fast marching level-set method for monotonically
advancing fronts,”Proc. Nat. Acad. Sci., vol. 93, pp. 1591–1595, 1996.

[7] R. Philippsen,A light formulation of the E* interpolated path replan-
ner. Autonomous Systems Lab, Ecole Polytechnique Federale de
Lausanne, 2006.

[8] D. Ferguson and A. Stentz, “Field D*: An interpolation-based path
planner and replanner,” 2005.

[9] D. Kincaid and W. Cheney,Numerical Analysis. Pacific Grove, CA,
USA: Brooks/Cole, 2002.

[10] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of
stochastic models,”Communications of the ACM, vol. 25, pp. 371–
384, 1982.

