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Abstract— Algorithms such as Field-D* [1] use linear interpo- Goal
lation to infer continuous fields of costdistance-to-goal, where Goal
costdistance is cost integrated over distance. Traditionally, field
values have been used as direct input to trajectory planners.
In contrast, we focus on extracting a minimum costdistance Start Start
path between two points, given the continuous field. We
identify a suboptimal phenomenon that occurs when standard
path extraction techniques are used on linearly interpolated Fig. 1. Optimal paths of identical cost through uniform mapise Teft and
quantity-to-goal fields. The phenomenon causes paths to drift "ght maps use 4- and 8-connected graphs, respectively. diliepaths are
sideways toward their horizontal or vertical bounds, resulting more desirable than the dotted paths with respect to the reddiw
in increased path length and unnecessary turns. We find that
the sub-optimality is a mathematical consequence of the linear
interpolation used to create thecostdistance-to-goal field. We
present a possible improvement that calculates path segment
directions using an interpolation between thecostdistance-to-
goal gradient vectors, and perform a series of experiments com-
paring this method with the current state-of-the-art. We find
that the proposed method can achieve a significant reduction
in path length error, and we provide discussion and examples Fig. 2. Optimal paths of identical cost through a uniform maghvén

Start Goal

of when it should and should not be used. obstacle. The map uses a 4-connected graph. The dotted eatkstires in
cost by moving toward the goal, but the solid path is more delgraith
I. INTRODUCTION respect to the real world.

Traditional graph-search techniques such as Dijkstra's, A

and D* find an optimal path with respect to a graph represefyorhood. Graph node values represent a discrete sampling
tation of the world [2]-[4]. This representation often has &ver a continuous field of either thestdistance (i.e. cost
two dimensional 4- or 8-connected structure. Unforturyatelintegrated over distance) ¢ime required to reach the goal.
the graph structuriself can lead to optimal graph paths thatrield-D* [1] operates much like D* Lite [5] (a replanning
are sub-optimal with respect to the real world. Movemenjersion of A*), except that it calculatesostdistance-to-
must be broken into a combination of horizontal and Vertic%oaj for continuous pointS on a graph edge using a linear
transitions in a 4-connected graph, or decomposed aloftgterpolation between thestdistance-to-goal of the edge’s
multiples of 45 degrees in an 8-connected graph. end-nodes. This allows paths to follow trajectories in thie-c

Many (equally) optimal paths may exist with respect to théinuous domain. Fast-marching level-set methods propagat
graph. For instance, given a uniform map, a path that moveswave front representing théne required to reach the goal
through a 4-connected (8-connected) graph horizontally §§], [7]. Assumingtime exists as an additional dimension,
far as possible and then vertically (diagonally) will havehe front expands in the direction of thene gradient but is
the same cost as a path that alternates between vertical &slved by obstaclegime gradient approximations at each
horizontal (diagonal) movement—see Figure 1. The formefode are calculated in the continuous domain given node
path is suboptimal globally, while the latter is suboptimalalues in a narrow band around the current wave front.
on the scale of a few map grids. The local sub-optimality Our paper is concerned with the extraction of paths be-
of the staircase-like path can be corrected with a simplgveen map start and goal locations, givervatdistance-to-
local planner, so the staircase-like path is more desiriable goal field. The primary and most significant contribution of
practice. However, given the set of all optimal graph-pathsur work is the identification of, explanation of, and sabuti
the task of finding the best with respect to the real worlgo an interesting suboptimal phenomenon that occurs during
is infeasible. A common solution is to break cost ties b){he path extraction process. The sub-optimality is anaanttif
moving toward the goal; however, this fails when the goal igf the linear interpolation used to create the field, and has
blocked by an obstacle—see Figure 2. not been pre\/ious|y addressed.

Algorithms have recently been developed that largely |n practice, we use the Field-D* algorithm to build the
avoid the tie-breaking problem by operating in the continucost field. However, our work is of relevance to any field that
ous domain that envelopes the 4- or 8-connected graph neigltes linear interpolation to estimate quantity-to-godiies

_ _ _ in the continuous domain. Field-D* was originally develdpe
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Fig. 3. Grid layout over map grids. Graph nodes and edges aoi,biap ‘(y, z) C C
grids are gray and white. Field-D* places nodes at grid asrfleft), while Vb Vb

A* D* and D* Lite traditionally place nodes at grid centefisght). y,x) = (n-1,m-1)

Fig. 5. Two possible ways to get fromto a point on edge. (Left) The

p7 P8 path goes directly tdy, z) through grid_C. (Right) The path goes from
% D (n, m) to (n,Z) along the bottom of gridD, and then through grid’ to
06 o1 (y,z) = (n —1,m — 1) at nodeuvy,.
oV Va oV
(n,m) , : :
s P2 p VS. 3—r|ght,_respept|vely). An 8-connected graph strietisr
C used to define neighboring nodes; however, travel through th
(0,0) P4 P3 Vs map is not restricted to graph edges. Linear interpolation i

Fig. 4. (Left) The 8 edges used to determine thetdistance-to-goal of Us_ed to deter_mine thevstdistance-to-goal for points along
nodewv. (Right) Edgep connects nodes, andu,. the costdistance-to-  grid boundaries, based on thestdistance-to-goal of the
goal of va andw;, is ga andgy, respectively. C and D are map grids with corresponding horizontal or vertical edge’s two end-nodes
cost ¢ andd, respectively. .. .
Let (n,m) be the position of node relative to the bottom-
left node (Figure 4-left). Nodes are spacédunit apart

creation and maintenance of the field itself, and the extract Vertically and horizontally. Lety, =) be a point along one of
of complete paths is largely beyond its scope. A secondai)e8 edges shown in Figure 4-lefty, z) € p; fori =1...8,
contribution of our paper is to fill in the low-level details. and(y,z) exists in the same continuous coordinate space as
In Section Il we provide a high-level description of how(7;m). Let g, ) represent theostdistance-to-goal ofv.
algorithms such as Field-D* populate thestdistance-to- Whenuv is expandedg;,, .,,) is calculated as follows:
goal field. This is also where the low-level details of basic
path extraction are provided. In Section Ill we explain the
suboptimal phenomenon and describe path extraction moahere [(n,m) — (y,x)] is the costdistance of moving
ifications aimed at combating it. In Section IV we performfrom (n,m) to (y,z) and g, . is the linearly interpolated
a series of experiments to evaluate the effectiveness of ourstdistance-to-goal of (y, z). There are8 edges that must
new techniques vs. prior methods, and discuss their stisngbe examined to determir(g, =) andg(,, ,,,). Without loss of
and limitations. Conclusions are given in Section V. generality, we restrict our discussion to finding the minimu
costdistance-to-goal given a single edge (Figure 4-right).
Il. BACKGROUND Similar calculations are performed for the remaining 7 sdge
and the minimuny,, .,y over all 8 is used as the final result.
A. Field Creation Let ¢ and d represent the map cost of grids and D,

respectively, and leg, and g, be thecostdistance-to-goal

We now describe how linear interpolation is used Qs nodesv, and v,, respectively. [1] shows two ways a
create acostdistance-to-goal field. We only cover details minimum costdistance-to-goal path may travel fronw to

relevant to the sub-optimality and path extraction techeg (y,z) on edgep. These are illustrated in Figures 5-left and

presented in Section Ill. A complete algorithmic descdpti 5-right and described by Equations 2 and 4, respectively.

of field generation and modification can be found in th%’ravel directly fromu to v, along the bottom of gridD is

original Field-D* papers by Ferguson and Stentz [1], [8]. pangled during the consideration of the edge abave
As with D* [4] and D* Lite [5], a heuristic-based best-first

heap is used to guide exploration fron,1 a goal node _tQ a start g(y)=c /1 n (n—y)2 Y gall=n+9)+gpn—y) (L)
node. The latter represents the robot’s current positiod, a

I(n.my = min ([(n,m) = (y,2)] + g(y.2))

search occurs in the reverse direction of standard Dijkstra I(n,m) = n_11n<1£1 o 9(y) 2
[2] and A* [3]. When a node is popped off the top of the .

heap—or expandee-its unexpanded neighbors are added o - N 5

to (or updated within) the heap using a key based on g(@)=d(m—-2)+c\/1+ (@ —2)" + g 3
their actualcostdistance-to-goal plus a heuristic estimate Ynm) =  min g(%) 4)
of their costdistance-to-start. We assume the heuristic is m-lszsm

admissible. Specifically, we use Euclidedistance > 0 to  The minimum of Equations 2 and 4 is used as the final result
estimatecostdistance > 0, assumingeost > 0. Recall that with respect to edge. The lesser of the two depends on the
costdistance is cost integrated overlistance. specific values ot, d, g,, andg,. Given the case illustrated

Unlike D* and D* Lite, graph nodes are placed at thein Figure 5-right, it is proven in [1] that the path will exit
corners of map grids instead of at their centers (Figuret3-legrid C' at nodeuv.
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Fig. 6. The three possible ways to get fr@m, /) to a point on edge.
(a) The path goes directly t@/, «) through gridC'. (b) The path goes from
(n,m) to (n,z) and then along the bottom of griB to v,. (c) The path
goes from(7, m) to (n,Z1) then along the bottom of grid to (n,Z2)
before cutting back across grd to v,. (d) A quantitatively identical case
to (c), with respect taostdistance-to-goal.

B. Basic Path Extraction
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Fig. 7. Light to dark grids represent low to high cost, resipetly. (Left)

The point (y,z) is the next path point aftefn, ) using basic path
extraction, dotted line. This is suboptimal becausstdistance-to-gaol
values at nodes, andw;, ignore the obstacle between them; thus, linear
interpolation also ignores the obstacle. A better path gbectly to v,
solid line. (Right) Three possible ways a path can reenterbibitom cell
after transitioning to the upper left corner, dotted line.elach case, there
is a less expensive path directly to the boundary edge, Bnéd

A heuristic is used to focus field generation toward thé&igure 6-c are equal to the acute angle between the bottom
robot. When robot position does not coincide with a gri®f grid D and the diagonal path segment in Figure 6-d.
corner, we must ensure field propagation to all nodes neigh- Proof (by contradiction): Assume two different acute an-
boring the robot4{ when the robot is not on a grid boundarygles between the bottom of gri? and the diagonal path
and 6 when the it is on an edge but not a corner). Usingegments in Figure 6-c. When Figure 6-d is created (as
Field-D*, this is achieved by ‘pretending’ the robot movesdescribed above) the portion of the minimumsidistance
successively between the neighboring nodes, replanning Rath from(g, &) to (y, z) will consist of two segments joined
each. The extra replanning steps tend to execute quickd} an angle# 0 degreescostdistance obeys the triangle in-
becaus&ostdistance_to_gOa| of neighboring nodes differs equality because > 0 and distance is Euclidean. Therefore,

only by thecostdistance through the shared map grid.

a better path is found by using a single segment f{gn;)

Given a costdistance-to-goal field, a path between the t0 (y,z). This provides the necessary contradictioh.
robot and goal is iteratively extracted by finding the min- If (7,7) exists on the grid boundary betweéhand D
imum COStdiSt(lnce-tO-gOBJ point on a nearby edge_ Equa_then the case illustrated in Figure 6-b can be ignored. If
tions 1 through 4 must be modified to reflect the fact that th&?, ) exists inside a grid (i.ei # [7| or m # [m]) then
robot can exist at any point within a map grid. Equations ®aths from(r, ) to edgep may involve the grid below”
and 8 correspond to the cases illustrated in Figures 6-a atitptead of gridD. This is accomplished by substituting the
6- b, respectively, and Equation 10 corresponds to the cas@@propriate coordinates into Equations 7 through 10.

shown in Figures 6-c and 6-d, respectively.

gy)=c/(m—2)2 + ("i—y)>+ ga(1=n—+y)+g(n—y) (5)

9w = min_ 9(y) (6)

wherez =m — 1
9(@)=cy/ (=) + (n—)? + d (T—2)+g.  (7)
Yy = min_ g(7) 8)

wherex = m — 1.
g(@)=d(m — &) + /(-2 + (§-y)> +o  (9)
9(2) (10)

min
m—1<z<m

9(n,m) =

where (y,z) = (n —1,m — 1) andm — & = &; — #; and
7y = 2n—n. GridsC and D have cost andd, respectively.

Another consequence of heuristic focused field generation
is the possibility that nodes in Equations 1-10 may not
have been updated to reflect new cost-map changes (or even
expanded). Assuming nodes have a defaultdistance-
to-goal of infinity, both cases are detected when the
costdistance-to-goal of neighboring nodes differs by more
than the minimumcostdistance through their shared map
grid(s)—, 1, and v/2 times the map grid cost value for
vertical, horizontal, and diagonal neighbors, respebltive
Inconsistent nodes can either be ignored or temporarigtres
to consistency by decreasing the largestdistance-to-goal
value appropriately. We use the latter method.

C. 1-Step Look-Ahead Path Extraction

In [1] Ferguson and Stentz give two ways to improve basic
path extraction. The first is by using a 1-step look-ahead.
Once the ‘best’ boundary pointyps:, zss:) is found, its
costdistance-to-goal is explicitly calculated by substituting

The costdistance-to-goal of the paths in Figures 6-C (yust, zpst) = (7,m) in Equations 1 through 10. The re-
and 6 d are quantitatively similar. The latter is createdsulting minimumcostdistance-to-goal replaces the linearly
from the former by removing the first two path segmentsnterpolatedcostdistance-to-goal value used in the original
(n, my~(n, Z1 )+n, T2), flipping them horizontally, and reat- calculation of(ysst, zps: ). Finally, (yyst, zsst) iS Only used as
taching them to the third segment. The acute angles betwettie next path point if the updatedstdistance-to-goal of the
the bottom of gridD and the diagonal path segments inrobot through(yss:, zss:) is still less than going through any
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other candidate boundary point. This eliminates problems (b)
that occur due to linear interpolation between the edges o™
an obstacle, such as the case illustrated in Figure 7-left. | _ __.--=-37F
The second suggestion is to forbid movement to a corneyoay_ - g==¢ = 4 _ b
(from the interior of a grid) if the next move is back through % 2 4 6 8 10
the original grid (Figure 7-right). Evaluating corner pisin (c)
with the 1-step look-ahead strategy will eliminate thiselyp Fig. 9.  Back-pointers used to determinestdistance-to-goal (dotted
of error given Euclideanlistance > 0 and cost > 0. The lines)—note that backpointers for the bottom row all poimectly left. The
added cost of going back through the grid will be reflected iﬁfﬁﬂ(f’;t;?ncgtegﬂ"(‘)"rti&éﬁmg’e"%ﬁiﬁ (I?r?g)d_ black linefi the optimal path
the updatedtostdistance-to-goal of the corner point. Paths
that skip the corner point and move directly to the final edge
will be less expensive, due to the triangle inequality. The costdistance-to-goal values of noded, j) for j > 2
We use a priority heap to keep track of thestdistance-  are calculated using linear interpolation between théir le
to-goal of (n, m) for all relevant routs through nearby edgesand lower left neighborgl, j—1) and(0, j—1), respectively.
The heap is initialized withcostdistance-to-goal values Equation 2 is used because all map cost values are equal.
from linear interpolation (Equations 1 through 10), a|0ﬂg:igure 9-a displays a back pointer from each n¢tlg) to
with the points used in their calculation. Next, we pop thehe point(y,z) = (y,j — 1) at which Equation 1 reaches its
‘best’ value/point off the heap and update its value using IJminimum value (for0 < y < 1)). Figure 9-b superimposes
step look-ahead on the first point of the corresponding pathe path that is extracted using the 1-step look ahead moces
segment (that is(y,z), (n,%), (y,z), (n,Z), or (n,71) if  described in Section II-C. Notice that the path is drawn down
the minimumcostdistance-to-goal of (7, ) was calculated at an increasing rate until it reaches theaxis—at which
using Equation 2, 4, 6, 8, or 10, respectively). If the updatepoint it goes straight to the goal. This is clearly sub-opiim
costdistance-to-goal through that point is greater than theGiven a uniform map, the leasbstdistance path between
new top-heap value, the point is reinserted into the heapbot and goal is along a straight line (Figure 9-c).
using the updated value. This is repeated until the updatedThis phenomenon is explained by considering hgvs
costdistance-to-goal of a popped point is less than the topcalculated in Equations 2 and 6. For simplicity, we consider
heap value (or the heap is empty), yielding the appropriat@e latter, noting that Equations 2 is derived from Equa6ion
next point in the path. In the worst-case, every candidaigy substitutingn, m) = (7, m). The boundary point through
point/value needs to be inserted twice. which we achieve the minimunzostdistance-to-goal is
found by taking the derivative of Equation 2, setting it equa
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1. IMPROVEMENT .
to 0, and solving fory.
9(y) = e/ (1 = y)? + (M — 2)2+ ga(1 —n+y) +gs(n—y)
A. The Problem oy — )
Consider a map of uniform cost > 0, and let map g'(y) =0= NGE 1)2 i —2) +9a = 9
grids be lengthl. Let ¢ andj denote the position of a node y
relative to the goal in the vertical and horizontal dirensp c 2 (m —x)?
respectively. Due to symmetry we can restrict our discumssio W —da) 1= (7 — y)2

to the part of the map betweénand 45 degrees (Figure 8-
left). The costdistance-to-goal of a node along thgaxis is
cj because it depends only on thestdistance-to-goal of — At m—x
a left neighbor plus theostdistance along the horizontal 4= \/ 24
length of a grid. Similarly, theostdistance-to-goal at nodes (c/(g0 = 9a))" ~
along the diagonal is given byjv/2 because it depends We only need to consider the subtractive case of Equation 11
on the lower left neighbor plus thestdistance along the becauseg, > ¢, and 7 > y in this part of the map, and
diagonal of a grid. For now, we limit our discussion to thed < |g;, — g.| < ¢ given a uniform map. Due to the con-
bottom two rows of nodes, and assume the robot starts straints of Equation 6y is reset ton — 1 if y <n — 1 (this
position (4, j) = (1,10). This is illustrated in Figure 8-right. happens at positioj = 4 in Figure 9-b).

wherem > z in this part of the map.

11)
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Fig. 10. Back-pointers used to determimistdistance-to-goal. (Left) The Fig. 12. Points used in our gradient direction interpolatioethod. The

goal is in the center of a uniform map. (Right) The goal is in bioétom
center and there is an obstacle in the center of the map.

start

robot starts at poin{n, m) (left), and (72, 7) (right). Backpointers from
(n, m) and(n-1, m) pointto(pa, m-1) and(py, m-1), respectively, appear
dotted. The next point in the path is calculated(gasz) = (y, m-1).

o(n,m)
( 1) (7, M) (7, )
Pa,m-1) g
n-1,m
(Y, x)/ o ) (y,I)A,xr)
(pp, m-1)e :

Fig. 13. Wheny < n — 1, the next path coordinate is reset frqm, y) to
(yr,zr). The latter is the intersection of the interpolated gratl@grection
with the grid boundary.

(b)
Fig. 11. Backpointers used to determinestdistance-to-goal (dotted
lines)—note that backpointers for the bottom row all poiinectly left, the
path extracted using our gradient interpolation methodidsolack line),
the path extracted with 1-step look-ahead (dot-dash liaed, the optimal

path found using prior knowledge (dashed line). between neighboring backpointers (Figure 11-a). Although

our method does not produce the optimal straight line path
found with prior knowledge, it is often much closer to
optimal than 1-step look-ahead. For instance, in Figuré 11-
path length error is reduced by more than a factot (df
T 711 = \/(C/(gb — ga))2 —1 Gradient direction interpolation may not provide advan-
y—n tages if nearby gradients are parallel or diverging. Diwegg

Equation 12 shows that the slope of a path segment frohackpointers happen in the presence of an obstacle (Fig-
(f,m) to (y, ) is constant, giverg, — g,| andec. Thus, the ure 10-right), and interpolating between them will take the
1-step look-ahead path segment has the same slope as nigot into the obstacle. Therefore, we only use the gradient
backpointer from(n, m) = ([n], [m]). The path is pulled interpolation wher(n,m) is between converging backpoint-
downward at an increasing rate as a consequence of chang@rg, defaulting to 1-step look-ahead otherwise. Similaviy
backpointer slope withj. This can be seen in Figure 9- also default to 1-step look-ahead when a backpointer dsnsis
b. Once the path drops te — 1, the relevant backpointer of more than one segment.
changes—this is why the path moves straight to the goal Consider the case illustrated in Figure 12-left. The robot
after reaching the horizontal axis. starts on a vertical edge df, m) and the backpointers

If # > 1 then (z,y) will transition through the bottom from nodes on either end of that edge converge—ending
of a grid whenevery is reset ton — 1, but the overall at (p,,m — 1) and (py, m — 1), respectively. We interpo-
behavior is the same. Near thié degrees axis|g, — g,| late between the backpointers to find the next path point
causes paths to be drawn toward tfiedegree axis instead (y,z) = (y,m — 1) as follows:
of the horizontal axis. Nea22.5 degrees, the impetuses to _ -
move toward the horizontal anth degree axes balance, and y=p+(pe—pp)n—n+1) (13)
suboptimal behavior does not occur. Figure 10-left showk the case that the robot is not on an edge Equation 13 is
backpointers for all nodes when the goal is located in thenodified as follows:
center of a uniform map. (Pa—pp) (M—n+14+(n—1—py)(m—m))

14 (pa —pp —1)(m —m)

B. A Possible Solution L o )
By definition, node backpointers point in the same direc-—rhIS 's llustrated in Figure 12-right, and can only happen

. ) i ; during the calculation of the first path segment. In the event

tion ascostdistance-to-goal gradient vectors. This observa- . :

o ’ . . thaty < n—1, the next path coordinate is reset(ig., x..)

tion inspires an alternative path extraction techniquetT$ : . K
. . . . . . (n—1,x,) the intersection of the vector of travel with the

use linear interpolation between gradient vector direstio horizontal grid boundary at — 1 (depicted in Figure 13)

(i.e. backpointers) to determine path segment trajecorie 9 y P 9 '

This has the desirable effect of focusing path movement

Insight is gained from the manipulation of Equation 11:

12)

Y=Db+

zp=m—(m-—m+1)(n—-n+1)/(n—y)



Fig. 14. A goal in the center of a uniform map. Dark nodes showreti -
step look-ahead is better than gradient interpolatiorhiuigpdes show where
both methods are the same. Nodes are omitted where gradiemiiation
is better. (Left) Basic gradient interpolation. (Right) fRlting to 1-step
look-ahead for interpolated gradient angles betw2@mand 30 degrees.

Fig. 16. Paths through maps from Experiment 1 (left) and Expent 2
(right). Light to dark represents Low to high cost, respeii.
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Fig. 15. The upper and lower bounds of gradient angles ¢atrtxis)
that perform poorly when compared to 1-step look-aheadiquloagainst g 17 paths through maps from Experiment 3 (left) and Expent 4
column offset from goal (horizontal axis). (right). Light to dark represents Low to high cost, respei.

i F%ure 14-tleft tsho;/vs ncidets folr VLh'Chh g:jadlgnt mterp;)laénd G.l. with angle check) and then moves the robot based
lon (_)I_is no ?jl_J pter orm d-s' ep EO a eﬁ ’ gtlr\:en abu:n (t)r n whichever path has the minimusastdistance-to goal
map. “he gradient method 1S sub-par when Ihe robot Staligaceforth this is referred to the as tb@mbined methqgd
around22.5 degrees from a vertical or horizontal axis. We

use bisection [9] to locate the lower and upper bounds of We experiment with four different types of randomly

gradient angles associated with positive 1-step Iook{;hhegem'}r‘f’lted maps to determine if performance depends on the

performance. These results are plotted in Figure 15. Thcé)St structure imposed on the environment. The maps used

bounds appear to converge ®h1 and26.2 degrees, respec- n Expenmen; Lare crea ted by_ ra_ndo_mly picking cost values
. . - out of a continuous uniform distribution between 1 and 10
tively, with lower and upper limits a23.9 and27.6 degrees,

respectively. This suggests we should default to 1—stel<r|oo(Flgure 16-left). Experiment 2 uses fractal generated maps

ahead when an interpolated gradient angle falls within th{slo] W'th.COStS ranging from 1 to 10 (Figure 1.6-r|ght). Maps
N - in Experiment 3 are generated by thresholding fractal maps
range. However, we find it beneficial to use a rang@®fo

30 due to interactions between the two methods. Figure e 4 evenly separated cost classes, and then reassigning

: - e values of 1, 5, 10, and 20 in order of increasing threshold
right compares the performance of this final modification t?Figure 10-left). Experiment 4 uses fractal maps that have
1-step look-ahead, given a uniform map. '

been thresholded to contain two cost classes, these are then
IV. EXPERIMENTS AND DISCUSSION given values of 1 and 1000000 to represent free terrain and
lethal obstacles, respectively (Figure 19-right).
_ 100 trials per method per experiment are performed on
A. Experiments both 100x100 and 400x400 sized maps. The goal and start
Gradient interpolation is often better than 1-step looklocations are placed in columns/6 and4w/6, respectively,
ahead. However, there can exist locations in a random magherew is the width of the map. The start and goal rows
where this is not the case. We hypothesize that, on averagee determined by the grids in those columns containing the
gradient interpolation will outperform 1-step look-ahgadd minimum (pre-threshold) cost value. This ensures that the
conduct a series of experiments to test this hypothesis. Webot starts and ends in relatively safe terrain.
should reiterate that 1-step look-ahead is used in ourgnadi  Given the uniform map in Figure 11-b, 1-step look-ahead
interpolation method whenever gradients do not convergproduces paths that afe34% too expensive (i.e. they have
We also evaluate the utility of defaulting to 1-step look+elative costdistance error of 0.34% when compared to the
ahead when interpolated gradient angles are bet@eemd optimal path that is knowra priori). This is quite good;
30 degrees away from horizontal or vertical (henceforth wlaowever, gradient interpolation produces paths that alg on
refer to this variation a<s.l. with angle check Finally, 0.031% too expensive—a reduction in error 81%. Thus,
we test a combined technique that calculates paths usiaihough 1-step look-ahead is close to the optimal solution
all three methods (1-step look-ahead, gradient interjpolat gradient interpolation is an order of magnitude closer. We
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Fig. 18. Means and standard deviations of path length remhsctelative to
basic path extraction for Experiment 1 (top-left), Experitm2r{top-right),
Experiment 3 (bottom-left), and Experiment 4 (bottom-right).axis values
indicate method as follows: (1) 1-step look-ahead, (2) gmaidinterpolation,

(3) G.l. with angle check, (4) combined method.

TABLE |

RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION
T-TEST PVALUES OF 1-STEP LOOK-AHEAD VS. OTHER METHODS

Map Size: 100 x 100

Method Experiment
1 2 3 4
Gradient Interpolation (G.1.)] 0.40 | < .001 0.27 | <.001
G.I. With Angle Check 0.34 | <.001 | <.001 | <.001
Combined Method 0.67 0.46 | <.001 | <.001

Map Size: 400 x 400

Method Experiment
1 2 3 4
Gradient Interpolation (G.1.) 0.15 | <.001 | <.001 | < .001
G.l. With Angle Check 0.14 | <.001 | <.001 | <.001
Combined Method 0.66 .80 | <.001 | < .001

TABLE I

RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION
RATIO OF OTHER METHODS TO1-STEP LOOK-AHEAD

Map Size: 100 x 100
Method Experiment
1 2 3 4
Gradient Interpolation (G.1.)] .894 | —8.35 | 2.90 | 50.5
G.I. With Angle Check 881 | —7.92 | 5.24 | 48.7
Combined Method 1.05 1.24 | 5.53 | 53.2
Map Size: 400 x 400
Method Experiment
1 2 3 4
Gradient Interpolation (G.l.) .897 | —8.65 | 4.08 | 13.7
G.l. With Angle Check .894 | —8.06 | 4.09 | 14.0
Combined Method 1.03 1.06 | 4.87 | 14.6

would like to be able to perform a similar evaluation give
randomly generated maps. Unfortunately, this is prohibite
by the fact that we do not know the theoretically optimah_

TABLE Il
RELATIVE ERROR REDUCTION FROM NAIVE PATH EXTRACTION

RAW SCORES FROMHAWAII DATA

Method Hilo Bay to : (x10~5)

Kiholo | Hana | Kephuli | Waikiki

1-step look-ahead 0 0 0 0

Gradient Interpolation 16.84 | 4.10 1.21 2.51

G.l. With Angle Check| 16.16 4.13 1.82 1.93
L

‘>

Fig. 19. Water route from Hilo Bay to Waikiki, Hawaii.

extraction technique presented in (Section II-B). Retativ
error reduction is calculated as follows:
naivecsidst — othercgase

relative error reduction = -
Nalvecstdst

wherenaive g andother 44 are the totakostdistance

of a path extracted using the naive and comparison tech-
niques, respectively. The mean relative error reducticer ov
the 100 trials is plotted for each experiment in Figure 18,
error-bars are plotted 1 standard deviation above and below
the mean. p-values are presented in Table | for a student’s
t-test given the null-hypotheses that relative error rédac
values observed using 1-step look-ahead are generated from
the same normal distributions as those observed using the
gradient interpolation methods.

The ratio between the mean relative error reduction of
gradient interpolation methods to those of 1-step lookadhe
are presented in Table Il. For instance, in Experiment 4
on a100x100 map, the average reduction in error obtained
by using gradient interpolation instead of the naive method
is 50.5 times greater than the average reduction in error
obtained by using 1-step look-ahead instead of the naive
method. Values greater thanindicate better performance
than 1-step look-ahead, values betwekrand 1 indicate
worse performance than 1-step look-ahead, and negative
values indicate worse performance than the naive method.

To demonstrate our method on a real problem we perform
a fifth experiment using geographical data from the United
States Geological Survey (USGSElevation information is
used to create a map of the Hawaiian islands at a resolution
of XXX. Ocean and land are defined as free and obstacle,
respectively, and water routes are calculated from Hilo Bay
to four other bays/beaches. Relative error reductionshes. t

"haive method are presented in Table Ill. Raw scores are

shown (instead of the ratio to 1-step look-ahead) because
step look-ahead has a relative error reductiof.of

costdistance path through a continuous random map. In-

stead, we look at theelative error reductionfrom the naive

Lhttp://seamless.usgs.gov/index.php



B. Discussion the continuous space between nodes and is a consequence of

We observe similar trends in all map sizes. Experiment ysing linear interpolation to calculat®stdistance-to-goal
shows that all gradient interpolation based methods perforvalues there. . .
statistically similar to 1-step look-ahead on maps that are (3) We present a possible solution where path segment
created randomly from a continuous uniform distributiondirections are found using linear interpolation between
Despite the statistical similarity, we advise against gsjra- the costdistance-to-goal gradient directions at neighboring
dient interpolation on this type of map unless the combineBodes. A path segment that moves in a direction between the
method is used, given that the latter is the only techniqu%rad'em directions of its neighboring nodes can S|gn|ﬂg§1n
providing any improvement over 1-step look-ahead. Exper[€duce overall path length error (over an order of magnitude
ment 2 illustrates that gradient interpolation methodsutho for some paths through uniform maps). _
not be used on maps containing gently varying cost values (4) We perform a series of experiments to evaluate the util-
(again, using the combined method provides a marginHV of three gradient interpolation methods in four diffete
advantage and will, at least, not handicap a system). types of maps and on two map sizes. We also demonstrate

On the other hand, Experiments 3, 4, and 5 show envilradient interpolation outperforming 1-step look-ahead o
ronments in which gradient interpolation excels. Namelyfour free vs. obstacle maps created from real USGS data.
maps with continuous regions of similar cost. Gradient Gradient interpolation provides significant reduction in
interpolation has been developed in response to a subdptinf&th length error on maps containing continuous regions of
phenomenon observed on uniform maps; therefore, it is nislentical cost, but little or no advantage on maps contginin
surprising that it performs well in these cases. Binary §tab gradual cost transitions. Maps where gradient interpamtati
cle’ vs. ‘free’) maps and maps with a limited set of discretéXcels include: common binary (‘obstacle’ vs. ‘free’) maps
cost regions are commonly used in practice. Also, contisuotm@ps with a finite set of region based costs (e.g. ‘dirt;
cost regions often occur in other maps as the result of tw8ass,” Tock,’ ‘water,” etc.), and maps where a fixed cost
common algorithmic considerations: (1) Predefined valdies &F unknown terrain or cost thresholding is used. The more
unknown cost at unexplored regions of the environment. (£PMplicated G.I. with angle check does not provide signifi-
Cost thresholding used to eliminate noise and other sm&@nt improvement over gradient interpolation. The comiyine
variations that cause unnecessary meandering. method uses gradient interpolation when doing so is advanta

Restricting our discussion to environments where gradie@€0us and defaults to 1-step look-ahead otherwise; threrefo
interpolation performs well and enough trials exist to parf it is recommended when map type is unknown or ambiguous.
analysis (Experiments 3 and 4), G.I. with angle check does Although we have focused on path extraction from
not statistically improve performance vs. normal gradienostdistance-to-goal fields created with Field-D* [1], our
interpolation f > .05). We also observe that larger mapstechniques and discussion are applicable to other coniguo
tend to decrease the amount of improvement provided gipantity-to-goal fields built using linear interpolation.
gradient interpolati_on._That said, in all but.one gxperi- REFERENCES
ment/system combination, the improvement is statisticall o , _
significant p < .001) and provides relative error reduction 1 glé;ﬁ;gglfsﬁ?e?{é?d o §f§2}§hm‘fi‘,’;?n;’}tg{‘;?é?};Ogog?)ti'g“sﬁ)ﬁ{‘“;‘;*j
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