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Abstract We identify a new class of algorithms for multi-robot pratle called
“Any-Com” and present the first algorithm belonging to thktss “Any-Com in-
termediate solution sharing” (or Any-Com ISS) for multbad path planning. Any-
Com algorithms find a suboptimal solution quickly and thémeethat solution sub-
ject to communication constraints. This is analogous tdAng-Time” framework,
in which a suboptimal solution is found quickly, and refinedtiane permits. The
current paper focuses on the task of finding a coordinateaf seflision-free paths
for all robots in a common area. The computational load afidating a solution is
distributed among all robots, such that the robotic teanoimes a distributed com-
puter. Any-Com ISS is probabilistically/resolution core@d and a particular robot
contributes to the global solution as much as communicagdiability permits.
Any-Com ISS is “Centralized” in the planning-algorithmierse that all robots are
viewed as pieces of a composite robot; however, there is dcated leader and
all robots have the same priority. Previous centralizedimobot navigation algo-
rithms make assumptions about communication topology amdiwidth that are
often invalid in the real world. Any-Com allows for collaladive problem solving
with graceful performance declines as communication detdes. Results are val-
idated experimentally with a team of 5 robots.

1 Introduction

Autonomous navigation is a key capability for enabling bisttiustrial and con-
sumer robotics to perform their work effectively. In factany of today’s state-of-
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the-art systems are being commercialized, and will becoroeasingly deployed
into mainstream settings in the near future. As robot trdficomes more con-
gested, tomorrow’s systems must be capable of coordinatedaction within a
multi-robot society. This imposes a need for multi-robotigation solutions that
can plan efficient, coordinated, and collision-free pathisafcollection of robots.

Complete solutions to multi-robot problems can be compratly complex.
Although less expensive methods can enable practical ipeaface in many real-
world situations, these are incomplete and can fail in thetroballenging circum-
stances (see Section 2.1). Often, each robot in a team ippiwith its own
computer and the ability to communicate. Given these ressuiit makes sense
to divide computational effort among all robots a solutioii enefit. That is, a
networked team of robots can be re-cast as a distributed w@mio solve the prob-
lems encountered by its composite robots. This is partilyulsseful for complex
communal tasks such as centralized multi-robot path-jitegnn

In practice, wireless bandwidth is environment dependedtadten beyond the
control of the user or a system. Yet, algorithms for coortilirganetworked robot
systems usually rely on a minimum quality of service and d#lilerwise. We are
therefore interested in distributed algorithms able tbzgtiunreliable communica-
tion, and coin the term “Any-Com” to describe them. The idetifind a suboptimal
solution quickly, and then refine toward optimality as conmication permits. This
is analogous to the “Any-Time” paradigm, in which algorithadapt to the available
computationtime (Boddy and Dean, 1989). In this paper we present an algorithm
called Any-Com Intermediate Solution Sharing (or Any-Com ISS) for performing
centralized multi-robot path-planning within the Any-Cdramework. In previous
work, centralized solutions have either been calculated simgle robot and then
disseminated, or solved by each robot individually (sediGe@.2).

In general, Any-Com algorithms exploit perfect commurimaand have grace-
fully performance declines otherwise. However, just as-Aiyie algorithms cannot
calculate a solution in 0 time, Any-Com ISS may not find a sotutvhen commu-
nication totally fails. Worst-case scenarios aside, Amyv(JSS is robust to a high
degree of communication disruption.

A brief survey of related work is presented in Section 2. Aldpnic details
are provided in Section 3. In Section 4 we conduct a seriegu#réments both in
simulation and on real robots. In Section 5 we discuss owltgesand conclusions
are given in Section 6.

2 Related Work

Here we briefly discuss a few multi-robot algorithms locaddmhg the communi-
cation, computation, and completeness spectrums. Rbealhtomplete algorithm

is guaranteed to find a solution when one exists and will apont failure in finite
time if a solution does not exist. Aesolution complete algorithm is an algorithm
that is complete to within a predefined granularity of the ldi@epresentation. A
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probabilistically complete algorithm is an algorithm that will find a solution, if one
exists, in finite time with probability approaching 1.

2.1 Incomplete methods

In the cocktail party model each agent maintain its own world-view, goals, and
navigation function, while remaining ignorant of other otd and their intentions
(Lumelsky and Harinarayan, 1997; van den Berg et al, 2008yhEagent alter-
nates sensing, planning, and movement, and there is nd doeaination between
robots. While this algorithm is incomplete, it is popular dosimplicity, scalability,
and minimal communication requirements.

In prioritized planning each robot’s path is calculated separately, subject to the
movement constraints imposed by the paths of higher-pyioobots (Clark and
Rock, 2001; Erdmann and Lozano-Perez, 1987; Hada and Tak@84%; Warren,
1990). Higher priority robots follow optimal to near-optihtrajectories while lower
priority robots may be unable to find a solution. Prioritizgdnning has also been
used to periodically create a line-of-sight communicatibain while performing
the somewhat related coverage task (Hollinger and Singt)20

Decoupled planning breaks planning into two phases. In phase-1 each robot cal-
culates its own path to the goal. In phase-2 the space-tirmigiquus of the robots
along these paths are calculated such that no collisiong ¢éconov et al, 1998;
Guo and Parker, 2002; Kant and Zuker, 1986; Leroy et al, 198Bhough de-
coupled planning can be distance-optimal, it is incompleteause each robot’s
path is completely determined after phase-1 (and they ménofmaically conflict)
(Sanchez and Latombe, 2002).

2.2 Complete methods: Centralized planning

In Centralized planning all robots are considered individual pieces of a single com-
posite robot. Solutions are calculated in the resulting kignensional configuration
space. Robot paths are found by projecting the high-dineassolution down into
the relevant subspace per each robot. (Bonert, 1999; lalk 2003; Sanchez and
Latombe, 2002; Schwartz and Sharir, 1985; Xidias and Asyihens, 2008). Previ-
ously, the high-dimensional solution has either been tatled by a single agent or
at the same time on each robot (thus robots must communidtiehis agent or
each other, respectively). Centralized planning is themaky complete but practi-
cal algorithms are usually probabilistically or resolaticomplete; nonetheless, it
provides the best completeness guarantees of any mutit-ptdinning method.
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2.3 Relevance to our work

Our Any-Com ISS algorithm (presented in Section 3) is cdiatrd, and there-
fore shares many similarities to the work described abovee @ajor differ-

ence is that previous work has not considered what happees admmunication
deteriorates—this is a main contribution of our work. Anotimeportant difference
is that our algorithm leverages the distributed-compugiager of the robotic team
to help find better solutions more quickly. In contrast, jwas work has required
each agent to calculate an entire solution completely on its own.

Distributed versions of both prioritized planning and dgaled planning exist.
For instance, in prioritized planning each robot can caleuits own path (assuming
it respects robots of higher priority), and in decoupledhplag each robot can indi-
vidually calculate its own phase-1 solution (although ¢hemist be assembled by a
single agent in phase-2). However, both prioritized plagrind decoupled planning
are incomplete, while Any-Com ISS is probabilisticallwotution complete.

We believe Any-Com ISS is most applicable to the complicgieaning situa-
tions in which the incomplete planning methods fail, andamde using the (less
computationally complex) incomplete ideas under mostairstances. For this rea-
son we only compare Any-Com ISS to state-of-theearttralized planning tech-
niques in Section 4—as these are the only other algorithniblewhen incom-
plete methods fail.

3 Methodology

Let the robot workspac® exist inR2. To guarantee probabilistic/resolution com-
pleteness, the entire team is considered a single composité. Each individual
robot contributes 2 dimensions to the combined configunagfmaceC, in the form
of position(x,y), and search occurs if&" configuration space whergs the num-
ber of robots. We assume resolution accuracy defined for the configuration state
vector.d is the minimum distance allowable between any two configumatper di-
mension and thus defines the resolution of the search. Irganatiic sensea) keeps
the search-tree from being populated with essentiallyidat@ configurations, and
focuses effort on finding (significantly) better solutiod¢e assume circular robots
that can pivot in place, but note our algorithms can be géimeckto arbitrary robots.

We use a heavily modified version of an any-time rapidly exijr@nrandom tree
(RRT) inspired by Ferguson and Stentz (2006). Our undeghRRT differs from
previous work (LaValle and Keffner, 2001) in two significamays. First, instead
of connecting a new node to the tree using the shortest pessilge, we use the
edge that gives the new node the shortest possible distasroet. Second, instead
of restarting each subsequent tree from scratch (i.e. wvinile remains to find a
better solution), we prune the existing tree such that iy cohtains nodes that can
possibly lead to better solutions—then continue growingséuee tree subject to
the constraint that new nodes must be able to lead to betteists.
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In general, we seek to utilize the distributed computafigaver of a team of
mobile robots. We want algorithms that function in envir@mts where communi-
cation is unreliable, but take advantage of reliable comoaiion when it exists. To
these ends, each agent maintains its own randomly creatdssuming robots,
the union of all trees is &(n) times larger tree maintained collectively by the en-
tire team. Any-com is achieved by having robots share thelividual intermediate
solutionsduring path-planning so that all agents can prune globally subvabt
branches from their local trees. This enables each robaidosfeffort on finding
only better solutions than those currently knowmag robot. It also gives all robots
a chance to directly refine the best intermediate solutiancs¥l this idea Any-Com
Intermediate Solution Sharing (Any-Com ISS).

Theoretically, allowing more agents to work on a randone-fpeoblem will in-
crease the chances a good solution is found quickly, regssdlf whether or not the
sharing of intermediate solutions has any affect. Theegfiordetermine how much
(if any) advantage Any-Com ISS provides, we compare Intéliate Solution Shar-
ing to havingeach agent individually find a unique solution to the completelpro
lem, then distributing them so the team can use the best oaeefat to the latter
method ad/oting, and note that similar ideas have been explored in the péemtk(C
et al, 2003). Finally, to give context to the relative penfi@ance of Any-Com ISS vs.
Voting, we compare both of them to a client-server framewbtrkhe client-server
system, which we caBaseline, the server is charged with calculating a complete
solution using a single random tree, and then sharing it thighother robots.

Any-Com ISS, Voting, and Baseline all use the same undeglyandom tree
algorithm, shown in Figure 1-Left. To demonstrate that @mdom-tree algorithm
performs well vs. previous work, we additionally compareules to Any-Time RRT
(Ferguson and Stentz (2006)). We assume the existence afnaissable heuristic
functionh(p1, p2) that returns the distance between configuratianand p, ignor-
ing any collisions. The valubstIn stores the length of the shortest path known at
any particular time. On line 4 we pick a new configuratipnto add to the tree—
chosen as the goal with probabilipyand uniformly at random otherwise. On line
5, we check both ip; exists inC+ee, the collision free portion of the configuration
space, and also if usingg can possibly lead to a better solution based on the start
and goal configurations armdtI n. Note thatC+,e is calculated with respect to both
robot-robot collisions and robot-obstacle collisions.lde 7 we find the best node
p2 in the tree to use as a parentf. We recordSyi¢(p1), the actual distance-to-
start of p; throughp,, and then adg; to the tree on lines 10 and 11. pf is the
goal (andpz # null on line 8) then the new path-to-goal is the best intermediate
solution found so far, so we upddtetin on line 13. On line 14 we use the function
findShortcuts() to see if other nodes in the tree can reach the start morelgwiek
p1 instead of their current parent. If so, we change the treefteat this, and update
Siig values of the descendants accordingly.

Lines 16-20 are only executed when Any-Com ISS is used. @nliéwe check
for incoming messages from other agents that may contaterlymths. If a better
path is received, then it is added to the search-tredghialis updated (lines 18 and
19). Finally, we send messages to other agents on line 20.
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RandomTree() p2 = findBestAndPruneTree(p; )
1: bstin=c0
2: addstart as root of search-tree 1: po=null
3: while time < i do 2: gpz = bstin
4:  pick a pointp; € C, where 3: for eachnodep; € Treedo
p1 = goal with probability p 4 if Siig(pi) +h(pi,goal) > bstin then
5. if p1¢Crree 5 removepi
or h(start,p1) + h(pz,goal) > bstin 6: else if py is within & of p, then
then 7: return null
6: continue 8: if Sig(R)+N(pi, p1) < gp2 then
7:  p2=findBestAndPruneTree(p;) 9. if edge €i,p1) € Crree then
8  if p2=nullthen 10: P2 = pi
9: continue 11 Op2 = Suiz(R) +h(pi, p1)
10:  Sus(P1) = Sua(P2) +(p1, p2) 12: rewrn  p,
11: addp; to search-tree as a child pp
12:  if pp =goal then .
13: t)stl n = Siix(p1) FindShortcuts(p1)
14:  FindShortcuts(p;) 1: for eachnodep; € Treedo
15:  if using Any-Com ISShen 20 if Sug(pi) +h(pi, 1) < Suist(P1)
16: check for messages at rate and edge (i,p1) € Cree then
17: if received better patthen 3 Suist (P1) = St (Pi) +h(pi, p1)
18: add that path to search-tree | 4: reroutep; throughp,
19: updatebstin 5: for descendants gf; do
20: send message with best-path 6: updateSyig ()

Fig. 1: Random tree algorithm with flags indicating functébty native to Any-Com
ISS (Left). Subroutine for finding, (the best neighbor gf; already in the tree) and
pruning the tree (Top-Right). Subroutine for checking d abdes would do better
by usingp; as their parent (Bottom-Right).

While searching fomp; in findBestAndPruneTreg() (Figure 1-Right-Top) we
simultaneously prune any nodes that cannot possibly leadltdions shorter than
bstIn, and also check ip; is more thand away from configurations already in the
tree. Keeping the tree as small as possible focuses effdmding better solutions.

Search continues until timg, after which the most recent (and therefore best)
intermediate solution is recorded as an agent’s final smiutin Baseline, this is
when the server distributes its final solution to the cliestiats, and also when
individual solutions are compared in Voting.

We hypothesize Intermediate Solution Sharing will prodoetter solutions than
the other two methods because it allows the entire team te tigiter search-tree
pruning—focusing search toward new and improved solutidaslitionally, Any-
Com ISS gives each agent the opportunity to improve the lo&gien found so far.
Any-Com ISS is robust to packet loss because dropped mesdageot affect an
agent’s ability to eventually find a solution. On the othendhasuccessful commu-
nication focuses search in beneficial ways and helps the fieanbetter solutions
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more quickly. Even out-of-date messages have the poteéatis beneficial, as long
as the solution they contain is better than the receiving&geurrent best.

Each search-tree is generated randomly and each solutdavs from a dis-
tribution over all possible solutions. Theoretically, bb@ny-Com ISS and Voting
should increase the team’s collective chances of findingsaratde solution, vs.
Baseline, becaugserandom samples are drawn from this distribution instead of 1

Both Any-Com ISS and Voting use the same underlying mespagsing pro-
tocol to disseminate information within the group. The ideaimple: each robot
broadcasts information to every other robot at a predefiatgw using the User
Datagram Protocol (UDP). UDP drops unsuccessful messagash keeps the
information flowing through the network up-to-date. Eachseage contains the
following information about the state of the global solatidased on the sending
robot’s current knowledge:

Best solution (currently known to the sender)
Best solution’s length

ID of the robot that generated the best solution
List of robots that have submitted a final solution
Movement flag

List of robots that support best solution.

Each robot keeps a copy of what it believes to be the bestisoltdund by any
robot. Each robot is responsible for adding itself to therappate lists. In order
to keep the network up-to-date, messages are dropped ittregin paths that are
worse than the best path known to the receiving agent. Riginalts after timeu, at
which point robots begin adding themselves to the list obtsibhat have submitted
a final solution. Any robot can correctly deduce which agreetias occurred if it
knows all robots have submitted a final solution (regardéésalgorithm). This is
because better solutions are no longer being generatedarest solution known
to the sending robot is always sent in every message—thel detstasolution must
have been passed along with the knowledge that the robot whergted it has
submitted a final solution. In the unlikely event of a tie, #wdution found by the
robot with the lower ID is used. Once a robot knows an agreéiresibeen reached,
it sets the moving flag to TRUE, begins moving along its patttipe best solution,
and rebroadcasts the best solutiomuatf a robot receives a message with a TRUE
movement flag, it also starts moving and rebroadcasts that@oat w.

Baseline modifies the method described above by setting tvement flag to
TRUE as soon as timg occurs. Therefore, each robot begins moving as soon as
the solution is received from the server. In order to keepebas as naive as pos-
sible, the client robots do not rebroadcast the solutioratthether, but the server
continues to rebroadcastat

Any-Com ISS also has an additional method of reaching areaggat. By care-
fully tracking which partial solutions the other robots mascently support (during
the planning phase), it is possible to approximately fosettee final vote at time:.
After time p, if a particular robot believes all robots currently sugpisrmost recent
solution, then it starts moving on that solution and rebecaatk it atw (along with
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A\ TE

Fig. 2: A solution from Experiment 1 (Left). The Prairiedoglbdtic Platform
(Right).

the moving flag set to TRUE). This information is propagatedagh the network
as usual (with disagreements broken toward solutions fiadrots with lower 1Ds).
Although this protocol may allow a suboptimal solution todb®sen, it is unlikely.
Further, if an agent erroneously believas robots currently support its solution,
then it must have had the best solution in the past, so thetestoneously picking
a suboptimal solution is mitigated. A scenario where déferrobots move along
differentincompatible solutions is impossible because two or more robots cannot
simultaneously believe all robots support their most résetution. This is due to
the fact thabnly the robot that generated a solution can initiate movememigait.

If two different robots generate competing solutions, megitwill initiate movement
until one robot advertises support for the other’s solutiamd they cannot both
support the other’s solution because one solution is gtegdrio be better than the
other (or, in the case of ties, come from the robot with lovizy. |

4 Experiments

We perform two experiments with 5 robots in an office envirenin Experiment 1
is conducted in simulation to evaluate theoretical perfotoe over a wide range of
parameters. Experiment 2 uses real robots to validate lbatlgorithms function
in practice. Our robotic platform is the iRobot create, areluge the ROS operat-
ing system by Willow Garage. Robots are equipped with theg8tzer Indoor Lo-
calization System. Our Computational Units are System 7daks with built-in
wireless networking capabilities.

Experiment 1 evaluates the relative performance of Any-C88) Voting, Base-
line, and Any-Time RRT (Figure 2). Note that Any-Time RRT isron a single
robot. We evaluate performance of all four algorithms vsssage success proba-
bility 7 vs. planning timeu. We user = {1,1/4,1/16,1/64} probability of success



Any-Com Multi-Robot Path-Planning 9

5 sec 10 sec 25 sec 50 sec

250 - © - Baseline
—o— Voting

200 —e— Any-Com ISS

—&— Any-Time RRT|

150%

100

50 R Bog- - - -~ :

Solution length (max time to goal)

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Probability of successful message send

Fig. 3: Average Solution Lengths from Experiment 1. Sultgpéhow different plan-
ning timesg.
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Fig. 4: Average agreement time from Experiment 1. Sub-gbtawv different plan-
ning timesy.

andu = {5,10, 25,50} seconds. We perform 100 runs per each combination of pa-
rameters to facilitate statistical analysis of resultsaMand standard deviations of
the resulting solution lengths are displayed in Figure 3agr@ement times in Fig-
ure 4 (agreement time is the time afteand before movement). Note that agreement
times are not presented for Any-Time RRT, since no messagg@ais required.
Experiment 2 is conducted on 5 actual robots and is simildxperiment 1.
Robot speed is 0.2 meters per second. During planwirgd, and during the agree-
ment phasev = 32. The change is due to the preliminary results in Expertrien
where it is clear that the agreement phase can become leingényns of messages
sent. Also, path-planning is computationally intensivéleithe agreement phase is
not, and robots are able to spare additional resourcesiteedsen. The sameu are
used as in Experiment 1. Each data-point represents 20\Weplot solution qual-
ity and agreement time vs. planning time in Figure 5 Left aimghR respectively.
Signal quality was relatively good in this experiment, thserved packet loss rate
was less than 50%. We forgo comparison vs. Any-Time RRT dubemositive
performance of the other methods in Experiment 1.
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Fig. 5: Average Solution Lengths (Left) and average agregrime (Right) from
Experiment 2.

5 Discussion of Results

With regard to solution quality, both Any-Com ISS and Votiogt-perform Base-
line, and Any-Com ISS outperforms Voting. All three methamgperform Any-
Time RRT. Using a two-sample Kolmogorov-Smirnov test, wepare algorithms
based on solution lengths, and find statistically signifi¢an< .05) differences be-
tween any two algorithms for all but one method-parameterttinations in Exper-
iment 1 (i.e. for one method vs. another wjttandt held constant), and all but one
parameter combination in Experiment 2 (Voting vs. Any-Cd$latu = 5 sec).

In fact, p < 0.001 for most data-points in either experiment. When the te$dm

all experiments are considered togethbecomes vanishingly small. These results
validate our original hypothesis.

Examining the solution quality vs. planning time for theigas methods in Fig-
ures 3 and 5-Left illustrate just how well Any-Com ISS penfisr. Voting finds sim-
ilar quality solutions using less than half the planningdias Baseline, on average,
while Any-Com ISS finds similar quality solutions i 1/n of the time! This is
strong evidence the robotic team is functioning as an éffedistributed computer.
Given we are using times as much computational power, the expected ratio of re-
quired planning time is An. Therefore, the super-efficient observed value:df/n
in Experiment 2 is impressive, especially given the miniiatia shared between
agents. Whether or not this trend will continue for largeng®of robots is a ques-
tion we hope to answer in future work.

It often takes longer than 5 seconds (or even 10) for an agdind a solution.
That is,u = 5 is not enough time to guarantee that all robots have foundLidicen.

In such a case, after 5 seconds has passed, Any-Com ISS egestisolution found
by any robot so far, while Baseline must wait until the sefiras its first solution,

and Voting must wait until all robots have found a solutiohisThas two interesting
affects. First, the agreement times of Baseline and Votiagjeeater than Any-Com
ISS because all robots must wait until the server or all ri@bae found a solution,
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respectively, before an agreement can be reached. Secpnehiting extra time
until n solutions exits, Voting has an increased chance of findingpad” solution
vs. Any-Com ISS. While this may initially seem desirable, vagenthat Any-Com
ISS is able to start movement at the expected time, whilettier algorithms suffer
unexpected delays. We believe this is why the results fongaind Any-Com ISS
are similar foru = 5 sec in Experiment 2 (i.¢a > .05), and also why the agreement
times for Voting and Baseline are inflated for=5 andu = 10 in Experiment 1.

Another interesting trend is that Any-Com ISS solution gyaloes not get much
worse as communication becomes unreliable. Theoretj@aly — 0 the results of
Any-Com ISS will approach those of Voting. There is a hintlutin Experiment
1, wherert is controlled, especially for longer planning times. Hoee\t appears
communication must drastically deteriorate before Anyyd&S begins to suffer.
In fact, packet loss rates as high as 98% have little affesiodution quality.

The most noticeable effect of poor communication is an iaseein the time it
takes the robots to agree on a single solution. Assumingtimatunication failure
is strictly Poisson-distributed, increasing the messagatew during the agreement
phase can mitigate the effects of communication detei@rgts we did in Exper-
iment 2). In any case, the bandwidth will eventually becorigisted, and further
diminishingt will eventually prevent an agreement from taking place imithuse-
ful time. Therefore, Any-Com ISS should not be used whien 0. That said, it
is impossible forany complete algorithm to function when=~ 0. As a practical
measure, the ~ 0 case could be handled using a time-out. After which, rosiaiit
moving based on the best solutions known to them indiviguABsuming on-board
sensors exist, conflicts could then be resolved using thktaibparty model. Al-
though this ‘worst-case-scenario’ forces the algorithrbécome incomplete until
communication is resumed, it is arguably better than lgtthre team remain mo-
tionless forever. Further discussion on this idea is beybadcope of this paper.

The simulated experiments predict Baseline should haviesiagreement times
to Any-Com ISS, while the real experiments show Any-Com IS8a clear winner.
The fact that these benefits do not extend to the Voting meféeeh foru > 10)
suggests some other mechanism is responsible for thevedjatjiuick agreement
time of Any-Com ISS. We credit this improvement to the awxiivote-forecasting
agreement method available to Any-Com ISS.

6 Conclusions

We coin the term “Any-Com” to describe algorithms that usetiple agents to
collaboratively refine a solution toward optimality as coomitation permits. The
motivation behind the general Any-Com idea is that disteduwobots should adapt
to use as much collaborative problem solving as commuwicajuality permits.
This is useful for solving computationally intensive preils, and especially well
suited to problems with solutions of value to multiple agefithe problem domain
of centralized multi-robot rover navigation has both ofseualities.
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We present a practical Any-Com multi-robot path-plannilygethm calledAny-
Com Intermediate Solution Sharing (Any-Com ISS) in which agents share interme-
diate solutions so that the entire team can focus remaiffiiag en finding even bet-
ter solutions. This works because it allows all robots taprglobally sub-optimal
branches from their local search trees based on the beibsdtnown to any mem-
ber of the team. It also gives each robot an opportunity tectly improve the best
solution. Intermediate Solution Sharing is Any-Com beeadi®pped messages do
not prohibit a solution from eventually being found, whilecsessful messages im-
prove solution quality (both in overall path quality, ané time it takes to reach an
agreement). We envision Any-Com ISS as one tool among matheimulti-robot
planning arsenal—useful in the specific case when a complgteitam must be
used (i.e. when a group of robots finds itself confronted witlifficult problem that
cannot be solved by less expensive incomplete planningads}h

We perform 2 experiments using a teanmef 5 robots, and compare results to a
basic server-client model as well as a voting method (in ¢énees-client framework
one agent plans and then distributes the solution to the atbets, while in voting
each agent is allowed to plan separately and then the teasthesdest solution
found by any single agent). We find Any-Com ISS requiessthen 1/n of the time
required by the client-server framework to find a solutiosiaiilar quality, and less
than 1/2 the time required by the voting method, on average.

As bandwidth approaches 0 the solution quality of Any-Cor8 tBeoretically
declines gracefully to that of the voting method, while brgmain better than the
server-client model. In fact, we find that communicatiorslas high as 98% has
little affect on solution quality. Unfortunately, the timetakes to reach consen-
sus approaches infinity as communication approach 0. Thistisinexpected, as
all complete algorithms are inherently vulnerabletdtal communication failure.
Ignoring this worst-case-scenario, we find that Any-Com IS®obust to a high
degree of communication interference.

While this paper is a focused case-study on Any-Com applietliti-robot nav-
igation, we stress that the Any-Com idea is not limited ts fharticular domain. In
particular, Any-Com ISS is applicable to any random-trearcle through a met-
ric space. We hope that the Any-Com concept will spread tergphoblems, and
envision a world in which mobile robots dynamically take adtage all available
computational resources to solve complex problems.
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