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Abstract. Algorithms for robotic swarms often involve programming
each robot with simple rules that cause complex group behavior to
emerge out of many individual interactions. We study an algorithm with
emergent behavior that transforms a robotic swarm into a single unified
computational meta-entity that can be programmed at runtime. In par-
ticular, a swarm-spanning artificial neural network emerges as wireless
neural links between robots self-organize. The resulting artificial group-
mind is trained to differentiate between spatially heterogeneous light
patterns it observes by using the swarm’s distributed light sensors like
cells in a retina. It then orchestrates different coordinated heterogeneous
swarm responses depending on which pattern it observes. Experiments
on real robot swarms containing up to 316 robots demonstrate that this
enables collective decision making based on distributed sensor data, and
facilitates human-swarm interaction.
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1 Introduction, Motivation, Related Work

The human brain is composed of roughly 1015 connections between 1011 neu-
rons that self-assemble during development as cells respond to local stimuli [1].
While this feat is impressive in the physical sense, it is also compelling from a
computational point-of-view. Human and animal societies containing upwards
of 109 individuals also spontaneously form, have collective intelligence [2], and
exert globe-changing collective behaviors that result as the product of countless
local interactions [3]. In many ways societies are meta-organisms [4] in which in-
dividuals take the roll of cells and communication substitutes for neural connec-
tivity. Science fiction authors [5–7] have taken this analogy further — imagining
that a group of individuals linked by neural connections might form a collective
“group-mind” defined by shared awareness, pooled computational resources, etc.
Nonfictional artificial neural networks (ANNs) were inspired from biology and
developed in the 1950s [8], and have proved capable of learning complex tasks
across many domains [9–11]. We combine ANNs with swarm robotics and wire-
less communication to produce an artificial group-mind in which a swarm of
autonomous robots spontaneously self-assembles into a single computational en-
tity. The resulting entity is trained to distinguish between various heterogeneous
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Fig. 1. Emergent group-mind neural network. (A) Each robot maintains a slice of neurons (depicted along
the vertical axis) and forms neural connections with its neighbors. (B) The Kilobot robot that we use.

patterns in the global environment — using the swarm’s distributed sensors
much like the retina cells in an eye — and then coordinates a collective yet
heterogeneous swarm response based on the specific pattern it observes.

Swarm roboticists [12, 13] often design algorithms that leverage emergence
[14, 15], the idea that simple behaviors performed in concert by a group of in-
teracting individuals can produce complex global behaviors like bird flocking
[13, 16], termite nest construction [17], food foraging [18], and collective trans-
port [19, 20]. In robotic self-assembly the emergent product is a robotic mega-
structure created as robots physically arrange themselves within the environment
[21]. Our emergent product is the artificial group-mind itself — a computational
entity that can be programmed by a human user at run-time to perform explicit
complex tasks. “Mind vs. body” is an appropriate metaphor for the distinction
between an artificial group-mind and a self-assembling robot; the distinction vs.
other emergent swarm behaviors like foraging is akin to that between the nervous
system and other distributed bodily systems, e.g., the immune system. Although
a robotic swarm is a natural host for an artificial group-mind, intelligent mate-
rials [22, 23] could also be used.

2 Technical Approach

The swarm consists of 3.3 cm Kilobots [24] (see Fig. 1). Kilobots locomote via
vibration, communicate wirelessly using infrared light (range 10 cm), have At-
Mega328 microprocessors (8 Mhz 32K memory), visual light-intensity sensors,
and a multi-color light emitting diode (LED). A digital light projector mounted
above the environment controls environmental light intensity patterns by pro-
jecting 50 by 50 pixel grayscale images onto the swarm. Light projections are
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Fig. 2. The group-mind emerges as robots form neural connections with communication neighbors. It is trained to
differentiate between global environmental patterns (represented here by the flags of Japan and France) detected
across the swarm’s collective sensors. The output behavior of the swarm (represented by shapes ‘E’ vs. ‘W’)
depends on the pattern (flag) that is observed.

used both for human-to-swarm communication and also to create various global
light patterns which the swarm is trained to differentiate.

Use of the artificial group-mind is depicted in Fig. 2; pseudocode appears
in the Appendix. Robots receive identical individual programming and are dis-
tributed in the environment a priori. Although distribution could be accom-
plished autonomously, see e.g., [24], we manually place robots in the environ-
ment to conserve battery life and memory space. The training algorithm assumes
that no robot has two or more neighbors with the same identification number.
A distributed algorithm is used to ensure this happens with probability 1. The
swarm’s light sensors are calibrated to correct for imperfections in sensitivity
and systematic differences in brightness caused by projector distance.

Two sets of projected images are used to upload data to the swarm. The
first is a set of raw environmental feature patterns. The second is a correspond-
ing set of swarm behavioral response patterns. In general, images in both sets
may be spatially heterogeneous. Behaviors are encoded via a predefined mapping
from normalized grayscale values, and may include simple or complex functional-
ity such as “display red LED” or “move toward brighter light.” The group-mind
learns to differentiate between the environmental feature patterns during a train-
ing phase. After the training phase, the swarm will perform the corresponding
behavioral response for whatever feature pattern the group-mind currently sees
in the environment.

The artificial group-mind is a swarm-spanning feed-forward ANN that emerges
as robots form ongoing wireless neural communications with their neighbors. It
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uses a slice-parallel implementation of the backpropogation ANN training algo-
rithm [25] that we have specially modified for use with unreliable wireless com-
munication. Conventional ANNs assume reliable communication, which wireless
is not. Instead, we temporarily pause training on any robot that becomes more
than B training iterations out-of-sync with any of its neighbors, until those
neighbors reestablish communication and catch up. 0 < B <∞ is a predefined
constant and B = 100 in experiments.

Each robots is responsible for maintaining a slice of L neurons within the
group-mind (Fig. 1), where L is defined a priori. L = 2 in experiments, i.e.,
there is one hidden layer. Connections are established from neurons at layer
` on a robot i to those at layer ` + 1 on each of its neighbors j ∈ Ni for
0 ≤ ` < L, where Ni is the neighbor set of i, and i is considered a neighbor of
itself (i ∈ Ni). The signal values at layer 0 are set by the real-time environmental
sensor (light sensor) readings. The output signal from layer L on a particular
robot i is used to determine i’s behavior at run-time. As with standard ANNs,
each neuron’s output is calculated by performing a weighted sum over incoming
signals and then passing the result through a step-like function (the hyperbolic
tangent from [26] is used in our experiments). Training the group-mind via the
backpropogation training algorithm involves adjusting link weights to improve
performance vs. the training example set. This involves sending update messages
in the backward direction. Updates from the final layer L contain the signal
error for each training example, and those from internal layers ` < L encode
the cumulative error at L ascribed to local error at `. Given updates from Ni, a
node i at layer ` can adjust the weights assigns incoming neural signals such that
overall ANN performance improves. This results in a form of gradient descent. In
practice, a Robot stops training once its local error has fallen below a predefined
threshold (5%).

3 Experiments

We experiment with swarms of varying size and two different classes of swarm
response behavior (stationary vs. moving robot positions). Tuning parameters
are chosen using a tuning data set that is different from the test data set.

Figure 2 shows experiments in which the collective responses involve display-
ing 2-D color images across the swarm’s distributed LED array. Robot behaviors
include display “red LED,” “blue LED,” and “off LED.” Thus, the swarm is able
to display a yin-yang, wifi symbol, etc., by having different robots perform differ-
ent behaviors. In these experiments, the swarm may safely use its group-mind as
it is being trained, allowing direct assessment of the group-mind’s training status
via its improving collective behavior. Figure 3 depicts a set of experiments in
which the response behaviors require physical movement in order to create one
of two different shapes (blue smiley face or red frown face) depending on which
environmental feature pattern is observed at run-time (peace and biohazard sym-
bols, respectively). Robot behaviors include: “Random-Search,” “Red-Attract,”
“Blue-Attract,” and “Continue-Training.” Red-Attract and Blue-Attract cause
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Fig. 3. Experiment without movement. The light pattern tuning set (A) and test set (B) used for ex-
periments with 303 and 316 robot swarms, respectively. Top rows are raw light intensity feature patterns and
bottom rows the corresponding output behaviors (represented by color) the group-mind must learn to perform
in response. Feature patterns projected onto the swarm (C,D) for tuning and test cases, and the behavior that
was actually performed as a result. Classification accuracy vs. different input patterns (E).

a robot to broadcast “Attract” messages while remaining stationary and dis-
playing red or blue LEDs, respectively. A robot performing Random-Search will
move around the environment at random until receiving an “Attract” message
sent from closer than 5cm, in which case it halts and displays a white LED. Phys-
ical shapes emerges as Random-Search robots move from their original positions
to fill the space around attracting robots (or leave the environment).

The “Continue-Training” behavior causes a robot to continue training un-
til its training error has fallen below 5%, and then to display a yellow LED.
By training the group-mind to “Continue-Training” in response to a (uniform
medium-gray) pattern displayed during training, the overall group-mind train-
ing status can be evaluated by observing the proportion of the swarm displaying
yellow LEDs.

Physical movement breaks neighborhood connectivity which causes the group-
mind to dissolve. Thus, the group-mind must coordinate an organized deliquesce
prior to the start of movement. Each robot i continually evaluates the group-
mind’s calculation of i’s output behavior based on the real-time distributed sen-
sor data. If this behavior is not “Continue-Training” for more than a predefined
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Fig. 4. Experiments with movement. Light intensity pattern test set (A) for experiments with movement. (B)
Results (top to bottom): the swarm’s training status when movement started, classification accuracy vs. the raw light
intensity pattern that initiated movement, and the breakdown of the swarm’s behavior at experiment end. (C-G) Columns
correspond to experiments. (C) Training data (light intensity and output behavior pattern, top and bottom) for the
behavior that was eventually chosen. (D) Training status when movement started. (E) real-time light intensity feature
data and resulting output behavior (top, top and bottom). (F) Swarm position at experiment end. (G) Swarm behavior
at experiment end.
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length of time (30 seconds), then robot i begins performing the prescribed be-
havior while broadcasting messages indicating the pattern detected. Any robot
j 6= i in a poorly trained subset of the group-mind can calculate its own behav-
ior by combining the data from i’s message with its own behavior map. j then
performs the appropriate behavior and re-broadcasts the message from i.

4 Main Experimental Insights

Drained batteries were an unexpected difficulty. This problem could be mini-
mized by replacing batteries prior to an experiment and/or modifying the hard-
ware or output behaviors to be more power efficient. However, one reason for
using swarms is their robustness vs. partial loss. In experiments where color LED
images were the desired output, a dead battery simply meant that a particular
robot’s LED was dark. In experiments with movement, the desired output shape
was discernible despite moderate (up to 26%) loss.

Algorithmically, if a robot looses power during the training process, then its
neural signals freeze from a neighbor’s point-of-view. If such a frozen signal is
detrimental to a neighbor’s neural performance then it will be weighted less-
and-less over time. However, because robot i to pauses training after becoming
B iterations out-of-sync with j, power loss on one robot can potentially pause
training across the entire swarm. Although a full-scale failure was not observed
in the experiments, this is clearly a weakness of our algorithm. Neighbor pruning
could potentially alleviate this problem. For instance, perpetually uncommunica-
tive neurons could have their last known signals treated as fixed input by their
neighbors and then subsequently ignored. Although this would technically break
the theoretical convergence guarantees of our modified backpropogation training
algorithm, these guarantees are also broken whenever a robot becomes perma-
nently uncommunicative (and thus forfeit in the event of power loss anyway).

5 Results

We have performed a variety of experiments on real robot swarms containing
up to 316 robots. These provide proof-of-concept that an artificial group-mind
can emerge as the result of distributed computation across a robotic swarm, is
a useful tool for human-swarm interaction, and enables fine-grained heteroge-
neous swarm behavior to be programmed at run-time and at a high level by a
human user. In particular, the group-mind is capable of detecting and classifying
heterogeneous feature patterns across the global environment, and orchestrating
a collective heterogeneous swarm response. The simple behaviors exhibited in
the experiments could easily be replaced by more sophisticated behaviors with
no change to the training and decision making algorithms. Other environmen-
tal features (chemical, temperature, acoustic, etc.) could easily be used in place
of light intensity. The ad-hoc process in which neural connections form in the
group-mind is a departure from traditional ANNs, and echoes similar emergent
neural linking in the animal brain.
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Appendix: High-level Pseudo Code

Each robot in the swarm runs identical code. Two different “main” procedures
are presented. The first is for situations in which the output behavior of the
swarm does not involve movement or other actions that will break the group
mind’s network connectivity (Algorithm 2). The second is for situations in which
the output behavior is expected to break connectivity, and so the group mind
must organize an orderly dissolution back to a non-group-mind swarm (Algo-
rithm 3). In addition to the main thread, each robot runs a separate message
broadcast thread at approximately 2 Hz (Algorithm 4), and has a callback func-
tion to receive incoming messages (Algorithm 5), respectively. Global data is
accessible across all threads and functions.

The start-up procedure appears in Algorithm 1 and corresponds to the steps
in Figure 2 between “Local ID Agreement” and “Data Upload.” Each robot uses
a state machine that is initialized to state NOT YET TRAINING (line 1). A
Boolean value done training is also used to track when training has resulted in
an acceptable level of accuracy (on this robot). The battery charge is used to seed
a pseudo-random number generator so that different pseudo-random number se-
quences will be generated on each robot with high probability. A distributed
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Algorithm 1: startup phases()

1 state← NOT YET TRAINING
2 done training ← false
3 seed random number generator with battery charge
4 agree on unique local id vs. neighbors
5 calibrate light sensors
6 initialize neural network with random weights
7 upload training data
8 state← TRAIN

Algorithm 2: Group Mind Main Thread (without movement)

1 startup phases()
2 loop
3 if training error() > 5% and not (done training or out of sync()) then
4 backpropagation training iteration()

5 else if training error() ≤ 5% and not out of sync() then
6 done training ← true

7 {τ, behaviour} ← use group mind(sample light())
8 perform(behaviour)

algorithm is used to ensure that neighboring robots have unique randomly de-
termined IDs (line 4). Light sensors are calibrated (line 5). Neighbors are discov-
ered and outgoing wireless links to their neurons are created and initialized with
random weights (line 6). Data is uploaded to the swarm from a human user via
visual light projection following a predefined procedure (line 7). State TRAIN
indicates the start-up phase has ended (line 8).

The main thread for non-movement cases appears in Algorithm 2. All signals
sent along neural connections are tagged with the number of training iterations
this robot has completed. The function out of sync() returns true whenever this
robot has gotten too many training iterations ahead of its neighbors (100 in our
experiments). The backpropogation training algorithm is run one iteration at
a time (line 4) — but only if the training error needs improvement and this
robot is not out-of-sync with its neighbors (line 3). A robot stops training once
its local error has fallen below 5% (lines 5-6). This robot uses the subroutine
use group mind(sample light()) to both provide its current light sensor read-
ing to the group mind, and to learn the group mind’s prediction of the overall
swarm behavior τ that should be performed (line 7). The single robot behav-
ior behaviour this robot performs as part of τ is also returned, and determined
within use group mind(sample light()) by querying a local look-up table with
the value of τ . The look-up table is populated with the local mapping from τ to
behaviour during the data upload portion of the start-up phase.

The main thread used in cases involving movement appears in Algorithm 3.
Differences vs. Algorithm 2 (no movement) appear on lines 3 and 8-15. Movement
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Algorithm 3: Group Mind Main Thread (with movement)

1 startup phases()
2 loop
3 if state ∈ {TRAIN,CONSIDER} then
4 if training error() > 5% and not (done training or out of sync()) then
5 backpropagation training iteration()

6 else if training error() ≤ 5% and not out of sync() then
7 done training ← true

8 {τ, behaviour} ← use group mind(sample light())
9 if (done training and behaviour 6= CONTINUE TRAINING) or

state = CONSIDER then
10 state← CONSIDER
11 if consideration time exhausted() then
12 state← ACT

13 else if state = ACT then
14 perform(behaviour)

Algorithm 4: Group Mind Send Message Thread

1 loop
2 if state ∈ {TRAIN,CONSIDER} then
3 neural data← get neural data()
4 message← {state, local id, neural data}
5 else if state = ACT then
6 message← {state, local id, τ}
7 else
8 populate message as required for calibration, initialization, etc.

9 broadcast(message)

destroys the group mind; thus, movement should only start once the group-
mind is highly certain it has calculated the correct response behavior. This is
facilitated by adding state CONSIDER to the state machine, and also by defining
one of the behaviors to be “continue training.” In practice, the swarm is trained
to continue training in response to a neutral gray light pattern, which is then
displayed during the training phase. CONSIDER can only be accessed once a
robot believes the desired behavior is no longer “continue training” (lines 9-12).
The function consideration time exhausted() is used to ensure a robot remains
continuously in state CONSIDER for a predetermined amount of time before
switching to state ACT to perform the prescribed behavior (lines 11-14). This
adds robustness to erroneous outputs from partially trained models.

Algorithm 4 depicts the message broadcast thread. Function get neural data()
retrieves the neural network data that resides on this robot’s portion of the group
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Algorithm 5: Group Mind Receive Message Callback

1 if state ∈ {TRAIN,CONSIDER} then
2 sender state← message{1}
3 if sender state ∈ {TRAIN,CONSIDER} then
4 {sender local id, neural data} ← message{2 : 3}
5 update group mind(sender local id, neural data)

6 else if sender state = ACT then
7 state← ACT
8 τ ← message{3}
9 behaviour ← behaviour map(τ)

10 else if state = ACT then
11 else if sender state = ACT then
12 {sender local id, sender behaviour} ← message{2 : 3}
13 sender distance← calculate distance(message)
14 behaviour ← modify behaviour(behaviour, sender behaviour, sender distance)

15 else
16 use message for calibration, initialization, etc.

mind (line 3). For each training example as well as the real-time environmental
sensor input, this includes both the forward neural signals and backpropogation
messages (including training iteration number and, for each backpropogation
message, the destination ID). Neural data is broadcast, along with this robot’s
state and ID (line 4). In practice, due to the Kilobots’ small message payload
size (9 bytes), we must divide each batch of neural network data across multiple
messages (not shown). If there is movement behavior such that state ACT is
used, then the robot sends this state, its ID, and the swarm behavior class τ
output of the neural network vs. real-time environmental data (lines 5-6). To
save space we omit the other message passing details necessary to run the stan-
dard distributed algorithms that we employ as subroutines during the start-up
phase (represented by lines 7-8).

The receive message callback function appears in Algorithm 5. Normal train-
ing data is received on lines 2-5. If a neighbor has decided to act (e.g., move)
then this robot will join it (lines 6-9); making sure to perform its own prescribed
behavior behaviour relevant to the overall swarm behavior τ (line 9). The func-
tion modify behaviour(behaviour, sender behaviour, sender distance) is used to
modify the specific output behavior of this robot during the ACT phase, as a
function of interaction with neighboring robots (lines 10-14). This enables more
complex swarm behaviors to emerge out of the interactions between robots. For
example, the smiley faces in our experiments are created as randomly searching
robots stop moving in the vicinity of attracting robots. Lines 15-16 represent
other message processing that is used for the distributed subroutines within the
start-up phase.


