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Abstract— We consider the problem of real-time path-
planning in a spatiotemporally varying wind-field with moving
obstacles. We are provided with changing wind and obstacle
predictions along a (D + 1)-dimensional space-time lattice.
We present an Any-Time algorithm that quickly finds an
αβ-suboptimal solution (a path that is not longer than αβ times
the optimal time-length), and then improves α and β while
planning time remains or until new wind/obstacle predictions
trigger a restart. The factor α comes from an α-overestimate of
the A*-like cost heuristic. β is proportional to motion modeling
error. Any-Time performance is achieved by: (1) improving the
connectivity model of the environment from a discrete graph to
a continuous cost-field (decreasing β); (2) using the established
method of incrementally deflating α. Our method was deployed
as the global planner on a fixed-wing unmanned aircraft system
that uses Doppler radar and atmospheric models for online real-
time wind sensing and prediction. We compare its performance
vs. other state-of-the-art methods in simulated environments.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) and Autonomous Un-
derwater Vehicles (AUVs) often have top speeds that are less
than those of the currents through which they travel. In these
cases, accounting for wind is as important as avoiding ob-
stacles to ensure feasible/optimal motion, and necessary for
avoiding collisions. Considering wind is challenging; wind
speeds vary across time and space, and forecasts become
increasingly inaccurate into the future and often change. We
present a novel real-time method for long-term path-planning
that considers spatiotemporally varying dynamic wind and
dynamic moving obstacles.

We desire a time-optimal solution, and assume the UAS
moves at a constant airspeed. Our method is Any-Time: it
quickly finds a feasible1 path of bounded suboptimality, and
then improves this solution as long as planning time remains.
Each solution is no worse than αβ times the optimal solution
length. α comes from an α-overestimate of the A*-like cost
heuristic and decreases vs. planning time [1]. β is a function
of motion modeling error and decreases as our hypergraph
connection model evolves from being discrete to continuous.
Simple graph-based (A*-like [2]) solutions are found quickly,
while more optimal continuous (Field-D*-like [3]) solutions
can be used if enough planning time exists to calculate them.
α decreases separately vs. each value of β.
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without intersecting obstacles.
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Fig. 1: Left: Our method generates a space-time path that respect
spatiotemporally varying wind (vectors) and moving obstacles
(blocks); color represents time. Right: Our method was deployed as
the global planner on a UAS (top) that uses Doppler radar (bottom)
for wind data and atmospheric models for wind predictions.

We assume a space-time lattice of wind values is pro-
vided, and may include a sequence of wind predictions
into the future. Obstacles are handled using a space-time
occupancy grid. In practice, we find that updated wind
predictions tend to modify all values in the wind lattice
— eliminating the usual benefits of incremental repair-
based replanning (e.g., D*-Lite [4]). Consequently, we use
a brute-force replanning approach that restarts Any-Time
planning whenever wind/obstacles values/predictions change.
Our method is designed for long-term global path-planning
within a hierarchical planning framework, and assumes a
local planner exists to optimize solutions with respect to
vehicle kinodynamics.

Our method was deployed in Lubbock, Texas, in June of
2015, as part of a fixed-wing UAS using Doppler radar and
atmospheric models for online planning (AMOP) [5] for real-
time wind sensing and prediction, respectively. We supple-
ment this real-world experience with simulations comparing
performance vs. other state-of-the-art methods in a number
of challenging wind scenarios.

This paper is organized as follows: Section II surveys
related work, Sections III and IV describe notation and
our algorithm, respectively. Experiments, Discussion, and
Conclusions appear in Sections V, VI, and VII, respectively.

II. RELATED WORK

The problem of a vehicle navigating from start to goal
through a nonuniform wind field was first posed by Zermelo
in 1931 [6]. Variations include cases of constant wind [7],
spatially varying wind [8], [9], [10], spatiotemporally varying
wind [11], [12], [13], and wind with obstacles [14], [15],
[16], [17]. Autonomous robotic approaches include: case
based reasoning [18], genetic algorithms [19], [20], sequen-



tial quadratic programming [21], Ant-colony optimization
[22], and dynamic programming [23].

Our work borrows tools from graph methods such as A*
[2], [8] and D*-Lite [4], as well as grid-based continuous-
field methods such as Field-D* [3], [24] and their corre-
sponding path extraction techniques [25].

It is closely related to level-set methods that consider wind
[26], [27], [28], [29], [30], [17]. Differences include: our use
of a cost-heuristic and heap to focus planning effort (vs. [27],
[28], [29], [30], [17]), our use of nodes along a grid of wind
samples (vs. [26], [29], [17]), our consideration of obstacles
(vs. [27]), and our consideration of time-varying wind (vs.
[27], [26], [30]) or unpredictable wind/obstacles (vs. [17]).

Our approach is an Any-Time algorithm, and therefore
useful in real-time systems that have an ordering on solution
quality, but where suboptimal solutions are preferable to none
at all [31]. A major difference vs. previous Any-Time path-
planning methods ([32], [1], [33]) is our use of a hypergraph
that evolves from modeling (1+1)-dimensional (graph-like)
connectivity to continuous (D + 1)-dimensional (field-like)
connectivity as time allows. A similarity is the α-inflation
of the A*-like cost heuristic [1], [33], [34]. Our approach is
the first Any-Time method to consider wind.

Work by [35] uses a similar cost function (soonest-time-
at-goal) and a graph structure similar to our early-phase
hypergraph (detailed in Section III). Differences include:
the Any-Time properties of our algorithm, and our late-
phase hypergraph that models a continuous cost-field. [36]
considers spatiotemporally varying obstacles and wind using
a combination of potential fields and optimization swarms. In
contrast, our method is Any-Time and we plan/replan using
a hypergraph embedded in a cost-field.

III. PRELIMINARIES

The state space Xfull of the UAS is a Cartesian product of
time T , location X , orientation θ, and derivatives of X and θ
with respect to time. Xfull = T ×X × Ẋ × Ẍ × θ × θ̇ × θ̈
In our hardware deployment we use X ⊂ R3 and θ ⊂ SO(3).
In simulation we use X ⊂ R2 and θ ⊂ SO(2).

We assume our method is the global planning half of
a hierarchical framework that also includes a local plan-
ner for trajectory optimization [5]. Our method considers
Xglobal = Xfull ∩ (T ×X), a low-dimensional representa-
tion of the world that assumes rotational effects and deriva-
tives can be ignored for long-term planning. The local plan-
ner considers the full dimensionality restricted to an area near
the robot, Xlocal ⊂ Xfull s.t. 0 < L (Xlocal)� L (Xfull),
where L (·) is the Lebesgue measure of ‘·’.
W is the space of possible wind values.W ⊂ R3 in our de-

ployment and W ⊂ R2 in simulation. We are provided with
wind values/predictions at points on a regular rectangular
lattice W embedded in space-time. Without loss of generality
(because we can re-scale time and distance units), our pre-
sentation uses the simplifying convention that lattice points
exist at unit intervals: w : (N× ND) ∩ Xglobal →W where
N is the set of the natural numbers {0, 1, . . .}, and D is the
dimensionality of X , i.e., Xglobal ⊂ (T ×X) ⊂ (R× RD).

εc, εd ∈ E⊕v when T ×X ⊂ R× R2

εa, εb ∈ E+
v when T ×X ⊂ R× R2
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Fig. 2: Left: Hyperedges (color) εa, εb ∈ E+v (Top) and εc, εd ∈ E⊕v
(Bottom) when D = 2. Center/Right: Subfacets fNv ∈ FNv (each
subfacet is a different color). There is one hyperedge per each fNv .

We assume a user defined interpolation function ŵ exists to
estimate wind values at non-lattice points, ŵ : Xglobal →W.

We track obstacles using a space-time occupancy grid O,
where each grid is a closed hypercube between integer grid
values (i.e., wind values are located at the corner points of
obstacle grids). The function o(x) returns the collision status
of a point x, where o : Xglobal → {true, false} and where
true and false denote in-collision and collision-free.

We use a hypergraph G = (V, E) to represent connectivity,
where V is a set of nodes and E is a set of directed
hyperedges. Nodes v ∈ V are defined at the same locations
as wind readings/predictions from W . For brevity, we allow
the abuse of notation that nodes can be used notionally in
place of their associated positions.

V = {v | v ∈ (N× ND) ∩ Xglobal}

In general, a hyperedge (A,B) = ε defines connectivity
from a set of nodes A = {va, . . . , va+i} to another set of
nodes B = {vb, . . . , vb+j}. That said, all of our hyperedges
originate at a single node, |A| = 1 for all (A,B) = ε ∈ E ,
and travel forward vs. time. Hyperedge ({v}, B) = ε ∈ E
represents movement from v to any point on the continuous
space-time patch bounded by the nodes in B (see Figure 2).

We use two mutually exclusive sets of hyperedges, de-
noted “graph-like” E+ and “field-like” E⊕. Figures 2-3
show examples of these for D = 2 and D = 3. Graph-like
hyperedges have |B| = 2 (the reason for 2 is discussed
shortly) while field-like hyperedges have |B| = 2D. When
D = 2, projecting the sub-hypergraph over E+ from X × T
to X gives a result that is visually similar to an 8-connected
graph. Applying the same projection to sub-hypergraph over
E⊕ results in a connectivity structure resembling that of two-
dimensional Field-D*.
u, v ∈ V are neighbors if their lattice indices differ by at

most 1 per space-time dimension. The neighbor set of v is:

Nv = {u | ‖u− v‖∞ = 1} ∩ V

where ‖ · ‖∞ is the L-∞ norm. A node is not a neighbor of
itself. Figures 4 and 5 depict Nv when D = 2 and D = 3.
vT and vX denote the projections of v into T and X ,

respectively. N−v and N+
v are the subsets of Nv located



εc ∈ E⊕v when T ×X ⊂ R× R3

εa, εb ∈ ε ∈ E+
v when T ×X ⊂ R× R3
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Fig. 3: Selected
examples of
hyperedges
(color)
εa, εb ∈ E+v
(Top) and
εc ∈ E⊕v
(Bottom) when
D = 3.
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Fig. 4: Node v (star)
in R × R2. Neighbors
u ∈ Nv are cir-
cles, color corresponds
to time-slice. All neigh-
bors are located on the
surface of a unit hy-
percube Hv centered at
v. The in- and out-
neighbor sets (N−

v and
N+

v ) contain gray/white
and gray/black neigh-
bors, respectively.
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Fig. 5: Node v (star) in R× R3. All quantities are analogous to
those in Figure 4, except that time-slices rise left to right.

before/after v (including the same time as v):

N−v = Nv ∩ {u | uT ≤ vT }
N+
v = Nv ∩ {u | uT ≥ vT }.

The convex hull over Nv is the surface of a unit radius
space-time hypercube Hv . Let H+

v denote the closed half-
surface of Hv located “after” v with respect to time.
E+
v is the set of graph-like hyperedges ({v}, B) originating

at v. All ({v}, B) ∈ E+
v have head-sets containing two nodes

(|B| = 2) to accommodate movement through time.

E+
v ={({v}, {u, u′}) | uX = u′X ∧ vT = uT = u′T − 1}

∪ {({v}, {v′, u′}) | vX = v′X ∧ u′T = v′T = vT + 1}.

There are two distinct types, illustrated by εa (red) and εb
(blue), respectively, in Figure 2-Top-Left for D = 2 (and
in Figure 2-Top for D = 3). They correspond to movement
constrained by the space or time bounds of H+

v , respectively.
A “sub-facet” fNv is the set of 2D nodes that are mu-

tually neighbors and co-planar along an axis-aligned D-

dimensional hyperplane. The latter happens for neighboring
nodes that are no greater than D away from each other
with respect to the L1 norm ‖ · ‖1. fNv = {u1, . . . , u2D}
s.t. ∀i, j = [1, 2D], i 6= j, ui ∈ Nuj

∧ ‖ui − uj‖1 ≤ D. See
Figure 2-Center/Right for examples of fNv .
FNv =

⋃
Nv
{fNv} is the set of all D-dimensional sub-

facets fNv with respect to v. The nodes in any fNv ∈ FNv
bound a patch of space-time that is exactly 1/(2D)-th of a
D-dimensional facet of Hv .
E⊕v is the set of all field-like hyperedges that go from v

forward through time to some fNv .

E⊕v =
{

({v}, {u1, . . . , uc}) | {u1, . . . , uc} ∈ FNv ∧
u1, . . . , uc ∈ N+

v

}
Again, there are two distinct cases depending on if movement
is constrained by the space or time bounds of Hv .

The set of hyperedges is therefore: E =
⋃
v∈V E+

v ∪ E⊕v .
Any-Time planning starts by considering only

⋃
v∈V E+

v

(graph-like planning), and then incorporating
⋃
v∈V E⊕v

(field-like planning) when planning time permits.
We assume a subset of space-time is defined as the

goal Xgoal. Without loss of generality, we assume the goal
contains nodes and we define Vgoal = V ∩ Xgoal 6= ∅.

Our algorithm creates and maintains estimates of d(v)
the “soonest-time-at-goal” that can be achieved from each
v ∈ V . Formally, d : V → R. Soonest-time-at-goal is similar
to the more traditional “cost-to-goal” that is used by many
planning methods (assuming the search tree is rooted at the
goal) and is updated in a similar way. The main difference is
that soonest-time-at-goal measures the estimated arrival time
at the goal instead of the cost required to reach the goal.

Search progresses from Vgoal, i.e., in the reverse direction
of robotic movement. As in other field-based methods, we
update d(v) using (user provided) interpolation functions d̂
and ∆t̂, where d̂(x) estimates d(x) assuming x ∈ H+

v and
using interpolation over d̂(u) and w(u) for u ∈ N+

v ∪ {v},

d̂ : Xglobal ×Wk → R

where k = |N+
v ∪ {v}|, i.e., there is one wind value per node

in N+
v ∪{v}. Similarly, ∆t̂(v, x) estimates the time required

to reach x from v given w(u) for u ∈ N+
v ∪ {v}.

∆t̂ : Xglobal ×Xglobal ×Wk → R

Obstacles imply infinite time, o(v) ∨ o(x)⇒ ∆t̂(v, x) =∞.
We use an approximation method similar to Field-D* in

that we only consider local movement possibilities that travel
through some point x ∈ H+

v .

d(v) = min
x∈H+

v

(
∆t̂(v, x) + d̂(x)

)
(1)

The point x∗ ∈ H+
v that yields the best local connection is

called the “target point” of v.

x∗ = arg min
x∈H+

v

(
∆t̂(v, x) + d̂(x)

)
(2)

The particular implementations of d̂ and ∆t̂ that we use for
experiments are discussed in Section IV.



Assuming the UAS is located at xrobot and given G,
our method extracts a path P : [0, 1]→ Xglobal such that
P (0) = xrobot and P (1) = xgoal ∈ Xgoal. Alternatively, it
reports failure if no such path can be found. As in other
field-based methods the path is returned as a sequence of
points, P = {x1, . . . x`} where x1 = xrobot and x` = xgoal

and ` = |P |, extracted using an iterated function:

xi+1 = arg min
x∈H+

x

(
∆t̂(xi, x) + d̂(x)

)
where, with some abuse of notation, H+

x =
⋃
v∈N+

x
H+
v and

N+
x = {v | ‖v − x‖∞ ≤ 1 ∧ vT > xT }.
We assume the local trajectory optimizer takes

P̂ ⊂ P ⊂ Xglobal as input and then produces a trajectory
ζ ⊂ Xlocal. If P̂ is a strict subset of P located at
the beginning of P (e.g., for reasons of tractability,
and in our experiments), then P̂ can be defined
based on distance and/or time, e.g., P̂ = {x1, . . . xk}
where either xk = arg maxx∈P xT − x1T ≤ ctime or
xk = arg maxk

∑k
i=2 ‖xi − xi−1‖X ≤ cdist where ‖ · ‖X

is a distance metric based only on location and ctime and
cdist are user defined parameters. Projecting ζ from Xlocal

to Xglobal will most likely not reproduce P̂ given that the
trajectory optimizer’s purpose is to improve the path vs.
the constraints of the full system. However, we assume the
endpoints remain unchanged.

IV. ALGORITHM

Our presentation assumes separate modules exist for wind
prediction, global planning, local planning, and auto-pilot
control, and that these communicate over a network. Algo-
rithm 1 contains (as an example) the system-wide start-up
procedure used in our deployment.

A. Global Planning (Our Method)

The global planner is an Any-Time algorithm that quickly
finds and returns a solution that reaches the goal at most αβ
times slower than the optimal solution, and then proceeds to
recalculate solutions for progressively better αβ over succes-
sive Any-Time planning epochs. α is an Any-Time inflation
factor that is reduced as a function of epoch number κ, and
β depends on environmental modeling error.

Node v tracks closed(v), the last epoch v was inserted
into the (A*-like) closed list. Similar to D*-Lite we estimate
d(v) using an incrementally refined running look-ahead
value lmc(v) that tracks the minimum soonest-time-at-goal
achieved via any of v’s hyperedges (i.e. reflecting paths via
neighbors that have been examined vs. the current αβ value).
d(v)← lmc(v) whenever v is inserted into the closed list.

A heap H is used to determine the order that nodes
are added to the search graph and uses the standard Top,
Pop, Insert, and Update functions. h(v) is an admissible
heuristic estimate of the shortest time duration in which the
UAS can reach v from its current location. Like ARA* [1]
we use the Any-Time idea of sorting nodes in H based on

Key(v) = αh(v) + min(d(v), lmc(v))

Path improvement happens at two time scales. First, we
perform a complete pass over a sequence of predefined
α values (α1, α2, . . . , 1) using only the subgraph of G
involving E+

v for all v ∈ V , where αi > αj ≥ 1 for i < j.
This is relatively fast due to a small branching factor and
simple interpolations, but has large β as a result (e.g., in the
simple case of no wind β =

√
5/(1 +

√
2) ≈ 1.08). Next,

we perform another pass over the same α values using the
full G involving E+

v ∪ E⊕v . The second pass is more difficult
due to the higher branching factor and higher-dimensional
interpolation functions necessary to yield smaller β (e.g.,
β ≈ 1.003 in no wind [25]). Planning effort from previous
epochs is leveraged as in ARA*. We use the flag τ to track
whether or not we are planning though the sparse or full
hypergraph.
Decrease(κ) decreases κ and then updates τ and α

values based on κ. ExtractPath(xrobot) returns the path
P between the UAS’s current location xrobot and the goal.

The global planning loop appears in Algorithm 2. There
is an outer loop (lines 1-7) for replanning in the event of
new wind (∆W 6= 0) or obstacles (∆O 6= 0), and an inner
loop (lines 3-7) for Any-Time planning epochs of decreasing
α and β. The graph is reinitialized each time the wind or
obstacles changes (line 2). During each planning epoch the
soonest-time-at-goal field is updated as much as possible
given a particular combination of α and τ (line 4); the
iteration counter κ is increased and α and τ recalculated
accordingly (lines 5-6); and the heap H is re-balanced to
reflect the new values of α and τ (line 7).

Graph initialization appears in Algorithm 3. κ is set to
1 and α and τ accordingly using (line 2). Non-goal nodes
are initialized to have infinite soonest-time-at-goal values,
empty parent pointers, and to be in the open list (lines 4-
7). Goal nodes are initialized to have soonest-time-at-goal
as their own time-of-day and neighbors updated (line 9-11).

The ImproveField subroutine appears in algorithm 4.
While the heap contains nodes able to reduce d(xrobot), we
pop the top node v (line 2), recalculate its look-ahead value
(line 4), mark it in the close list for iteration κ (line 5),
and update its neighbors in case they can benefit by using a
hyperedge containing v as their parent (line 6). In practice,
increasing Key(xrobot) by c/(srobot + maxu∈V ‖w(u)‖2)
causes all nodes within radius c of xrobot to (also) have
their soonest-time-at-goal values updated by ImproveField,
which increases robustness vs. drift, etc.
UpdateNeighbors appears in Algorithm 5. It loops over

all nodes u that could conceivably use v as a parent
(u ∈ N−v ), checking if their look-ahead lmc(u) values can
be improved by using v as their parent (lines 6-12). Nodes u
in the goal set are ignored (line 2). The hypergraph structure
depends on τ (line 3). All relevant hyperedges ε from u
that involve v are checked (line 4). Nodes that have been
prematurely added to the closed list (due to the α inflation
factor) are added to Vincon the inconsistent list, line 12.
RecalculateLMC, Algorithm 6, is similar to the inner

loop of UpdateNeighbors except that it operates on a
single node v and does not require heap interaction. After



Algorithm 1: System Start
1 start wind sensor (computer 1);
2 start wind prediction engine (computer 2);
3 start global planner (computer 3, thread 1);
4 start global path server (computer 3, thread 2);
5 start local planner (computer 4);
6 start controller/auto-pilot on (on robot);

Algorithm 2: Global Planning Loop
1 while xrobot 6∈ Xgoal do
2 InitGraph();
3 while ∆W = 0 and ∆O = 0 do
4 ImproveField(κ, α, τ);
5 κ← κ+ 1;
6 (α, τ)← Decrease(κ, α, τ);
7 RebalanceHeap(H,α, τ);

Algorithm 3: InitGraph()
1 κ← 1;
2 (α, τ)← Decrease(κ, α, τ);
3 for all v ∈ V \ Vgoal do
4 lmc(v)←∞;
5 d(v)←∞;
6 parent(v)← ∅;
7 closed(v)← 0;
8 for all v ∈ Vgoal do
9 lmc(v)← vT ;

10 d(v)← vT ;
11 UpdateNeighbors(v);

Algorithm 4: ImproveField(κ, α, τ)
1 while Top(H) 6= ∅ and (Key(Top(H)) <

Key(xrobot) or d(xrobot) =∞) do
2 v ← Pop(H);
3 RecalculateLMC(v);
4 d(v)← lmc(v);
5 closed(v) = κ;
6 UpdateNeighbors(v);

Algorithm 5: UpdateNeighbors(v)
1 for all u ∈ N−v do
2 if u ∈ Vgoal then continue ;
3 if τ then Eu ← E+v else Eu ← E+u ∪ E

⊕
u ;

4 for all ε ∈ Eu s.t. v ∈ ε do
5 d′ ← EstViaHyperEdge(u, ε);
6 if d′ < lmc(u) then
7 lmc(u)← d′;
8 parent(u)← ε;
9 if closed(u) < κ then

10 Update(H,u);
11 else
12 Vincon ← Vincon ∪ {u};

Algorithm 6: RecalculateLMC(v)
1 if τ then Ev ← E+v else Ev ← E+v ∪ E

⊕
v ;

2 for all ε ∈ Ev do
3 d′ ← EstViaHyperEdge(v, ε);
4 if d′ < lmc(v) then
5 lmc(v)← d′;
6 parent(v)← ε;

Algorithm 7: RebalanceHeap(H,α)
1 P ← ExtractPath(xrobot) ;
2 for all v ∈ P \ Vgoal do
3 for all u ∈ Nv ∪ {v} do
4 d(u)←∞ ;
5 RecalculateLMC(u) ;
6 Vincon ← Vincon ∪ {u} ;
7 Vincon ← Vincon ∪H ;
8 H ← ∅ ;
9 for all v ∈ Vincon do

10 Vincon ← Vincon \ {v} ;
11 RecalculateKey(v, α);
12 Insert(H, v);

Algorithm 8: Global Path Server
1 if PathRequested() then
2 P̂ ⊂ P ← ExtractPath(xrobot);
3 SendPath(P̂ );
4 xrobot ← P̂ (end);

Algorithm 9: Local Trajectory Loop
1 P̂ ← requestPath(xrobot);
2 ζ ← CreateTrajectory(P̂ );
3 while x′robot 6∈ Xgoal do
4 x′robot = P̂ (end);
5 SendToController(ζ);
6 P̂ ← requestPath(x′robot);
7 ζ ← CreateTrajectory(P̂ );
8 while ‖xrobot − x′robot‖ ≥ cr do
9 Sleep(csleep);

determining which hypergraph structure is being used (line 1)
it checks all edges from v to see if they yield better look-
ahead values, updating lmc(v) and the parent hyperedge of
v appropriately (lines 2-6).
RebalanceHeap in Algorithm 7 first forces all nodes in

the current best-path to be inconsistent (lines 1-6), and then
adds these plus any nodes remaining in the heap H to the
inconsistent list Vincon, line 7 (emptying the heap, line 8).
Next, all nodes in Vincon are inserted back into H using new
key values based on (the new) α, lines 9-12.

B. Interaction With Local Planner

We assume the global path server, Algorithm 8, is a
callback function responsible for handling requests from the
local planner. When a request is received, it extracts the
appropriate P̂ from xrobot and returns it to the local planner.

The local planning loop used in our deployment is depicted
in Algorithm 9 and included here as an example. It requests
a global path P̂ (lines 1, 6), and then creates a trajectory ζ in
the full dimensional space of the system based on P̂ (lines 2,
7) using a user provided objective function to define the
method CreateTrajectory(P̂ ). ζ is sent to the autopilot
for control (line 5), and then the local planner calculates
the next trajectory starting from the end of the current one
(lines 4-7). It calculates at most one trajectory ahead of the
controller (lines 8-9), tuned via the user defined constants
cr and csleep. Alternative criteria can also be used, such as
replanning if the wind field changes or obstacles move.

The CreateTrajectory(P̂ ) used in our deployment uses
a three-dimensional kinematic point-mass model to solve a
nonlinear program online and generate energy-optimal trajec-
tories through Xlocal. P̂ is discretized and optimized using an

objective function while constrained by the robot’s kinemat-
ics. Mission-specific objective functions typically include a
term that minimizes the energy expenditure of the robot’s on-
board power source as well as any secondary objectives, such
as the minimization of time on trajectory. The local planner
has the ability to automatically exchange objective functions
and associated constraints to accommodate the mission’s
state during execution.

C. Calculating Soonest-Time-At-Goal d(v)

Mathematically, the estimates of soonest-time-at-goal val-
ues d(v) are calculated using Equations 1 and Equa-
tions 2. Algorithmically this happens indirectly by calling
lmc(v)← EstViaHyperEdge(v, ε) on Algorithm lines 5.5
and 6.3, and then setting d(v)← lmc(v) on line 4.4. Note
d̂(v) = min(d(v), lmc(v)) given d(v) and lmc(v).

A particular call to EstViaHyperEdge(v, ε) deals with
the possibility that x∗ is located in the subset of H+

v defined
by B, where ε = ({v}, B). Thus, we solve Equations 1 and
2 piecemeal for each ε ∈ Ev using Equations 3 and 4:

d(v) = min
x∈ε∩H+

v

(
∆t̂(v, x) + d̂(x)

)
(3)

x∗ = arg min
x∈ε∩H+

v

(
∆t̂(v, x) + d̂(x)

)
. (4)

The geometric set described by ε ∩H+
v depends on the type

of hyperedge of ε:

• If ε ∈ E+
v then ε ∩H+

v ≡ [u1, u2] is the line-
segment in space-time between u1 and u2 where
ε = ({v}, {u1, u2}).



• If ε ∈ E⊕v then ε ∩H+
v ≡ fNv is the patch of space-time

located between 2D neighbors of v (taking the form of
a D-dimensional hypercube) where ε = ({v}, fNv).

D. Implementation Details

Equations 3 and 4 can be implemented in a variety of
ways; we now motivate the one used in our deployment
and simulations. We assume we are allowed to pick the
spatial trajectory ξ ⊂ X that the UAS flies but that we are
at the mercy of the wind with respect to how much time this
requires along T . Given a particular ξ from v to x, the time
required to move from some point v to some other point x
is ∆t = xT − vT , where vX , xX ∈ X and vT ∈ T are fixed
and xT ∈ T depends on ξ and ŵ.

∆t̂ =

∫ x

v

∂t

∂ξ
∂ξ.

The soonest-time-at-goal at an arbitrary point x on the space-
time patch or line segment described by ε ∩H+

v is:

d̂(x) = f(G, x)

where G represents graph structure, wind, and soonest-time-
at-goal values. If we can find a differentiable expression
for ∆t̂+ f(G, x), then we can check a small finite number
(depending on D) of candidate x∗ and then select the best
one. The first possible location for x∗ is where the derivative
with respect to X is 0 (if that location is within ε ∩ H+

v ).
Another set of possible x∗ exist at the locations on Bi
the lower-dimensional boundaries of ε ∩H+

v (also found by
solving for zero derivative along Bi), and the final set exists
at the corners of ε ∩H+

v . Formally,

x∗ = arg min
x∈({x∗a}∪{x∗b}∪{x∗c})∩(ε∩H

+
v )

[
∆t̂+ f(G, x)

]
(5)

where {x∗a} and {x∗b} and {x∗c} are given by

0 =
d

dx

[
∆t̂+ f(G, x∗a)

]
(6)

0 =
d

dx

[
∆t̂+ f(G, x∗b)

] ∣∣∣
Bi

for all Bi ∈ ε ∩H+
v (7)

{x∗c} = ε ∩H+
v ∩ ND+1 (8)

respectively, and describe the different sets of candidate x∗.
That said, we are unable to find a differentiable closed

form solution to Equations 5-7. It is possible to perform these
calculation numerically, but this is too slow for real-time
applications. Instead, we approximate ∆t̂ + f(G, x) locally
using a polynomial function. As resolution increases, our
approximation approaches the correct solution.

We make a the following simplifying assumptions:
ξ ≡ [vX , xX ] ⊂ X is the straight line segment from v to x.
The UAS is fast enough vs. time (or time granularity small
enough) such that wind within a single grid wind can be
assumed locally constant vs. T and linearly varying vs. X
(and obviously defined by W vs. T ×X between different
grids). These assumptions are required only for the way we
approximate Equations 3-7 in our implementation, and are
not required by our method, in general.

We use the following 3-part estimation procedure:
(1) Estimate ∆t̂+ f(G, x′) at points x′ along a local fixed
grid G (at double the resolution of the wind field), where:
• D-dimensional linear interpolation is used to fill in any

missing values of f(G, x′) for each x′ ∈ G.
• D-dimensional linear interpolation is used to approxi-

mate ∆t̂ for each x′ ∈ G as follows:

∆t̂ =

∫ x′

v

∂t

∂ξ
∂ξ ≈

∫ x′

v

∑
u∈ε\{v}

ρ(x, u)
∂t

∂ξ
(v, x′, u)∂ξ

where ρ(x, u) is the linear interpolation weight vs. u
experienced at x ∈ ξ and ∂t

∂ξ (v, x′, u) is the ∂t
∂ξ that

would be experienced by a UAS flying the heading from
v to x′ while experiencing the wind w(u).

(2) Locally fit either a polynomial surface (for cases in-
volving Equation 6) or a polynomial (for cases involving
Equation 7) based on the resulting values from (1).
(3) Solve Equations 6 or 7 using the polynomial surface or
polynomial from (2), respectively.

This has the advantage of producing closed form ap-
proximations to Equations 5-7, respectively, and is very
fast in practice. This approximation requires the implicit
assumption the errors resulting from using a best-fit poly-
nomial surface (i.e., instead of numerical root-finding and
integration methods) and D-dimensional linear interpolations
(used for calculating the ∆t̂+ f(G, x′) and ∆t̂ values for
x′ ∈ G from which the surface is created) are tolerable. We
find this to be reasonable as long as wind values do not
change greatly between neighboring lattice points. Note that
all interpolations approach the true values, in the limit, as
resolution increases to infinity.

In the event that UAS speed is insufficient to overcome
the effects of oncoming wind (e.g., a head-wind) along ξ,
then we define t =∞ for that hyperedge.

V. EXPERIMENTS
A. Real-World Deployment

Our method was deployed near Lubbock Texas as the
global planner on a multi-institution deployment involving
Doppler radar, atmospheric models for online real-time wind
sensing and prediction, and a fixed wing UAS. This real-
world experience demonstrates that our method works in
practice as part of a larger system, and in the field with
a state space Xglobal ⊂ X × T = R3 × R.

B. Comparison To Other Methods On Synthetic Wind Data
We now compare our method to A*, ARA*, and

Field-D* in challenging scenarios using synthetic data in
Xglobal ⊂ X × T = R2 × R. The UAS has an airspeed of 20
m/s, space-time lattice grids are 150 meters long and wide
by 100 seconds in duration. The lattice is 100 by 110 by 5
grids (x, y, time). Wind and obstacle values before/after G
are set to the values located at the first/last time-slice of G,
respectively. A* and ARA* use

⋃
v∈V E+

v , while Field-D*
uses the full

⋃
v∈V E+

v ∪E⊕v . The calculation of time vs. mo-
tion along each hyperedge is identical for all methods. ARA*
and our method use α values (10.5, 10.0, 9.5, . . . , 1.0).



Fig. 6: Experiment 1,
a vortex moves across
the robot’s path. Left:
the space-time path of
the robot. Center: the se-
quence of Any-Time paths
found by our method.
Right: comparison of our
method vs. other state-of-
the art methods. y distance (m)
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Fig. 7: Experiment 2, the
UAS can use the air jet
to achieve it’s goal more
quickly (jet located in the
positive y direction from
the robot), but it must
avoid the obstacles. Left:
space-time path. Center:
Any-Time paths found by
our method. Right: com-
parison vs. other methods.
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Fig. 8: Experiment 3,
fractally generated wind
data with 5 moving
obstacles. Left: space-
time path. Center:
Any-Time paths found
by our method. Right:
comparison vs. other
methods.
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The first experiment requires the UAS to fly around a
moving vortex. The UAS starts at position [6000, 15000] at
time 0 and the goal is located at [6000, 1000]. The center of
the vortex starts at [8000, 0] and moves at velocity [−20, 0]
(across the robot’s path). The vortex rotates clockwise,
rotation speed is 30 m/s at its center, decreasing linearly
to 0 m/s at distance 15000 m. There are no obstacles in this
experiment. Figure 6 shows the space-time path of the robot,
the sequence of Any-Time paths found by our method, and a
comparison of solution lengths vs. time for our method and
the comparison methods.

In the second experiment the UAS moves from
[15500, 5000] to [500, 5000]. There is 6000 m wide jet of air
centered at y = 7500 m that flows in the robot’s direction
of travel. Wind speed increase linearly from 0 at the jet
boundary to 28 m/s at its center. An moving obstacle 1000.0
m by 2000.0 m starts at [1000.0, 7500.0] and travels along
the center of the jet, in the opposite direction of the robot, at
20 m/s. A second obstacle, 1000.0 m by 1000.0 m, starts at
[3000.0, 3000.0] and moves 10 m/s in the positive y direction
(i.e., across the robot’s path); it is timed to hinder the final
movement of the robot. Results appear in Figure 7.

The third experiment uses fractally generated wind data

with x and y components of wind varying between −30
and 30 m/s. The UAS moves from [4000.0, 11000.0] to
[11000.0, 4000.0] while avoiding 5 moving obstacles of
various size and speed. Results appear in Figure 8.

VI. DISCUSSION

The Any-Time properties of our method are evident in Fig-
ures 6-8-Center/Right. Initial paths are found very quickly,
while better paths are found vs. planning time.

Modifying hypergraph connectivity vs. planning epoch
(i.e., switching from graph-like planning to field-like plan-
ning) works well for Any-Time planning. Our method was
able to find paths comparable to Field-D* but in a frac-
tion of the time. The initial phase of graph-like planning
yields results similar to ARA*—as expected, given that
the two algorithms construct the same search graph over⋃
v∈V E+

v )—but eventually finds better solutions than ARA*
after

⋃
v∈V E+

v ∪ E⊕v is considered, i.e., due to lower β.
The simultaneous consideration of wind and obstacles

is well illustrated by the Jet experiment (Figure 7-Center).
Any-Time solutions shift upward to take advantage of the
fast-moving center of the jet, until they move to avoid the
oncoming obstacles.



VII. SUMMARY AND CONCLUSIONS

We present a global path-planning algorithm that enables
an autonomous UAS to fly through a spatiotemporally vary-
ing wind-field with moving obstacles. Our method is an
Any-Time algorithm that returns a sequence of αβ-optimal
solutions, where α is a user defined inflation parameter that
decreases vs. time and β is a modeling error factor that
decreases as hypergraph connectivity shifts from graph-like
to field-like.

Our method has been deployed in the field as the global
planning component of UAS involving Doppler radar, atmo-
spheric prediction models, and a fixed wing UAS. Experi-
ments show that it performs well vs. other current state of
the art methods. It is the first algorithm that modifies hyper-
graph structure to help archive Any-Time performance. It is
also the first Any-Time method that simultaneously considers
spatiotemporally varying wind and obstacles.

REFERENCES

[1] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[3] D. Ferguson and A. Stentz, “Field d*: An interpolation-based path
planner and replanner,” in Robotics Research. Springer, 2007, pp.
239–253.

[4] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” in Robotics and Automation, IEEE
International Conference on, vol. 1, 2002, pp. 968–975.

[5] E. W. F. Will Silva and W. Shaw-Cortez, “Implementing path planning
and guidance layers for dynamic soaring and persistence missions,” in
International Conference on Unmanned Aircraft Systems, Denver, CO,
June 2015.
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