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Abstract— We evaluate three different auction algorithms for
multi-robot task allocation when the communication channel
is lossy. These include the Sequential Auction, the Parallel
Auction, and a generalization of the Prim Allocation Auction
called the G-Prim Auction. Each auction is evaluated in two
different scenarios: (1) task valuations are random variables
drawn from a distribution, and (2) tasks represent locations
that must be visited and costs are defined by the extra distance
required to visit each location. We derive closed-form solutions
for the expected performance of the Sequential Auction and
Parallel Auction in Scenario 1, bound the performance of
G-Prim in Scenario 1, and bound the performance of the
Parallel and Sequential Auctions in Scenario 2.

I. INTRODUCTION

Multi-robot teams often face problems that require divid-
ing a set of tasks among the team’s robots, yet multi-robot
teams may also operate in environments where communi-
cation is unreliable. Communication may be unreliable due
to environmental factors such as weather and obstacles, the
distance between robots, interference, etc. A popular way
to allocate tasks is with an auction. Items are sold to the
highest or lowest bidder, where bids are determined by a
robot’s valuation or cost function, respectively, depending
on the problem being solved. Finding an optimal allocation
of tasks is equivalent to maximizing the sum of valuations
over sold items, or minimizing the sum of costs over sold
items. A number of auction algorithms exist, and most are
compatible with both the maximum valuation and minimum
cost objectives. Auction algorithms differ from each other
based on how many rounds are required to sell a particular
number of items, how many items each robot can bid for
each round, and how many items are sold each round.

We study how communication quality affects the per-
formance of different auction algorithms; in particular,
the expected number of tasks won by an agent and the
probability an agent does zero tasks. See Figure 1. We
assume communication is governed by a Bernoulli process in
which each message has an i.i.d. probability p of being sent
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Fig. 1: We study how imperfect communication affects autonomous
auctions. In this example, the third of m tasks is advertised and
sold to the highest bidder. The message from the auctioneer (A)
advertising the sale of task 3 did not reach robots D and B, and
they do not bid as a result. Robots A, C, E, and F bid. C wins
with the highest bid of VC(3) = 100. A previous message from
robot D, acknowledging D’s acceptance of task 2, was dropped;
thus, the auctioneer must also perform task 2 to ensure that task 2
is completed. Task 1 was successfully awarded to robot B.

successfully and a probability q = 1 − p of being dropped,
0 ≤ p ≤ 1. Given the Bernoulli communication model, we
consider the following two Scenarios:

S1 Item valuations are random variables drawn from a
probability distribution.

S2 Tasks represent locations, and costs are defined by the
extra distance each location adds to a robot’s total travel.

For Scenario 1 we derive closed form expressions for the
performance of the Parallel and Sequential Auctions as a
function of communication quality p, team size, and item
count; we prove that the Sequential Auction bounds the
performance of a generalization of the Prim Auction [1].
The results for Scenario 1 are then extended to Scenario 2,
providing performance equations for the Parallel Auction and
performance bounds for the Sequential Auction.

This paper is organized as follows: Related work appears
in Section II and preliminaries such as algorithms and
notation appear in Section III. The analytical solutions are
derived in Section IV, and in Section V they are compared
to results from repeated trials in simulation. Discussion and
conclusions appear in Sections VI and VII, respectively.



II. RELATED WORK

Auction techniques are often used for distributed task
allocation in autonomous robotics; surveys can be found in
[2] and [3]. We consider the case in which one robot is
defined to be the auctioneer a priori.

Defining one robot to be the auctioneer is a common
approach. That said, other ideas also appear in the literature,
including the following: All robots may broadcast their bids
so that winners can be calculated in parallel on all robots
[4]. Robots may initiate new auctions to re-sell tasks they
wish to drop [5]. Robots may share the role of auctioneer
[6]–[9]. For other variations the interested reader is referred
to [2], [3], since we limit our survey here for brevity.

The auction algorithms that we study include: the Parallel
Auction [10], the Sequential Auction [11], and a generaliza-
tion of Prim Allocation [1] that we call G-Prim. The original
Prim Allocation Algorithm assumes tasks are locations, and
defines an item’s cost as the minimum edge length required
to add that item to a spanning tree rooted at the bidding
agent. In contrast, G-Prim allows robots to use any valuation
or cost function but retains Prim’s bidding mechanics: m
items are sold over m rounds, and in each round each
agent i bids on the single unsold item that i values the
most. These mechanics enable G-Prim to have nice properties
when communication is poor. All three auctions we study are
detailed in Section III.

Previous work on multi-robot task allocation with Se-
quential Auctions includes: [4], [11]–[14], and with Parallel
Auctions includes: [10], [15]. Comparisons of general market
based approaches can be found in: [11], [16]–[18]. Previous
work evaluating a single auction in interesting communica-
tion situations can be found in: [10], [12], [15], [19]–[21].
Our work differs from previous work in that we compare
the performance of multiple auction algorithms across a
range of communication qualities p ∈ [0, 1], and we derive
expressions for the expected agent participation.

Closely related work includes [21] and [22]. Unreliable
communication is assumed in [21], in which Prim Allocation
is compared to a distributed technique that uses post-hoc
greedy trading for solution improvement; in contrast, we
consider different algorithms and valuation functions, and
analyze agent participation. Bounds on G-Prim’s solution
length, when using each of six distance-based heuristics, are
reported in [22], assuming perfect communication.

III. PRELIMINARIES

Pseudocode for the Parallel, Sequential, and G-Prim Auc-
tions appears in Algorithms 1, 2, and 3, respectively, as-
suming a profit maximization objective. The alternative cost
minimization objective can be used by replacing arg max by
arg min and setting unreceived bids to ∞ instead of −∞.

Table I compares auctions based on the number of rounds
they require and the number of items bid for and sold
each round. Figure 2 shows the phases, messages, and
communication graph of a single auction round (identical
for all auctions). Each message is either broadcast by the
auctioneer or sent once by each non-auctioneer. A broadcast

TABLE I: High-Level Comparison of Different Auction Types

Auction type rounds number of items number of items
advertised per round sold per round

Parallel 1 m m
Sequential m 1 1
G-Prim m r during round r 1
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Fig. 2: Phases of an auction
round, and the messages sent
between them. Round phases
appear boldfaced, computations
during phases appear as plain
text. Messages from auctioneer
(a = 1) to auctioneer are always
received, messages from auc-
tioneer to non-auctioneer agents
(2 . . . n) and from non-auctioneer
agents to auctioneer are sent with
probability p and dropped with
probability q = 1− p.

is equivalent to sending the same message once to each
agent; we assume the success or failure of a broadcast
message reaching different agents is independent. We assume
messages sent from the auctioneer to itself are never dropped.

Subscripts i, j, and r denote association with a particular
item, agent, or round, respectively. There are n agents and m
items. a denotes the auctioneer’s ID; a = 1 by convention.
Set Θ contains all items and θj is the j-th item. The sets of
all sold and unsold items are Θsold and Θunsold = Θ \Θsold,
respectively. During round r, robot i calculates a bid for item
θj using the valuation function Vi,r(θj). Set Bi is agent i’s
self-maintained set of bids, while B̃i is the set of i’s bids for
which the auctioneer is aware. The set W̃i contains the items
the auctioneer awards to agent i, while Wi is the set of items
robot i knows it has won. Dropped messages may cause
Bi 6= B̃i and Wi 6= W̃i. An acknowledgment is denoted C.
The cardinality of set ‘·’ is denoted | · |. The probability
of an event ‘·’ is P(·) and the expectation of a value ‘·’ is
E(·); probabilities and expectations are defined over the event
space of all communication histories and all realizations of
valuations (or costs), as defined in Section III-D.

A. Parallel Auction

A Parallel Auction (Algorithm 1) has a single round in
which all items are auctioned simultaneously. The auctioneer
broadcasts the item list Θ to all robots including itself
(line 1). Each robot i calculates a bid for each item θj
using its valuation function Vi,1(θj), and sends its resulting
bid list Bi to the auctioneer (lines 3-5). The auctioneer
waits for a predetermined length of time to receive bids
(lines 6-8), awards each θj to the agent that sent the best bid
for θj (lines 9-11), and then broadcasts the award list W̃1...n

(line 12). Winning robots that receive W̃1...n return an ac-
knowledgment Ci (lines 13-15). Finally, the auctioneer takes
responsibility for tasks with unacknowledged sales (lines 17-
18). Note that while the auctioneer broadcasts W̃1...n, each
robot i only needs to know the subset W̃i ⊂ W̃1...n (the
items that i won).



Algorithm 1 Parallel Auction
On auctioneer a, 1: a.Broadcast(Θ)
On each agent i, 2: if i.Receive(Θ) then
On each agent i, 3: for all θj ∈ Θ do
On each agent i, 4: Bi[j]← Vi,1(θj)
On each agent i, 5: i.Send(Bi[1 . . .m])
On auctioneer a, 6: while time left do
On auctioneer a, 7: if a.Receive(Bi[1 . . .m]) then
On auctioneer a, 8: B̃i,1...m ← Bi[1 . . .m]
On auctioneer a, 9: for j = 1 . . .m do
On auctioneer a, 10: i← arg maxi B̃1...n,m

On auctioneer a, 11: W̃i ← W̃i ∪ {θj}
On auctioneer a, 12: a.Broadcast(W̃1...n)
On each agent i, 13: if i.Receive(W̃1...n) then
On each agent i, 14: Wi ← W̃i

On each agent i, 15: i.Send(Ci)
On auctioneer a, 16: wait appropriate amount of time
On auctioneer a, 17: for all i ∈ [1 . . . n] s.t. not a.Receive(Ci) do
On auctioneer a, 18: Wa ←Wa ∪Wi

Algorithm 2 Sequential Auction
On auctioneer a, 1: Θsold ← ∅
On auctioneer a, 2: while Θsold 6= Θ do
On auctioneer a, 3: randomly pick θj ∈ Θ \Θsold

On auctioneer a, 4: a.Broadcast(θj)
On each agent i, 5: if i.Receive(θj) then
On each agent i, 6: Bi[j]← Vi,j(θj)
On each agent i, 7: i.Send(Bi[j])
On auctioneer a, 8: while time left do
On auctioneer a, 9: if a.Receive(Bi[j]) then
On auctioneer a, 10: B̃i,j ← Bi[j]
On auctioneer a, 11: h← arg maxi B̃i,j

On auctioneer a, 12: W̃h ← W̃h ∪ {θj}
On auctioneer a, 13: a.Broadcast(h, j)
On each agent i, 14: if i.Receive(h, j) and i = h then
On each agent i, 15: Wi ←Wi ∪ {θj}
On each agent i, 16: i.Send(Ch,j)
On auctioneer a, 17: wait appropriate amount of time
On auctioneer a, 18: if not a.Receive(Ch,j) then
On auctioneer a, 19: Wa ←Wa ∪ {θj}
On auctioneer a, 20: Θsold ← Θsold ∪ {θj}

B. Sequential Auction

A Sequential Auction (Algorithm 2) sells 1 item per round
for m rounds. During each round of a Sequential Auction
the auctioneer chooses (e.g., randomly) an unsold item θj
and sells it using the same phases as a Parallel Auction—
advertisement, bidding, winner determination, winner an-
nouncement, and acknowledgment.

C. G-Prim Auction

The G-Prim Auction (Algorithm 3) is similar to a Sequen-
tial Auction in that one item is sold per round for m rounds;
it is also similar to a Parallel Auction in that multiple items
are up for sale each round. During round r, each agent bids
for the unsold item b̂i,r ∈ Θunsold that it values the most,
and the auctioneer awards the single item that received the
best bid (where Θunsold = Θ \Θsold). The number of unsold
items |Θunsold| = m− r + 1 at the start of round r. Each
round has the same phase order as the other two Auctions.

D. Valuation and Cost Scenarios Considered

We now formalize the two Scenarios we consider.

Algorithm 3 G-Prim Auction
1: for r = 1 . . .m do

On auctioneer a, 2: B̃i...n,1...m ← −∞
On auctioneer a, 3: Θr ← Θ \Θsold

On auctioneer a, 4: a.Broadcast(Θr)
On each agent i, 5: if i.Receive(Θr) then
On each agent i, 6: for all θj ∈ Θr do
On each agent i, 7: Bi[j]← Vi,r(θj)

On each agent i, 8: b̂i,j ← arg maxj Bi[j]

On each agent i, 9: i.Send(b̂i,j)
On auctioneer a, 10: while time left do
On auctioneer a, 11: if a.Receive(b̂i,j) then
On auctioneer a, 12: B̃i,j ← b̂i,j
On auctioneer a, 13: (h, j)← arg max(i,j) B̃i,j

On auctioneer a, 14: W̃h ← W̃h ∪ {θj}
On auctioneer a, 15: a.Broadcast(h, j)
On each agent i, 16: if i.Receive(h, j) and i = h then
On each agent i, 17: Wi ←Wi ∪ {θj}
On each agent i, 18: i.Send(Ci,j)
On auctioneer a, 19: wait appropriate amount of time
On auctioneer a, 20: if not a.Receive(Ci,j) then
On auctioneer a, 21: Wa ←Wa ∪ {θj}
On auctioneer a, 22: Θsold ← Θsold ∪ {θj}

1) Scenario 1, Maximization of Random Valuations: In
Scenario 1 we assume all valuations are absolutely continu-
ous random variables drawn i.i.d. at random from the same
probability density function fX(x). This is a valid assump-
tion if both: (i) different agents have different preferences
and skills that are independently determined, but (ii) the
preferences and skills of the agent population as a whole can
be described by well behaved distributions. Having all agents
draw valuations from fX(x) guarantees that each possible
ordering of agent-item valuations is equally likely.

In Scenario 1 valuations are assumed constant over time,

Vi,r̂(θj) = Vi,r(θj) for all r̂, r

which is a valid assumption if valuations are mutually
independent, e.g., there are no synergies between items.

2) Scenario 2, Minimization of Multi-TSP Cost: In Sce-
nario 2 we assume items are locations that must be visited.
Cost Vi,r(θj) is defined by the extra distance agent i must
travel to visit θj in addition to the locations Wi,r−1 that i has
already accepted in rounds 1 . . . r − 1. Let `TSP(·) denote the
length of the traveling salesperson (TSP) solution over item
set ‘·’. Formally,

Vi,r(θj) = `TSP(Wi,r−1 ∪ {θj})− `TSP(Wi,r−1). (1)

In this paper we calculate the true multi-TSP length—even
for G-Prim. Using the true multi-TSP length is only viable
for small numbers of items; the cost metric from Prim Allo-
cation provides a practical alternative for problems involving
many items. Prim Allocation (which G-Prim generalizes to
any cost or valuation function) was designed especially for
Scenario 2 and estimates multi-TSP length using a variant



of Christofides TSP approximation algorithm1 [23].

IV. ANALYSIS

We now analyze the expected performance of the Parallel,
Sequential, and G-Prim Auctions in Scenario 1, and then
extend this to the expected performance of the Parallel and
Sequential Auctions in Scenario 2.

A. Analysis of Parallel Auction in Scenario 1

Communicating a bid to the auctioneer requires receiving
the advertisement list and sending a bid message. The prob-
ability exactly k − 1 non-auctioneers communicate a bid to
the auctioneer is p2(k−1)(qp+ q)n−k

(
n−1
k−1
)
. The auctioneer

always communicates a bid to itself; therefore, when k − 1
non-auctioneers communicate a bid to the auctioneer the
auctioneer receives (k − 1) + 1 = k bids.

The expression p2(k−1)(qp+ q)n−k
(
n−1
k−1
)

comes from the
facts that: For each of k − 1 non-auctioneers to submit a
bid, advertise messages must be passed successfully from
the auctioneer to k−1 non-auctioneers (which happens with
probability pk−1) and bid messages successfully returned
by them (which also happens with probability pk−1). The
combined event that the remaining n− k non-auctioneers
do not submit bids require that, for each of the n− k, either
(1) an advertise message is successful but the bid message
is dropped or (2) the advertise message is dropped; the
compound event that either one or the other of these things
happen to n− k agents has probability (qp+ q)n−k. Finally,
there are

(
n−1
k−1
)

different ways to assign the non-auctioneers
such that k − 1 non-auctioneers successfully bid and n− k
non-auctioneers do not.

Given our assumptions, the probability the auctioneer wins
θj given k bids are communicated to the auctioneer is 1/k.
Thus, the expected number of items won outright by the
auctioneer is:

E
(
|W̃a|

)
=

n∑
k=1

m

k
p2(k−1)(qp+ q)n−k

(
n− 1

k − 1

)
.

The probability a particular i 6= a plus k − 2 other non-
auctioneers communicate a bid message to the auctioneer
is p2(k−1)(qp+ q)n−k

(
n−2
k−2
)
, and so the expected number of

items awarded to i 6= a by the auctioneer is:

E
(
|W̃i 6=a|

)
=

n∑
k=2

m

k
p2(k−1)(qp+ q)n−k

(
n− 2

k − 2

)
and the expected number awarded to all non-auctioneers is:

E
(∑

i 6=a

|W̃i|
)

= (n− 1)E
(
|W̃i6=a|

)
.

1Prim Allocation (which uses a multi-TSP variant of Christofides TSP
approximation algorithm) estimates multi-TSP length by building an in-
cremental spanning forest from agents’ locations. A post-processing step
is used to obtain a multi-TSP approximation from the spanning forest.
This heuristic yields a solution no worse than 1.5 times the optimal length
and is calculated in polynomial time. While the true TSP-based solution
we consider provides a closer estimate of the optimal multi-TSP path, its
runtime is super-polynomial with respect to item number.

Taking responsibility for (or adopting) an item requires both
winning that item and also receiving the award message. The
expected number of items adopted by a single non-auctioneer
and the set of all non-auctioneers are, respectively:

E
(
|Wi 6=a|

)
= pE

(
|W̃i 6=a|

)
E
(∑

i 6=a

|Wi|
)

= (n− 1)E
(
|Wi 6=a|

)
.

The expected number of items adopted by the auctioneer
includes the items it wins plus all unacknowledged sales:

E(Wi 6=a) = E(W̃a) + (pq + q)E
(∑

i 6=a

|W̃i|
)
.

The expected number of items adopted twice, i.e., by the
auctioneer as well as a non-auctioneer, is:

E(|Wa ∩ (∪i 6=aWi)|) = pqE
(∑

i 6=a

|W̃i|
)
.

The probability a non-auctioneer does not win item θj in
a Parallel Auction assuming its bid is received is:

P(θj ∈ W̃i 6=a | ζ) =
∑n

k=2
k−1
k p2(k−2)(qp+ q)n−k

(
n−2
k−2
)

where ζ is the event “i’s bid is received.” Thus, the proba-
bility a non-auctioneer wins zero items, assuming ζ, is:

P(W̃i 6=a = ∅ | ζ) = P(θj ∈ W̃i6=a)m

The probability a non-auctioneer adopts at least one task, i.e.,
i 6= a wins at least one item and gets the award message, is:

P(Wi6=a 6= ∅) = 1−
(
q + pq + p2q + p3P(W̃i 6=a = ∅ | ζ)

)
B. Analysis of Sequential Auction in Scenario 1

We now switch our focus to the Sequential Auction. The
expected number of items won outright by the auctioneer is:

E
(
|W̃a|

)
= m

n∑
k=1

1

k
p2(k−1)(qp+ q)n−k

(
n− 1

k − 1

)
and the number of items awarded to each non-auctioneer is:

E
(
|W̃i 6=a|

)
= m

n∑
k=2

1

k
p2(k−1)(qp+ q)n−k

(
n− 2

k − 2

)
.

These are equivalent to the expectations derived for the
Parallel Auction. Thus, all remaining expected values of the
Sequential Auction are identical to their Parallel Auction
counterparts; we do not repeat them to save space.

The probability that an agent does at least one task in a
Parallel Auction is different than in a Sequential Auction,
despite the fact that expected number of items adopted by
a particular agent is identical for the two auctions. In a
Sequential Auction the probability a non-auctioneer i 6= a
wins θj conditioned on the event ζj (its bid is received) is:

P(θj ∈ W̃i 6=a | ζj) =
∑n

k=2
k−1
k p2(k−2)(qp+ q)n−k

(
n−2
k−2
)

and the probability a non-auctioneer does at least one task:

P(Wi 6=a 6= ∅) = 1− (1− pP(θj ∈ W̃i6=a | ζj))m.



C. Analysis of G-Prim Auction in Scenario 1
We now consider G-Prim. For rounds r < m, an agent

almost surely gets multiple auction rounds to bid for items it
values more than other agents. Let ¬ζh,j,r denote the event
“agent h’s bid for j was not received in round r”.

Lemma 1: Given θj ∈ Θunsold at the beginning of round
r and Vh,r(θj) > Vi,r(θj) for all i 6= h and where r < m;
then Pr+1(θj ∈ Θunsold | ¬ζh,j,r) > 0.

Proof: By construction |Θunsold| > 2 at the begin-
ning of round r when r < m. The probability all agents
i 6= h bid on some other item θk 6= θj is nonzero and
so Pr(θj = b̂i,j | ¬ζh,j,r) < 1 for all i 6= h. It follows that
Pr(θj ∈ B̃i,j | ¬ζh,j,r) < 1 for all i 6= h. Finally, if no agents
bid on θj then θj is not sold; i.e., θj 6∈ B̃i,j implies that
θj 6∈ Θsold at the end of round r and the beginning of round
r + 1.

Corollary 1: For all θj such that h = arg maxi Vi(θj),
PG-Prim(θj ∈ W̃i 6=a) > PSequential(θj ∈ W̃i6=a).

In other words, Corollary 1 states that G-Prim increases
P(θj ∈Wi 6=a) for any θj that i values more than any
other agent. Theorem 1 leverages Corollary 1 to bound the
probability an agent wins zero items in G-Prim based on the
Sequential Auction:

Theorem 1: If m > 1 and p < 1 then:
PG-Prim(Wi 6=a 6= ∅) ≥ PSequential(Wi 6=a 6= ∅).

Proof: By construction, when m > 1 and n > 1 there
is a greater than 1/n probability that an item θj exists
such that agent h values θj more than any other agent;
formally, P(∃θj |h = arg maxi Vi(θj)) > 1/n for all agents
h. Corollary 1 finishes the proof.

The effect described in Lemma 1 also increases the ex-
pected number of items adopted by non-auctioneers because
it reduces the auctioneer’s advantage of self communication.

Corollary 2: EG-Prim(|Wi6=a|) ≥ ESequential(|Wi 6=a|).
Because there are only m items, the number of items adopted
by the auctioneer must decrease to maintain balance.

Corollary 3: EG-Prim(|Wa|) ≤ ESequential(|Wa|).

D. Analysis of Scenario 2
Costs in Scenario 2 are defined by the extra TSP length

required to visit a new location (Equation 1). When i
wins θj , the multi-TSP and its sub-length over i’s tasks
cannot shorten; indeed, it lengthens almost surely2. This is
formalized in Proposition 1.

Proposition 1: P(`TSP(Wi,r ∪ {θj}) > `TSP(Wi,r)) = 1.
Lengthening i’s multi-TSP path causes i to visit more

of the environment (due to the triangle inequality), and
decreases i’s cost of visiting other locations with a higher
probability than it increases it3. This is formalized in Propo-
sition 2.

2This statement makes the implicit assumption that locations are initially
chosen by a random process that would sample the environment densely,
in the limit, if the number of locations were allowed to go to infinity. The
“almost surely” refers to the fact that, given randomly chosen locations,
the chances a new location lies along the old multi-TSP (in which case the
multi-TSP length remains the same) is zero.

3Note that, this assumes item locations are initially chosen by a random
process that would sample the environment densely, in the limit, if the
number of locations were allowed to go to infinity.

Proposition 2: Assuming Wi,r = Wi,r−1 ∪ {θj}, then
`TSP(Wi,r) > `TSP(Wi,r−1) =⇒ P(Vi,r(θk) < Vi,r−1(θk)) > 1/2,

for all θk ∈ Θunsold at round r.
A lower cost of visiting θk increases the chances that an

agent will win θk. This is formalized in Proposition 3.
Proposition 3: When p > 0 and θk ∈ Θunsold in r − 1,

Vh,r(θk) < Vi,r−1(θk) =⇒ P(θk ∈Wh,r) > P(θk ∈Wi,r−1).
Combining Propositions 2 and 3 yields Corollary 4.
Corollary 4: When p > 0 and θj , θk ∈ Θunsold at the be-

ginning of round r − 1 and Wh,r = Wh,r−1 ∪ {θj}, then
P(θk ∈Wh,r+1) > P(θk ∈Wi,r).

Corollary 4 states that if h wins any task θj then the
probability h wins another task θk increases (in Scenario 2).
The following Corollary 5 holds because if agent h’s chances
of winning θk increase, the chance that agents i 6= h wins
θk must decrease.

Corollary 5: When p > 0 and θj , θk ∈ Θunsold

in round r − 1 and Wh,r = Wh,r−1 ∪ {θj}, then
P(θk ∈Wi 6=h,r+1) < P(θk ∈Wi6=h,r).

Given randomly distributed start and item locations, the
costs in round 1 of Scenario 2 meet all assumptions required
by the analysis of Scenario 1 (agents draw values from
the same distribution and the maximum value objective of
Scenario 1 is met by negating Scenario 2’s costs). This leads
to Proposition 4.

Proposition 4: The probability that i wins round 1 of an
auction in Scenario 1 is equal to the probability that i wins
Round 1 of the same auction type in Scenario 2.
Corollary 6 holds because Parallel Auctions have one round.

Corollary 6: For the Parallel Auction, all results derived
in Scenario 1 are valid for Scenario 2.

We now prove that the equations derived for the Sequential
Auction in Scenario 1 become inequalities that provide
bounds on the Sequential Auction in Scenario 2 (Lemma 2
and Corollaries 7-10).

Lemma 2: When p < 1 and for all θj ,
PS2, Sequential(θj ∈ W̃a,r) ≥ PS1, Sequential(θj ∈ W̃a,r).

Proof: The auctioneer has an advantage over non-
auctioneers when p < 1 because the auctioneer always has
perfect communication with itself. Consequently, a is more
likely to win round r ≥ 1 than i 6= a when p < 1; and thus
a has an increased chance of winning rounds r > 1 by
Corollary 4.

Lemma 2 has Corollaries 7 and 8, regarding the probability
that agents adopt at least one task; and Corollaries 9 and 10,
regarding the expected number of tasks adopted by agents.

Corollary 7: When p < 1,
PS2, Sequential(θj ∈Wa,r) ≥ PS1, Sequential(θj ∈Wa,r).

Corollary 8: When p < 1,
PS2, Sequential(θj ∈Wi 6=a,r) ≤ PS1, Sequential(θj ∈Wi6=a,r).

Corollary 9: When p < 1,
ES2, Sequential(|Wa|) ≥ ES1, Sequential(|Wa|).

Corollary 10: When p < 1,
ES2, Sequential(|Wi6=a|) ≤ ES1, Sequential(|Wi 6=a|),

G-Prim’s Scenario 2 performance is similarly bounded by
G-Prim’s Scenario 1 performance. Formal proofs follow the
same logic as for the Sequential Auction, but are less useful
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Fig. 3: The probability that a non-auctioneer agent (i 6= a) does at
least one task, analytical value vs. results from simulations.

because they go in the opposite direction of G-Prim’s closed-
form bounds for Scenario 1. Nonetheless, averaging over
repeated trials of G-Prim in Scenario 1 provides a means of
obtaining a numerical bound on its performance in Scenario
2, e.g., as shown in Figure 4-Bottom-Right.

V. SIMULATIONS

We run repeated trials in simulation for both Scenario 1
and Scenario 2 across a variety of communication qualities
on the range p ∈ [0, 1]. For Scenario 1, every robot deter-
mines a unique valuation for each item by drawing a random
number from the range [0, 1], and we simulate the two cases
where 5 agents divide 10 and 1000 tasks, respectively. For
Scenario 2, 5 agents participate in auctions for 10 locations,
and start and item locations are drawn uniformly at random
from a 100 by 100 kilometer square. The TSP-based costs
are recalculated for an agent i after rounds in which i wins
an item. We run 104 trials per data point and plot the mean
values from experiments vs. the expected values predicted
by our analysis in Figures 3-5.

VI. DISCUSSION OF RESULTS

A. Discussion of Scenario 1

The results from simulations closely match our analysis
of Scenario 1 (Figures 3, 4-Top, 4-Middle). The Sequential
Auction tends to involve more agents in the final task
allocation than the Parallel Auction, despite the fact that the
two methods award the same expected number of items to
each agent. This happens because, in a Parallel Auction, a
single dropped messages from a non-auctioneer will prevent
it from bidding on or adopting any tasks. In contrast, the Se-
quential Auction amortizes this risk over m different rounds,
each round involving 1/m the communication bandwidth of
the Parallel Auction. This amortization provides increased
benefits as the number of tasks m increases.

Scenario 1 with 5 agents and 10 items
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Fig. 4: The number of items adopted by agents over various com-
munication qualities, auctions, and for Scenarios 1 and 2. Note that
items are adopted (or visited) twice if an agent receives an award
message from the auctioneer but fails to send an acknowledgment
message back to the auctioneer (and so the auctioneer also visits
the item).

When p < 1 the G-Prim Auction enables more agents to
win tasks than either the Sequential or Parallel Auctions. By
having each agent i bid for the item that i values most, G-
Prim reduces the chances that an item highly valued by i is
sold to some other agent in the event that a message to/from
i is dropped. G-Prim also tends to result in better solutions
overall (Figure 5-Right). The price of these advantages is that
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Fig. 5: Left: the probability that a non-auctioneer (i 6= a) does at
least one task, analytical value vs. results from experiments over
various communication qualities for different auction types. Right:
Solution quality over various communication qualities.

the auctioneer must use advertisement messages that are m/2
times larger than the Sequential Auction, on average.

B. Discussion of Scenario 2

Both simulations and analysis show that the Parallel
Auction’s performance in Scenario 2 is equivalent to its
performance in Scenario 1, and the Sequential Auction’s
performance in Scenario 2 is bounded by its performance
in Scenario 1 (Figures 4-Bottom and 5-Left). In Scenario 2
we observe that, when p < 1 for auctions with more than two
rounds, non-auctioneers are less likely to win items than in
Scenario 1. This happens because winning any item increases
the probability of winning additional items in future rounds.

In both Scenarios 1 and 2, communication loss decreases
the chances that a non-auctioneer will win an item (and
increases the chances that an auctioneer will win an item).
As a result better communication correlates with increased
agent participation, in general.

VII. SUMMARY AND CONCLUSIONS

We evaluate the performance of the Parallel Auction,
the Sequential Auction, and the G-Prim Auction for multi-
robot task allocation in cases where communication be-
tween the robots is unreliable (and governed by a Bernoulli
process). We derive closed-form solutions for the expected
performance of the Sequential and Parallel Auctions and
bound the performance of G-Prim in terms of the Sequential
Auction’s results. We consider two different Scenarios. The
first involves maximizing the value of items sold, where
item values are random variables. The second assumes items
are randomly drawn locations, and defines cost as the extra
distance required to visit a location.

The average performance observed over repeated trials in
simulation agree with our analysis. When communication

is poor in Scenario 1, G-Prim enables more agents to
participate in tasks than either the Sequential Auction or the
Parallel Auction. When communication is poor in Scenario 2
non-auctioneers are less likely to participate in each task,
regardless of auction type.

In general, solution quality is ranked best-to-worst in the
order: G-Prim, Sequential, Parallel.
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