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Abstract We consider the problem of multi-robot task

allocation using auctions, and study how lossy commu-

nication between the auctioneer and bidders affects so-

lution quality. We demonstrate both analytically and

experimentally that even though many auction algo-

rithms have similar performance when communication

is perfect, different auctions degrade in different ways as

communication quality decreases from perfect to nonex-

istent. Thus, if a multi-robot system is expected to en-

counter lossy communication, then the auction algo-

rithm that it uses for task allocation must be chosen

carefully.

We compare six auction algorithms including: stan-

dard implementations of the Sequential Auction, Par-

allel Auction, Combinatorial Auction; a generalization

of the Prim Allocation Auction called G-Prim; and two

multi-round variants of a Repeated Parallel Auction.
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Fig. 1: Auctions in communication limited environments.
Distance and terrain (depicted here), as well as other factors
(not shown), can cause messages to be dropped in environ-
ments where autonomous multi-robot teams are deployed.

Variants of these auctions are also considered in which

award information from previous rounds is rebroadcast

by the auctioneer during later rounds. We consider a

variety of valuation functions used by the bidders, in-

cluding: the total and maximum distance traveled (for

distance based cost functions), the expected profit or

cost to a robot (assuming robots’ task values are drawn

from a random distribution). Different auctioneer ob-

jectives are also evaluated, and include: maximizing

profit (max sum), minimizing cost (min sum), and min-

imizing the maximum distance traveled by any partic-

ular robot (min max). In addition to the cost value

functions that are used, we are also interested in fleet

performance statistics such as the expected robot uti-

lization rate, and the expected number of items won by

each robot.

Experiments are performed both in simulation and

on real AscTec Pelican quad-rotor aircraft. In simula-

tion, each algorithm is considered across communica-

tion qualities ranging from perfect to nonexistent. For

the case of the distance-based cost functions, the perfor-

mance of the auctions is compared using two different

communication models: (1) a Bernoulli model and (2)

the Gilbert-Elliot model. The particular auction that

performs the best changes based on the the reliability

of the communication between the bidders and the auc-

tioneer. We find that G-Prim and its repeated variant

perform relatively well when communication is poor,

and that re-sending winner data in later rounds is an

easy way improve the performance of multi-round auc-

tions, in general.

Keywords Multi-Robot · Multi-Agent · Auction ·
Any-Com · Task Allocation · Prim Allocation ·
G-Prim · Sequential Auction · Parallel Auction ·
Combinatorial Auction
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Task Auction With Unreliable Communication

Fig. 2: We study how imperfect communication affects au-
tonomous auctions. In this example, the third of m tasks is
advertised and sold to the highest bidder. The message from
the auctioneer (A) advertising the sale of task 3 did not reach
robots D and B, and they do not bid as a result. Robots A,
C, E, and F bid. C wins with the highest bid of VC(3) = 100.
A previous message from robot D, acknowledging D’s accep-
tance of task 2, was dropped; thus, the auctioneer must also
perform task 2 to ensure that task 2 is completed. Task 1 was
successfully awarded to robot B.

1 Introduction

Multi-robot teams are often deployed in environments

where communication is unreliable, yet they may also

face problems that require dividing a set of tasks be-

tween the different members of the team. Communi-

cation may be unreliable due to environmental factors
such as weather and obstacles, the distance between

robots, and interference (see Figure 1). Communication

may also be intentionally withheld in the interest of

maintaining stealth. Auctions and other market-based

approaches are widely used for task allocation because

they provide a distributed mechanism to partition tasks

in a way that allows different robots to have different

costs or values over the same set of tasks (items).

In an auction, each robot determines its own bid for

each item based on an internal valuation or cost func-

tion. The auctioneer then sells items to the highest or

lowest bidder, depending on if the auctioneer is seeking

to maximize value or minimize cost, respectively.

A valuation function is used to account for factors

such as task preference and the ability to complete a

task, while a cost function often accounts for the re-

sources that are required to complete a task; e.g., the

distance that must be traveled or the fuel that must

be used. Auction algorithms differ based on how many

rounds are required to sell a particular number of items,

how many items each robot can bid for each round, and

how many items are sold each round. Most auction al-

gorithms have both a maximum valuation and a mini-

mum cost formulation; the difference between the two

is often as simple as swapping minimization operations

for maximization operations, or vice versa.

Auctions necessarily involve communication between

the auctioneer and the bidders (see Figure 2). Yet, while

a variety of auctions have been proposed and/or used

for multi-robot task allocation, the effects of lossy com-

munication on auction performance are not usually re-

ported. Indeed, a direct comparison of how communi-

cation degradation affects the relative performance of

different auctions has not previously been performed.

A main contribution of this research is an im-

proved understanding of how a variety of popu-

lar auctions perform in communication degraded

scenarios. We perform both analytical and ex-

perimental comparisons of how six different auc-

tions perform at different points along the com-

munication quality spectrum in a variety of dif-

ferent scenarios. Three of these six are standard im-

plementations of well known auctions including: the Se-

quential Auction, Parallel Auction, and Combinatorial

Auction. Another is a generalization of Prim Allocation

called G-Prim that extends the basic dynamics of Prim

Allocation to work with any cost or valuation function1.

The final two auctions that we compare are multi-round

(“repeated”) variations of the Parallel Auction; one is

a standard implementation, and the other shares simi-

larities with G-Prim.

For auctions that require more than a single round

of bidding to sell the entire set of items, we also inves-

tigate a simple but effective modification in which the

auctioneer rebroadcasts award information from earlier

rounds along with each round’s (new) award informa-

tion. The performance measures that we consider in-

clude: the total and maximum distance traveled (for

distance based cost functions), the expected profit or

cost of the group solution (assuming robots’ task values

are drawn from a random distribution), the expected

robot utilization rate, and the expected number of items

won by each robot.

A small additional contribution of this work is a

mixed integer programming formulation for a Combi-

natorial Auction that minimizes the maximum distance

traveled by any robot.

Experiments are performed both in simulation and

on real AscTec Pelican quad-rotor aircraft. In simula-

1 Prim Allocation was originally designed to use a specific
cost function that is based on a bounded approximation to
the multi-agent version of the traveling salesperson problem
Lagoudakis et al (2004).
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tion, each algorithm is considered using a variety of val-

uation functions, and across communication qualities

ranging from perfect to nonexistent using two different

communication models: (1) a Bernoulli model and (2)

the Gilbert-Elliot model.

In general, we find that methods rank differently

depending on both the quality of the communication

channel and the cost function that is minimized. We

also find that the relative performance of different auc-

tions change as communication degrades. Both G-Prim,

and the repeated parallel variant that is based on G-

Prim perform relatively well when communication is

poor. Re-sending winner data is an easy way to improve

the performance of multi-round auctions, in general.

This paper is organized as follows: Related work ap-

pears in Section 2 and preliminaries such as algorithms

and notation appear in Section 3. The auction algo-

rithms themselves appear in Section 4. The analytical

solutions for expected agent utilization statistics are de-

rived in Section 5, and section 6 contains analysis for

straightforward extensions to the basic methods. Sec-

tion 7 describes experiments that we run including: a

comparison of the analytical solutions to the average

results observed over Monte Carlo simulations, a com-

parison of how different communication models affects

auction performance while using distance based cost

functions, and hardware experiments using auctions in

a test bed using three agents: two AscTec Pelican Quad-

rotors and a stationary auctioneer. Discussion and con-

clusions appear in Sections 8 and 9, respectively. Fi-

nally, an appendix contains the derivations of a few

numerical calculations and additional plots from exper-

iments.

2 Related Work

A variety of auction techniques have previously been

applied to problems of distributed task allocation in

autonomous robotics. Surveys of previous work can be

found by Dias et al (2006) and Koenig et al (2010).

Defining one robot to be the auctioneer is a com-

mon approach, and the one that we explore in this pa-

per. That said, a number of alternative organizations

appear in the literature. For example, all robots may

broadcast their bids over a fully connected communica-

tion graph so that winners can be calculated in parallel

on all robots (Vail and Veloso, 2003). Robots may ini-

tiate new auctions to re-sell tasks they wish to drop

(Guerrero and Oliver, 2003). Robots may also share

the role of auctioneer. For example, in the CNET pro-

tocol (Smith, 1980) idle contractor nodes bid for jobs

from manager “nodes” in a sealed bid first price auc-

tion, and “nodes” switch between contractor and man-

ager as necessary. A similar idea is used for multi-robot

teams by Caloud et al (1990); such teams are deployed

in a simulated environment across multiple networked

computers by Botelho and Alami (1999). The CNET

idea is extended to “TraderBots” in Dias et al (2004).

A variety of different auction mechanisms have been

used for task allocation in multi-robot teams. In a Se-

quential Auction, the auctioneer sells a sequence of items,

one item at a time, in an order selected by the auc-

tioneer. Simmons et al (2000) have robots bid to visit

frontier nodes after map updates. Wei et al (2015) have

robots bid to search unvisited points for targets, and

also to transport targets to a goal. A sequence of one-

round auctions is used by Rekleitis et al (2008) for di-

viding a Boustrophedon multi-robot coverage sweep, by

Vail and Veloso (2003) for assigning roles in robot soc-

cer, and by Pippin and Christensen (2011) for assigning

target detection tasks. Vail and Veloso (2003) use a se-

quence of one-round auctions that are distributed in the

sense that robots share information, and each auction

is calculated separately on all robots.

MURDOCH uses a similar sequence of distributed

one-round auctions to allocate a variety of tasks in-

cluding: box pushing, century duty, and object track-

ing (Mataric and Sukhatme, 2001; Gerkey and Mataric,

2002). Nanjanath and Gini (2010) use several Sequen-

tial Auctions, that are run in parallel, and auctions re-

peat during task execution. Guerrero and Oliver (2003)

have robots bid for participation in a variety of multi-

robot tasks, and an auction is repeated as necessary

whenever a robot abandons its task.

A multi-round ε rising price auction2 is analyzed

in Bertsekas and Castañon (1991), and found to con-

verge to a solution within εn of optimal, where n is the

number of bidders. We note that rising price auctions

are not commonly used for task allocation in scenar-

ios where we control all bidding agents, because the

outcome of this auction is identical to that of a sealed-

bid second price auction3. Rising price auctions require

multiple rounds to sell each item, in general, while sealed-

bid second price auctions only require one round to

sell each item. In Berhault et al (2003) sealed bid sin-

gle round Combinatorial Auctions are solved approxi-

mately using a primal-dual algorithm from Zurel and

Nisan (2001), where tasks are visiting points of interest

in an unknown environment.

In Parallel Auctions all items are bid on simultane-

ously, such that the auction lasts one round.

2 Rising price auctions are also known as English Auctions.
3 Second price sealed-bid auctions are also know as a Vick-

rey auctions. In this auction the highest bidder wins, but
pays the second-highest bid price; essentially outbidding the
second highest bidder by ε→ 0.
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Combinatorial Auctions are the only type of auc-

tion that are guaranteed to find an optimal solution

in the case that item valuations are not independent4.

Each agent submits a bid for every possible subset of

items, and the auctioneer awards sets of items to agents

such that the best overall allocation of items to agents

is achieved. Combinatorial Auctions are NP-hard to

solve in practice, and Sandholm (2002) show them to

be exponentially complex. Combinatorial Auctions are

used for multi-robot task assignment by Hunsberger

and Grosz (2000). They are studied, in general, in Parkes

and Ungar (2000); Andersson et al (2000); Sandholm

(2002), and a survey of Combinatorial Auction tech-

niques and applications can be found in De Vries and

Vohra (2003). The mixed integer programming based

solution that we use for the minimum summed path

length objective is presented in Andersson et al (2000).

An open iterative Combinatorial Auction is shown to

approach optimality as the minimum bid increment ap-

proaches 0, assuming honest bidding, in Parkes and Un-

gar (2000).

The use of optimal Combinatorial Auctions is im-

practical whenever an auction involves more than a

handful of items, thus other work has focused on quickly

finding solutions with bounded suboptimality. A num-

ber of different distributed bidding mechanisms are com-

pared by Lagoudakis et al (2005) and a variant of Se-

quential Auctions are shown to provide solutions that

are provably close to optimal. We note that Lagoudakis

et al (2005) performs a thorough analysis of using auc-

tions for multi-robot task allocation in terms of com-

putation, distance, and time. A refinement of one of

these methods, called “Prim Allocation” is presented

by Lagoudakis et al (2004). Assuming that the objec-

tive is to minimize the summed lengths of all robots’

paths, then G-Prim achieves solutions with twice the

optimal summed length in the worst case. PRIM is ex-

tended by Sariel and Balch (2006) by the addition of a

number of heuristics.

Dias and Stentz (2000) explore an auction variant

that uses a two phase approach; in the first phase a se-

quence of dm/ne Parallel Auctions are run (in the first

Parallel Auction the most lucrative n of m tasks are

awarded such that each of the n robots gets one task,

and then the k-th Parallel Auction follows the same

procedure for the m−kn remaining tasks); later, in the

second phase, robots are free to greedily trade tasks

for “money.” The first phase of the auction variant ex-

plored by Dias and Stentz (2000) is interesting in that it

4 Item valuations are not independent when there are de-
pendencies between item valuations such that there are or
extra costs or values associated with owning different subsets
of items.

greedily assigns items in a number of rounds such that

each robot wins one item in each round (except pos-

sibly the last round). In the current paper we refer to

this variant of a repeated auction as Repeated G-Prim;

though we note that the work by Dias and Stentz (2000)

which first used a variant of this idea predated that by

Lagoudakis et al (2004) which described Prim Alloca-

tion. The work by Dias and Stentz (2000) is extended

to region exploration in Zlot et al (2002).

Non-auction market-based task-exchanges have also

been used as a mechanism of performing greedy gradi-

ent ascent to improve the initial solutions found us-

ing auctions. These are used in simulated search-and-

track/destroy missions in Chandler and Pachter (2001);

sub-teams of agents may elect to auction off the targets

and/or their agent workers to increase global utility.

Experimental comparisons between different auctions,

market approaches, and other multi-robot coordination

mechanisms can be found in Cavalcante et al (2013);

Schneider et al (2014); Mataric and Sukhatme (2001);

Berhault et al (2003). Approximation methods for Com-

binatorial Auctions are compared to sequential single

item auctions by Cavalcante et al (2013), greedy se-

quential and Parallel Auctions are evaluated by Schnei-

der et al (2014), assuming robots visit points in the

order in which they are won. Single round distributed

auctions are compared to heuristic methods by Mataric

and Sukhatme (2001). Berhault et al (2003) observe

that Combinatorial Auctions outperform single item

auctions in simulation.

Cooperation in situations where communication is

either unreliable or high cost has been investigated by:

Trawny et al (2009); Otte (2018); Stone and Veloso
(1998); Hoeing et al (2007); Castelpietra et al (2001);

Parker (1998); Gerkey and Matarić (2001); Zlot et al

(2002); Dias and Stentz (2000); Rekleitis et al (2008);

Beard and McLain (2003); Otte et al (2017a). Col-

lective localization despite communication constraints

have been investigated by Trawny et al (2009). Otte

(2018) shows how a collective neural network can be

trained across a swarm of robots despite unreliable com-

munication. In the robot soccer domain, a priori “locker-

room-agreements” are augmented by opportunistic shar-

ing of real-time data in Stone and Veloso (1998), and

critical messages are re-sent until they are acknowl-

edged in Castelpietra et al (2001). Robots that discover

new tasks auction them to neighbors within communi-

cation range in Hoeing et al (2007). The ALLIANCE

framework assumes that communication may not be

available (Parker, 1998), and MURDOCH assumes that

communication is not necessarily perfect, but “reason-

able” in that messages are successful most of the time

and provide the minimum bandwidth required by the
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algorithm (Gerkey and Matarić, 2001). Zlot et al (2002)

assume imperfect communication and note that a mar-

ket approach based on work by Dias and Stentz (2000)

is capable of functioning without communication, i.e.,

all regions will eventually be explored. Communica-

tion delays in task assignment via an asynchronous dis-

tributed auction algorithm, where m tasks are sold to

n < m and each agent may only win a single task,

are studied by Moore and Passino (2004). Line-of-sight

communication for market-based allocation of tasks in

cooperative Boustrophedon—i.e., lawn-mower—sweep

is used by Rekleitis et al (2008). Beard and McLain

(2003) investigate how limits on communication range

affect collective search in an environment with obsta-

cles. In previous work, Otte et al (2017a), we investi-

gated how the presence or absence of communication

affects a search game where two teams compete to lo-

cate a lost target.

Alighanbari and How (2005) use a centralized (non-

auction) algorithm that is run in parallel on each mem-

ber of a team, robots exchange information and use

an unreliable communication channel to reach solution

consensus. This idea is applied to distributed auctions

by Choi et al (2009), who report that the resulting

method outperforms the Prim allocation algorithm. Greedy

post-hoc trading is part of the method by Choi et al

(2009) but not used in the Prim allocation algorithm it

was compared to. Therefore, in our opinion, an alterna-

tive interpretation of this result is that the performance

difference between the two methods can be traced to the

use of post-hoc trading.

Non-auction-based centralized methods that require

consensus are studied in situations with intermittent

and asynchronous communications and moving targets

by Dionne and Rabbath (2007). Agents only communi-

cate when local information is sufficient to change the

global decision. Beard and Stepanyan (2003) show that

a communication spanning tree is necessary for asymp-

totic convergence between shared state in a multi-robot

team.

The re-planning and other adaptability benefits of

market-based approaches have been touted as being ro-

bust to agent loss by Botelho and Alami (1999); Mataric

and Sukhatme (2001). Communication degradation and

partial/total failure of robots are studied by Dias et al

(2004) using an implementation of “TraderBots”. The

dynamic re-assignment problem (in response to new ob-

stacles or loss of agents) is explored by Castanon and

Wu (2003); the method is arguably market-based in

that prices are assigned to both tasks and agents, how-

ever the robots strive to reach consensus on an optimal

reassignment using a distributed shortest augmenting

path (SAP) algorithm (Bertsekas and Castañon, 1993)

and auction and trade mechanisms are not used di-

rectly. Schneider et al (2015) is an extension of Schnei-

der et al (2014) to dynamic environments, and consid-

ers practical evaluation metrics, including: total mission

time computed as a combination of execution time and

deliberation time, as well as distance actually traveled

by the robots.

Closely related work to our own includes work by

Choi et al (2009) and Lagoudakis et al (2005). Unre-

liable communication is assumed by Choi et al (2009),

in which Prim Allocation is compared to a distributed

technique that uses post-hoc greedy trading for solution

improvement; in contrast, we consider different algo-

rithms and valuation functions, and analyze agent par-

ticipation. Bounds on G-Prim’s solution length, when

using each of six distance-based heuristics, are reported

by Lagoudakis et al (2005), assuming perfect commu-

nication.

The particular auction algorithms that we study in-

clude:

– The Parallel Auction

– The Sequential Auction (Mataric and Sukhatme,

2001)

– A generalization of Prim Allocation (Lagoudakis et al,

2004) that we call G-Prim.

– The Repeated Parallel Auction used in the first phase

of (Dias and Stentz, 2000).

– A modification of the Repeated Parallel Auction

that borrows ideas from G-Prim (and which was

previously used as the first phase of a more general

market approach by Dias and Stentz (2000)), which

we call Repeated G-Prim.

– The Combinatorial Auction (Parkes and Ungar, 2000;

Andersson et al, 2000; Sandholm, 2002).

The original Prim Allocation Algorithm assumes tasks

are locations, and defines an item’s cost as the mini-

mum edge length required to add that item to a span-

ning tree rooted at the bidding agent. In contrast, G-

Prim allows robots to use any valuation or cost function

but retains Prim’s bidding mechanics: m items are sold

over m rounds, and in each round each agent i bids on

the single unsold item that i values the most. These

mechanics enable G-Prim to have nice properties when

communication is poor. The auctions we study are de-

tailed in Section 3.

The main difference between our work and all previ-

ous work is that we evaluate how performance changes

as communication shifts across the quality spectrum

from perfect to nonexistent. We evaluate six different

auction techniques and four different valuation func-

tions (two for each cost function we consider). A sec-

ondary contribution of our work is an integer-programming
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solution to a Combinatorial Auction in the case that the

objective is to minimize the maximum path length that

any robot needs to travel.

A preliminary version of this work was presented

at the International Symposium on Multi-Robot and

Multi-Agent Systems (Otte et al, 2017b). The prelim-

inary version focused only on the Sequential, Parallel,

and G-Prim Auctions, while the current paper addi-

tionally considers two versions of a Repeated Parallel

Auction (one based on the Parallel Auction, and an-

other based on G-Prim), as well as the Combinatorial

Auction. The current extended journal version also in-

cludes additional analysis and experiments for the case

that the auctioneer re-sends the current winner list dur-

ing subsequent rounds of multi-round auctions; this is

a straightforward modification that can improve per-

formance. Finally, in addition to the Bernoulli com-

munication model considered in (Otte et al, 2017b),

we also perform experiments assuming the Gilbert El-

liott Communication model, and report results for addi-

tional metrics including the summed path length of the

robots and a min-max criteria, as well as approxima-

tions to these quantities that may be easier to calculate

for large systems in practice.

3 Preliminaries

In this section we define our nomenclature; discuss var-

ious item valuation functions, item cost functions, and

auction objectives; and define the communication mod-

els used in this paper.

3.1 Nomenclature

The number of agents and auction items are denoted n

and m, respectively. The number of rounds in an auc-

tion depends on the particular type of auction being

performed. Subscripts i, j, and r denote association

with a particular item, agent, or round, respectively.

a denotes the auctioneer’s ID; a = 1 by convention. Set

Θ contains all items and θj is the j-th item.

A particular item is denoted θj and the set of items

is Θ = {1, . . . ,m}. It is often convenient to denote the

k-th subset of Θ as Sk ⊂ Θ (this is particularly useful

for Combinatorial Auctions). The set of items that has

already been sold is Θsold, while the set of unsold items

is Θunsold = Θ \Θsold.

The winning robot of a particular item is denoted î,

and the particular item that is won is denoted θ̂j .

A bid is denoted b, a bid from robot i for item θj
is denoted bi,θj . In Combinatorial Auctions robots may

bid on sets of items, in which case bi,k represents a

bid from robot i on the subset Sk. The set of winning

bids over the items (or sets of items, in the case of a

Combinatorial Auction) in a particular auction is B.

During round r, robot i calculates a bid for item θj
using the valuation function Vi,r(θj). Set Bi is agent i’s

self-maintained set of bids, B̃i is the set of i’s bids of

which the auctioneer is aware.

The winning bid set that results in the globally opti-

mal partitioning of items among robots is denoted B∗.

In the best case, the team wins the most economical

distribution of tasks, i.e., to find B∗. In general, there

may be benefits to owning multiple items in particular

subsets of items; for example, if tasks represent vis-

iting locations in the environment, then visiting two

nearby locations will often cost less than the sum of

visiting each location separately. The only auction that

is guaranteed to findB∗ is a Combinatorial Auction—at

great computational expense that is often impractical.

In most cases the auctioneer estimates the most eco-

nomical distribution of tasks using a greedy procedure.

Let B̂ denote the set of winning bids that leads to this

greedy solution.

The set W̃i contains the items the auctioneer awards

to agent i, while Wi is the set of items robot i knows

it has won. Dropped messages may cause Bi 6= B̃i and

Wi 6= W̃i. An acknowledgment is denoted C. Depending

on algorithm, different subscripts are used to indicate

which item is being acknowledged (e.g., Cj) and which

robot the acknowledgment came from (e.g., Ci,j)., The

cardinality of set ‘·’ is denoted | · |. The probability of

an event ‘·’ is P(·) and the expectation of a value ‘·’
is E(·); probabilities and expectations are defined over

the event space of all communication histories and all

realizations of valuations (or costs).

3.2 Valuation, Cost Functions, Objectives

We now discuss the various item cost and valuation

functions we consider, as well as the objectives used by

the auctioneer to determine winners.

3.2.1 Scenario 1, Maximization or Minimization of

Random Valuations

In Scenario 1 we assume all valuations are absolutely

continuous independent and identically distributed ran-

dom variables (i.i.d.) drawn at random from the same

probability density function fX(x).

The proportion of (a very large) agent population

that values item j at value Vi,r(j) = X such that a ≤ X ≤ b
is given by:

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx. (1)
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The assumption that Equation 1 is an accurate model

for valuations is valid if both: (i) different agents have

different preferences and skills that are independently

determined, but (ii) the preferences and skills of the

agent population as a whole can be described by well

behaved distributions.

Our analysis of Scenario 1 assumes that the valua-

tions of all items are associated with the same underly-

ing fX(x), we do not require that the form of fX(x) be

known5. Having all agents draw valuations from fX(x)

guarantees that each possible ordering of agent-item

valuations is equally likely. In this case, each agent is

equally likely to value θj the most; thus, each agent is

equally likely to win item θj when communication is

perfect.

Finally, for Scenario 1 we assume that valuations

are constant over time,

Vi,r̂(θj) = Vi,r(θj) for all r̂, r

which is a valid assumption if valuations are mutually

independent, e.g., there are no synergies between items.

Scenario 1 is used because it both (1) provides a

scenario motivated by different bidders having unique

costs or valuations for each particular item but also

where (2) the overall preferences of a population of bid-

ders is well understood (enabling straightforward anal-

ysis in many cases).

3.2.2 Scenario 2, Minimization of Multi-TSP Cost

In Scenario 2 we assume items are locations that must

be visited. Cost Vi,r(θj) is defined by the extra dis-

tance agent i must travel to visit θj in addition to the

locations Wi,r−1 that i has already accepted in rounds

1 . . . r − 1. In other words, cost is calculate by subtract-

ing traveling salesperson (TSP) length over i’s current

solution from that of the TSP solution that also in-

cludes visiting the new item θj . Let `TSP(·) denote the

length of the TSP solution over item set ‘·’. Formally,

Vi,r(θj) = `TSP(Wi,r−1 ∪ {θj})− `TSP(Wi,r−1). (2)

In this paper we explore using both the true multi-TSP

length as well as Christofides TSP approximation algo-

rithm6 (Christofides, 1976) that was used in the original

5 Using the same fX(x) for all agent-item pairs is only a re-
quirement for the G-Prim Auction and the Repeated G-Prim
Auction. For the Parallel Auction, Sequential Auction, and
Repeated Parallel Auction this assumption can be relaxed
such that each item j is associated with its own fX,j(x) that
is shared by all agents.

6 Prim Allocation (which uses a multi-TSP variant of
Christofides TSP approximation algorithm) estimates multi-
TSP length by building an incremental spanning forest from

Prim Allocation Algorithm. Christofides TSP approx-

imation assumes a metric space; thus, its use in task

allocation problems is limited to scenarios where the

cost function takes the form of a distance metric (or is

approximated by a metric well enough for practical pur-

poses). Dynamic constraints may break these assump-

tions if the environment is very small with respect to the

maneuver distance (e.g., the minimum turning radius)

of the robots. However, in large environments (where

task locations are likely to be far apart with respect to

maneuver distance) such issues can usually be ignored7.

Using the true multi-TSP length is only viable for small

numbers of items; the cost metric from Prim Allocation

provides a practical alternative for problems involving

many items.

Given TSP based bid costs, it is possible to have the

auctioneer use a variety of different objective functions

to determine the winning bid. The first is the summed

distance traveled by all robots. Let ξi denote the path

taken by robot i to visit the items that it has won. Let

‖ξi‖ denote the distance traveled by a robot following

ξi. The summed distance is calculated

summed path length =
∑
i∈R
‖ξi‖

and is the cost function that is minimized in the multi-

ple traveling salesperson problem. When using this cost

function we are using the min-sum objective.

The second distance-based cost function we evaluate

is the maximum distance traveled by any robot, which

is calculated:

maximum path length = max
i∈R
‖ξi‖.

If all robots travel at the same velocity (and we assume

instantaneous change of speed) then this is equivalent to

the make-span. Minimizing the maximum path length

essentially balances, as much as possible, the workload

that is performed by all robots. When using this cost

function we are using the min-max objective.

3.3 Communication Models

There are at least two ways to handle poor communi-

cation: (1) the auctioneer can wait until it hears from

agents’ locations. A post-processing step is used to obtain
a multi-TSP approximation from the spanning forest. This
heuristic yields a solution no worse than 1.5 times the optimal
length and is calculated in polynomial time. While the true
TSP-based solution we consider provides a closer estimate of
the optimal multi-TSP path, its runtime is super-polynomial
with respect to item number.

7 If the environment is cluttered with static obstacles then
Christofides TSP approximation requires a preprocessing step
to find the minimum length path between different task loca-
tions. Static obstacles are beyond the scope of this work.
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good communication bad communication

τg τb

1− τb

1− τg

G B

P(drop message |G) = pg P(drop message |B) = pb

Fig. 3: The Gilbert-Elliot Communication Model assumes a
good state G and a bad state B. The probability of drop-
ping a message in G and B is pg and pb, respectively, where
pg < pb. The probability of remaining in G and B is τg and
τb, respectively, while the probability of leaving G and B is
1− τg and 1− τg, respectively.

each agent every round, or (2) the auctioneer can as-

sume that rounds last for a specific duration and that

agents that are unable to successfully communicate do

not submit bids. The former shares similarities with

the TCP message passing protocol, and the latter with

UDP. In practice it is impossible to know if a particu-

lar robot has moved beyond communication range (or

become disabled, etc.). Therefore, we study case (2).

In Section 7 we perform experiments in simulation

and with real robots. In simulation we control how mes-

sages are dropped, and we perform experiments using

both (i) the Bernoulli model and (ii) the Gilbert-Elliot

model.

The Bernoulli model assumes that there is a prob-

ability p that each communication message is success-

ful, where 0 ≤ p ≤ 1 and communication attempts are

i.i.d. The Bernoulli model is a very simple model that

ignore many aspects of the real world such as ranged

effects, directional effects, and bandwidth saturation.

However, it is a useful model for cases in which robots

are relatively close to each other vs. their communi-

cation ranges, relatively little bandwidth is used, and

messages are dropped due to external events present in

the environment. The simplicity of the Bernoulli model

makes it useful as an analytical tool, enabling the deriva-

tion for a number of auction performance measures.

The Gilbert-Elliot Communication Model assumes

a good state G and a bad state B. The probability of

dropping a message in G and B is pg and pb, respec-

tively, where pg < pb. The probability of remaining in

G and B is τg and τb, respectively, while the probability

of leaving G and B is 1− τg and 1−τg, respectively (see

Figure 3). Like the Bernoulli model, the Gilbert-Elliot

model does not explicitly account for ranged effects or

directional effects. However, the Gilbert-Elliot model

can model nonstationary effects that occurs from the

robots collectively being in good or bad communication

states. Indeed, Gilbert-Elliot has been shown to more

accurately approximate the communication breakdown

that occurs in practice over a channel that experiences

bandwidth saturation (Elliott, 1963).

Table 1: High-Level Comparison of Different Auction Types

Auction type rounds number of items number of items
advertised in round r sold per round

Parallel 1 m m
Sequential m 1 1
G-Prim m m− r 1
R. Parallel dm/ne n n
R. G-Prim dm/ne m− rn n
Combinatorial 1 m m
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Fig. 4: Phases of an auction
round, and the messages
sent between them. Round
phases appear boldfaced,
computations during phases
appear as plain text. Messages
from auctioneer (a = 1) to
auctioneer are always received.
Assuming a Bernoulli model,
messages from auctioneer to
non-auctioneer agents (2 . . . n)
and from non-auctioneer
agents to auctioneer are
sent with probability p and
dropped with probability
q = 1− p.

4 Auction Algorithms

In this section we describe algorithms for the various

auctions that we compare, including: Sequential, Paral-

lel, G-Prim, Repeated Parallel, Repeated G-Prim, and

Combinatorial Auctions. Pseudocode describing the auc-

tions appears in Algorithms 1-6, respectively. Note that

computations on the auctioneer are printed blue, while

calculations on all agents (nonauctioneers and auction-

eers) are printed black. The pseudocode in Algorithms 1-

6 assumes a profit maximization objective. The alter-

native cost minimization objective can be achieved by

replacing arg max by arg min and setting unreceived

bids to ∞ instead of −∞.

Table 1 compares auctions based on the number of

rounds they require and the number of items bid for

and sold each round.

Figure 4 shows the phases, messages, and communi-

cation graph of a single auction round (identical for all

auctions). Each message is either broadcast by the auc-

tioneer or sent once by each non-auctioneer. A broad-

cast is equivalent to sending the same message once to

each agent; we assume the success or failure of a broad-

cast message reaching different agents is independent.

We assume messages sent from the auctioneer to itself

are never dropped.

In a Sequential Auction there are m different auc-

tion rounds, one each for the m items, and each message

requires O(1) space. In a Parallel Auction there is a sin-

gle round (in which each of the m items are simultane-
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Table 2: Auction Message Space and Count Requirements

message size messages/robot total messages
sequential Θ(1) Θ(m) Θ(nm)
parallel Θ(m) Θ(1) Θ(n)
G-Prim Ω(1), O(m) Θ(m) Θ(nm)
R. parallel naive Θ(n) Ω(1), O(m/n) Ω(n), O(m)
R. parallel G-Prim Ω(1), O(m) Ω(1), O(m/n) Ω(n), O(m)
combinatorial Ω(1), O(m!) Θ(1) Θ(n)

Table 3: Runtime Required for Auction
(with perfect communication)

time per round rounds total time
sequential Θ(n) Θ(m) Θ(nm)
parallel Θ(nm) Θ(1) Θ(nm)
G-Prim Θ(n+m2) Θ(m) Θ(m(n+m2))
R. parallel naive O(n2 logn) Θ(m/n) O(nm logn)
R. parallel G-Prim O(n2 logn) Θ(m/n) O(nm logn)
combinatorial Ω(2m), O(3m) Θ(1) Ω(2m), O(3m)

ously bid for), and messages between agents (and to any

manager) require space O(m). In the G-Prim algorithm

the manager advertises all unsold items each round and

agent bids for their top choice each round. This requires

managers to send messages of size O(m), while agents

send messages of size O(1). In the repeated variant of

the Parallel Auction, each agent wins a single item each

round andO(m/n) rounds are required. Each round the

auctioneer and the agents send messages of size O(n).

The Repeated G-Prim Auction is similar, except that

the auctioneer advertises all unsold items each round

using messages of size O(m) (then agent bids for their

top n choices of the remaining items each round). In a

Combinatorial Auction there is a single round (wherein

each of the O(m!) possible combinations of items are

bid for by each agent), and messages between agents

(and to any manager) require space O(m!) in the worst

case. Tables 2 and 3 summarize the message sizes as-

sociated with each type of auction, and the runtimes

required to determine a winner assuming perfect com-

munication.

4.1 Parallel Auction

A Parallel Auction (Algorithm 1) has a single round

in which all items are auctioned simultaneously. The

auctioneer broadcasts the item list Θ to all robots in-

cluding itself (line 1). Each robot i calculates a bid for

each item θj using its valuation function Vi,1(θj), and

sends its resulting bid list Bi to the auctioneer (lines 3-

5). The auctioneer waits for a predetermined length of

time to receive bids (lines 6-8), awards each θj to the

agent that sent the best bid for θj (lines 9-11), and

then broadcasts the award list W (line 12). Winning

robots that receive W return an acknowledgment Ci
(lines 13-15). Finally, the auctioneer takes responsibil-

Algorithm 1 Parallel Auction

On auctioneer a, 1: a.Broadcast(Θ)
On each agent i, 2: if i.Receive(Θ) then
On each agent i, 3: for all θj ∈ Θ do
On each agent i, 4: Bi[j]← Vi,1(θj)
On each agent i, 5: i.Send(Bi[1 . . .m])
On auctioneer a, 6: while time left do
On auctioneer a, 7: if a.Receive(Bi[1 . . .m]) then
On auctioneer a, 8: B̃i,1...m ← Bi[1 . . .m]
On auctioneer a, 9: for j ∈ {1 . . .m} do
On auctioneer a, 10: i← arg maxi B̃1...n,m

On auctioneer a, 11: W̃i ← W̃i ∪ {θj}
On auctioneer a, 12: a.Broadcast(W̃1...n)
On each agent i, 13: if i.Receive(W̃1...n) then
On each agent i, 14: Wi ← W̃i

On each agent i, 15: i.Send(Ci)
On auctioneer a, 16: wait appropriate amount of time
On auctioneer a, 17: for all i ∈ [1 . . . n] s.t. not a.Receive(Ci) do
On auctioneer a, 18: Wa ←Wa ∪Wi

Algorithm 2 Sequential Auction

1: for j ∈ {1 . . .m} do
On auctioneer a, 2: a.Broadcast(θj)
On each agent i, 3: if i.Receive(θj) then
On each agent i, 4: Bi[j]← Vi,j(θj)
On each agent i, 5: i.Send(Bi[j])
On auctioneer a, 6: while time left do
On auctioneer a, 7: if a.Receive(Bi[j]) then
On auctioneer a, 8: B̃i,j ← Bi[j]

On auctioneer a, 9: h← arg maxi B̃i,j
On auctioneer a, 10: W̃h ← W̃h ∪ {θj}
On auctioneer a, 11: a.Broadcast(h, j)
On each agent i, 12: if i.Receive(h, j) and i = h then
On each agent i, 13: Wi ←Wi ∪ {θj}
On each agent i, 14: i.Send(Ch,j)
On auctioneer a, 15: wait appropriate amount of time
On auctioneer a, 16: if not a.Receive(Ch,j) then
On auctioneer a, 17: Wa ←Wa ∪ {θj}

ity for tasks with unacknowledged sales (lines 17-18).

Note that while the auctioneer broadcasts W̃1...n, each

robot i only needs to know the subset W̃i ⊂ W̃1...n (the

items that i won).

4.2 Sequential Auction

A Sequential Auction (Algorithm 2) sells 1 item per

round for m rounds. During each round of a Sequential

Auction the auctioneer chooses (e.g., randomly) an un-

sold item θj and sells it using the same phases as a Par-

allel Auction—advertisement, bidding, winner determi-

nation, winner announcement, and acknowledgment.

4.3 G-Prim Auction

The G-Prim Auction (Algorithm 3) is similar to a

Sequential Auction in that one item is sold per round
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Algorithm 3 G-Prim Auction

1: for r ∈ {1 . . .m} do
On auctioneer a, 2: B̃i...n,1...m ← −∞
On auctioneer a, 3: Θr ← Θ \Θsold

On auctioneer a, 4: a.Broadcast(Θr)
On each agent i, 5: if i.Receive(Θr) then
On each agent i, 6: for all θj ∈ Θr do
On each agent i, 7: Bi[j]← Vi,r(θj)

On each agent i, 8: b̂i,j ← arg maxj Bi[j]

On each agent i, 9: i.Send(b̂i,j)
On auctioneer a, 10: while time left do
On auctioneer a, 11: if a.Receive(b̂i,j) then

On auctioneer a, 12: B̃i,j ← b̂i,j
On auctioneer a, 13: (h, j)← arg max(i,j) B̃i,j

On auctioneer a, 14: W̃h ← W̃h ∪ {θj}
On auctioneer a, 15: a.Broadcast(h, j)
On each agent i, 16: if i.Receive(h, j) and i = h then
On each agent i, 17: Wi ←Wi ∪ {θj}
On each agent i, 18: i.Send(Ci,j)
On auctioneer a, 19: wait appropriate amount of time
On auctioneer a, 20: if not a.Receive(Ci,j) then
On auctioneer a, 21: Wa ←Wa ∪ {θj}
On auctioneer a, 22: Θsold ← Θsold ∪ {θj}

for m rounds; it is also similar to a Parallel Auction in

that multiple items are up for sale each round. During

round r, each agent bids for the unsold item that it val-

ues the most, and the auctioneer awards the single item

that received the best bid, where Θunsold = Θ \Θsold.

During round r, the unsold item valued most by i is de-

noted b̂i,r ∈ Θunsold. The number of unsold items is de-

noted |Θunsold|, and |Θunsold| = m− r + 1 at the start

of round r. Each round has the same phase order as the

other two Auctions.

4.4 Repeated Parallel Auction

A naive implementation of a Repeated Parallel Auc-

tion (Algorithm 4) is another way to combine elements

of the parallel and Sequential Auctions. During the r-

th round, the auctioneer advertises the first n items

that have not yet been sold or all unsold items if less

than n items remain unsold (lines 4-7). Each agent that

receives the advertise message performs a valuation for

each items up for bid, and then returns this information

to the auctioneer (lines 8-13). The auctioneer greedily

allocates items to the bidders as follows: the first un-

sold item is sold to the agent with the best bid for

that item, the c-th unsold item is sold to the agent in

R̃ that has the highest bid for that item, where R̃ con-

tains the agents that have not yet won an item in round

r (lines 17-22). As with the other auctions, agents must

acknowledge that they have received the award mes-

sage, and if they do not then the auctioneer assumes

responsibility for the tasks (lines 17-22). The items ac-

Algorithm 4 Repeated Parallel Auction

1: r ← 0
2: while Θunsold 6= ∅ do
3: r ← r + 1

On auctioneer a, 4: ǰ ← m− |Θunsold|
On auctioneer a, 5: ĵ ← max(m, ǰ + n− 1)
On auctioneer a, 6: Sr ← {θǰ , . . . , θĵ}
On auctioneer a, 7: a.Broadcast(Sr)
On each agent i, 8: if i.Receive(Sr) then
On each agent i, 9: c← 0
On each agent i, 10: for all θj ∈ Sr do
On each agent i, 11: c← c+ 1
On each agent i, 12: Bi[c]← Vi,r(θj)
On each agent i, 13: i.Send(Bi[1 . . . c])
On auctioneer a, 14: while time left do
On auctioneer a, 15: if a.Receive(Bi) then
On auctioneer a, 16: B̃i,r ← Bi
On auctioneer a, 17: R̃← {1, . . . , n}
On auctioneer a, 18: for θj ∈ Sr do

On auctioneer a, 19: h← arg maxi∈R̃ B̃i,r

On auctioneer a, 20: W̃h,r ← W̃h,r ∪ {θj}
On auctioneer a, 21: R̃← R̃ \ {h}

22: Θunsold ← Θunsold \ {θj}
On auctioneer a, 23: a.Broadcast(W̃1...n,r)

On each agent i, 24: if i.Receive(W̃1...n,r) then

On each agent i, 25: Wi,r ←Wi,r ∪ W̃i,r

On each agent i, 26: i.Send(Ci)
On auctioneer a, 27: wait appropriate amount of time
On auctioneer a, 28: for all i ∈ [1 . . . n] s.t. not a.Receive(Ci) do
On auctioneer a, 29: Wa ←Wa ∪Wi,r

On each agent i, 30: Wi ←
⋃
c∈[1,r]Wi,r

quired by each agent is simply the union of the items

they required in each round (line 30).

The number of rounds that the auction takes de-

pends on the number of items that are sold each round

(line 2). The auctioneer itself will receive one item per

round and so the auction will be over in at most m, if

all agents are able to bid every round then the auction

will be over in dm/ne rounds.

4.5 Repeated G-Prim Auction

A more sophisticated batch method exists that is

motivated by the G-Prim method (Algorithm 5). This

batch algorithm is similar to the naive version in that up

to n items are sold each round (each item to a different

agent). However, it is similar to the G-Prim algorithm

in that the auctioneer advertises all unsold items each

round (lines 5-6), and each agent bids for the items that

they value the most. During each round each agent bids

for the n unsold items that they value the most — or all

remaining items if less n items remain unsold (lines 7-

11). Agents must acknowledge that they have received

the award message (lines 23-25), and if they do not
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Algorithm 5 Repeated G-Prim Auction

1: r ← 0
2: while Θunsold 6= ∅ do
3: r ← r + 1

On auctioneer a, 4: B̃i...n,1...m ← −∞
On auctioneer a, 5: Θr ← Θ \Θsold

On auctioneer a, 6: a.Broadcast(Θr)
On each agent i, 7: if i.Receive(Θr) then
On each agent i, 8: Bi,r ← ∅
On each agent i, 9: while |Bi,r| < min(n, |Θunsold|) do
On each agent i, 10: Bi,r ← Bi,r ∪ {arg maxθj Vi,r(θj)}

On each agent i, 11: i.Send(Bi,r)
On auctioneer a, 12: while time left do
On auctioneer a, 13: if a.Receive(Bi,r) then

On auctioneer a, 14: B̃i,r ← Bi,r
On auctioneer a, 15: R̃← {1, . . . , n}
On auctioneer a, 16: while R̃ 6= ∅ do
On auctioneer a, 17: h← arg maxi∈R̃ max(B̃i,r ∩Θunsold)

On auctioneer a, 18: θj ← max(B̃h,r ∩Θunsold)

On auctioneer a, 19: W̃h,r ← W̃h,r ∪ {θj}
On auctioneer a, 20: R̃← R̃ \ {h}

21: Θunsold ← Θunsold \ {θj}
On auctioneer a, 22: a.Broadcast(W̃1...n,r)

On each agent i, 23: if i.Receive(W̃1...n,r) then

On each agent i, 24: Wi,r ←Wi,r ∪ W̃i,r

On each agent i, 25: i.Send(Ci)
On auctioneer a, 26: wait appropriate amount of time
On auctioneer a, 27: for all i ∈ [1 . . . n] s.t. not a.Receive(Ci) do
On auctioneer a, 28: Wa ←Wa ∪Wi,r

On each agent i, 29: Wi ←
⋃
c∈[1,r]Wi,r

Algorithm 6 Combinatorial Auction

On auctioneer a, 1: a.Broadcast(Θ)
On each agent i, 2: if i.Receive(Θ) then
On each agent i, 3: for all θj ∈ Θ do
On each agent i, 4: Bi[j]← Vi,1(θj)
On each agent i, 5: i.Send(Bi[1 . . .m])
On auctioneer a, 6: while time left do
On auctioneer a, 7: if a.Receive(Bi[1 . . .m]) then
On auctioneer a, 8: B̃i,1...m ← Bi[1 . . .m]
On auctioneer a, 9: for j ∈ {1 . . .m} do
On auctioneer a, 10: if θj ∈ bi,k ∈ B∗ then

On auctioneer a, 11: W̃i ← W̃i ∪ {θj}
On auctioneer a, 12: a.Broadcast(W̃1...n)
On each agent i, 13: if i.Receive(W̃1...n) then
On each agent i, 14: Wi ← W̃i

On each agent i, 15: i.Send(Ci)
On auctioneer a, 16: wait appropriate amount of time
On auctioneer a, 17: for all i ∈ [1 . . . n] s.t. not a.Receive(Ci) do
On auctioneer a, 18: Wa ←Wa ∪Wi

then the auctioneer assumes responsibility for the tasks

(lines 27-28).

4.6 Combinatorial Auction

In a Combinatorial Auction each agent bids on all

possible sets of items and the auctioneer calculates the

optimal way to divide the sets among teams (Algo-

rithm 6). Assuming individual items are labeled 1, 2, . . .,

then it is convenient to denote each possible set of

items using a unique binary integer k. Formally, we

define set Sk such that θj ∈ Sk if and only if the θj-

th bit of k is 1. For example, the binary representa-

tion of 9 is 1001 and so we define S9 ≡ {1, 4}. In a full

Combinatorial Auction over m items each agent bids

on 2m − 1 different sets of items. We use mixed inte-

ger programming formulations to solve the Combina-

torial Auctions. Let ci,k represent the path length of

agent i to visit all items in set Sk and for all i, k let

xi,k ∈ {0, 1} represent whether or not agent i wins set

Sk (i.e., xi,k = 1 if it does). A mixed integer program

that solves for the min-sum objective is defined as fol-

lows: minimize
∑n
i=1

∑2m−1

k=1 xi,kci,k Subject to the m

constraints (i.e., for all j):
∑
k|j∈Sk xi,k = 1 to ensure

that each item is visited by a single agent.

Note that because the cost function is added across

all agents, and only one agent can win any particular

set, we can ignore all but the lowest bid for any partic-

ular set and solve the smaller mixed integer program:

minimize
∑2m−1

k=1 x̂k ĉk Subject to the m constraints (i.e.,

for all j):
∑
k|j∈Sk x̂k = 1, where ĉk = mini(ci,k) for all

k, and x̂k ∈ {0, 1} represents whether or not subset Sk
is sold to agent arg mini(ci,k).

If we instead wish the auction to use the min-max

objective then we want to minimize
[
maxi

∑2m−1

k=1 xi,kci,k

]
which can be solved with the following mixed integer

program that uses the auxiliary variable v: minimize [v]

subject to n constraints (one for each agent i): v ≥∑2m−1

k=1 xi,kci,k as well as the m constraints (i.e., for all

j):
∑
k|j∈Sk xi,k = 1.

5 Analysis

In this section we analyze agent utilization in the auc-

tions described in Section 4 assuming a Bernoulli model

of communication. We begin by considering bid valua-

tions that are random variables in Sections 5.1-5.6, fol-

lowed by how these can be used to bid results for a

TSP bid cost metric in Section 5.7. For both scenarios

we consider the expected number of items that are won

by any particular agent, treating the cases of the auc-

tioneer and non-auctioneer agents separately. We also

derive calculations for the probability that any partic-

ular nonauctioneer agent ends up doing at least one

task. The reason that we are interested in these statis-

tics is that they show how agent utilization changes as

a function of communication quality.
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5.1 Analysis of Parallel Auction when Bids are

Realizations of Random Variables

Communicating a bid to the auctioneer requires receiv-

ing the advertisement list and sending a bid message.

The probability exactly k − 1 non-auctioneers commu-

nicate a bid to the auctioneer is p2(k−1)(qp+ q)n−k
(
n−1
k−1

)
.

Given our assumptions, the probability the auctioneer

wins θj given k bids are communicated to the auction-

eer (by both auctioneer and non-auctioneers) is 1/k.

The expression p2(k−1)(qp+ q)n−k
(
n−1
k−1

)
comes from

the facts that: For each of k − 1 non-auctioneers to

submit a bid, advertise messages must be passed suc-

cessfully from the auctioneer to k − 1 non-auctioneers

(which happens with probability pk−1) and bid mes-

sages successful returned by them (which also happens

with probability pk−1). The events that the remaining

n− k non-auctioneers do not submit bids require that

either (1) an advertise message is successful but the

bid message is dropped or (2) the advertise message

is dropped (the compound event that either one or the

other of these things happen to exactly n− k agents has

probability (qp+q)n−k). Finally, there are
(
n−1
k−1

)
differ-

ent ways to assign the auctioneers such that k − 1 non-

auctioneers successfully bid and n− k non-auctioneers

do not.

Thus, the expected number of items won outright

by the auctioneer is:

E
(
|W̃a|

)
=

n∑
k=1

m

k
p2(k−1)(qp+ q)n−k

(
n− 1

k − 1

)
.

The probability a particular i 6= a plus k − 2 other non-

auctioneers communicate a bid message to the auc-

tioneer is p2(k−1)(qp+ q)n−k
(
n−2
k−2

)
, and so the expected

number of items awarded to i 6= a by the auctioneer is:

E
(
|W̃i6=a|

)
=

n∑
k=2

m

k
p2(k−1)(qp+ q)n−k

(
n− 2

k − 2

)
and the expected number awarded to all non-auctioneers

is:

E
(∑
i6=a

|W̃i|
)

= (n− 1)E
(
|W̃i 6=a|

)
.

Taking responsibility for (or adopting) an item requires

both winning that item and also receiving the award

message. The expected number of items adopted by a

single non-auctioneer and the set of all non-auctioneers

are, respectively:

E
(
|Wi 6=a|

)
= pE

(
|W̃i 6=a|

)
E
(∑
i6=a

|Wi|
)

= (n− 1)E
(
|Wi 6=a|

)
.

The expected number of items adopted by the auction-

eer includes the items it wins plus all unacknowledged

sales:

E(Wi6=a) = E(W̃a) + (pq + q)E
(∑
i 6=a

|W̃i|
)
.

The expected number of items adopted twice, i.e., by

the auctioneer as well as a non-auctioneer, is:

E(|Wa ∩ (∪i 6=aWi)|) = pqE
(∑
i 6=a

|W̃i|
)
.

The probability a non-auctioneer does not win item

θj in a Parallel Auction assuming its bid is received is:

P(θj 6∈ W̃i 6=a | ζ) =
∑n
k=2

k−1
k p2(k−2)(qp+ q)n−k

(
n−2
k−2

)
where ζ is the event “i’s bid is received.” Thus, the

probability a non-auctioneer wins zero items, assuming

ζ, is:

P(W̃i 6=a = ∅ | ζ) = P(θj ∈ W̃i6=a)m

The probability a non-auctioneer adopts at least one

task, i.e., i 6= a wins at least one item and gets the

award message, is:

P(Wi 6=a 6= ∅) = 1−
(
q + pq + p2q + p3P(W̃i6=a = ∅ | ζ)

)

5.2 Analysis of Sequential Auction when Bids are

Realizations of Random Variables

We now switch our focus to the Sequential Auction. The

expected number of items won outright by the auction-

eer is:

E
(
|W̃a|

)
= m

n∑
k=1

1

k
p2(k−1)(qp+ q)n−k

(
n− 1

k − 1

)
and the number of items awarded to each non-auctioneer

is:

E
(
|W̃i 6=a|

)
= m

n∑
k=2

1

k
p2(k−1)(qp+ q)n−k

(
n− 2

k − 2

)
.

These are equivalent to the expectations derived for the

Parallel Auction. Thus, all remaining expected values

of the Sequential Auction are identical to their Parallel

Auction counterparts; we do not repeat them to save

space.

The probability that an agent does at least one task

in a Parallel Auction is different than in a Sequential

Auction, despite the fact that expected number of items

visited by a particular agent is identical for the two
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auctions. In a Sequential Auction the probability a non-

auctioneer i 6= a wins θj conditioned on the event ζj (its

bid is received) is:

P(θj ∈ W̃i 6=a | ζj) =
∑n
k=2

1
kp

2(k−2)(qp+ q)n−k
(
n−2
k−2

)
and the probability a non-auctioneer does at least one

task:

P(Wi 6=a 6= ∅) = 1− (1− p3P(θj ∈ W̃i 6=a | ζj))m.

5.3 Analysis of G-Prim Auction when Bids are

Realizations of Random Variables

We now consider G-Prim. For rounds r < m, an agent

often gets multiple auction rounds to bid for items it

values more than other agents. Let ¬ζh,j,r denote the

event “agent h’s bid for j was not received in round r”.

Lemma 1 Given θj ∈ Θunsold at the beginning of round

r and Vh,r(θj) > Vi,r(θj) for all i 6= h and where r < m;

then Pr+1(θj ∈ Θunsold | ¬ζh,j,r) > 0.

Proof By construction |Θunsold| > 2 at the beginning of

round r when r < m. The probability all agents i 6= h

bid on some other item θk 6= θj is nonzero and thus

Pr(θj = b̂i,j | ¬ζh,j,r) < 1 for all i 6= h. It follows that

Pr(θj ∈ B̃i,j | ¬ζh,j,r) < 1 for all i 6= h. If no agents bid

on θj then θj is not sold; i.e., θj 6∈ B̃i,j implies that

θj 6∈ Θsold at the end of round r and the beginning of

round r + 1.

Corollary 1 For all θj such that h = arg maxi Vi(θj),

PG-Prim(θj ∈ W̃i6=a) > PSequential(θj ∈ W̃i 6=a).

In other words, Corollary 1 states that G-Prim in-

creases P(θj ∈Wi 6=a) for any θj that i values more than

any other agent. Theorem 1 leverages Corollary 1 to

bound the probability an agent wins zero items in G-

Prim based on the Sequential Auction:

Theorem 1 If m > 1 and p < 1 then:
PG-Prim(Wi6=a 6= ∅) ≥ PSequential(Wi 6=a 6= ∅).

Proof By construction, when m > 1 and n > 1 there

is a greater than 1/n probability that an item θj ex-

ists such that agent h values θj more than any other

agent; formally, P(∃θj |h = arg maxi Vi(θj)) > 1/n for

all agents h. Corollary 1 finishes the proof.

The effect described in Lemma 1 also increases the

expected number of items visited by non-auctioneers

because it reduces the auctioneer’s advantage of self

communication.

Corollary 2 EG-Prim(|Wi 6=a|) ≥ ESequential(|Wi 6=a|).
Because there are only m items, the number of items

visited by the auctioneer must decrease to maintain bal-

ance.

Corollary 3 EG-Prim(|Wa|) ≤ ESequential(|Wa|).

5.4 Analysis of Repeated Parallel Auction when Bids

are Realizations of Random Variables

When there is perfect communication, then the number

of rounds in a Repeated Parallel Auction is ` = dm/ne
and n items are sold in the each of the first `− 1 rounds

and m mod n items are sold in the final round `. In

contrast, if communication is nonexistent then the auc-

tioneer is the only bidder in each round, one item is sold

per round (to the auctioneer), and the auction takes

` = m rounds. If communication is somewhere between

perfect and nonexistent, then the length of the auction

` is a function of how many robots were able to get

messages to the auctioneer in rounds 1, . . . , `− 1.

We are unable to express the probability of agent

participation in this type of auction in a single closed

form expression. However, we are able to compute the

solution by iteratively tracking how a number of inter-

mediate quantities change from round to round. The

basic idea is to track how the probability that each

particular number of items remains unsold at the end

of each round, conditioning our calculation on an event

that we are interested in (for example, assuming that a

particular nonauctioneer has not yet acquired any items

is useful for calculating the probability that a nonauc-

tioneer acquires at least one item by the end of the

auction). The auction is Markov by the definition of

Scenario 1—the probability that an agent has won an

item in a previous round does not change the probabil-

ity that it will win an item in the current round. This

enables us to calculate statistics for the auction state

at the end of round r as a function of those that existed

at the end of round r − 1.

In the Repeated Parallel Auction sells a number of

items each round that is equal to the number of agents

that were able to get a bid message to the auction-

eer. This means that the iterative calculation needs to

be slightly different for the case that the number of

items remaining is less than the number of agents and

the number of remaining items is at least the number

agents.

We use Θr,unsold to represent the set of unsold items

at the end of round r, and Wr,i 6=a is the set of items

won by a nonauctioneer agent i 6= a by the end of round

r. Let Pr,h denote the probability that h items are left

unsold at the end of round r, assuming that agent i 6= a

has not won anything by the end of round r:

Pr,h = PR-Parallel(|Θr,unsold| = h |Wr,i 6=a = ∅).

By convention we allow round 0 to represent the

time before the first round of the auction, thus

P0,h =

{
1 if h = m

0 if h 6= m
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which can also be interpreted as the initialization before

the iterative calculation. The iterative calculation itself

is presented in the following algorithms. The iterative

calculation of the intermediate quantity Pr,h is shown

in Algorithm 7.

Algorithm 7 Iterative Calculation of Pr,h

1: for r ∈ {1 . . .m} do
2: Pr,0:m ← 0
3: for j ∈ {0 . . .m} do
4: for b ∈ {1 . . . n} do
5: h← max(0, j − b)
6: A← B ← C ← D ← 0
7: if b < n then
8: A← p2(b−1)(pq + q)n−b

(
n−2
b−1

)
9: if j ≥ b then

10: if b ≥ 2 then
11: B ← qp2(b−1)(pq + q)n−b

(
n−2
b−2

)
12: else
13: C ← b−j

b
p2(b−1)(pq + q)n−b

(
n−2
b−2

)
14: D ← j

b
qp2(b−1)(pq + q)n−b

(
n−2
b−2

)
15: Pr,h ← Pr,h + (A+B + C +D)Pr−1,j

16: Pr,0 ← Pr,0 + Pr−1,0

The outer most loop calculates the probabilities Pr,0:m

based on the probabilities Pr−1,0:m, the dynamics of the

auction, and the Bernoulli model.

For each round r, the inner two loops calculate the

various probabilities of the various events that can lead

to agent i 6= a not being assigned an item in round r.

The inner two loops iterate over all possibilities that j

items exist unsold at the beginning of the round (end

of the previous round), and the different possibilities

for the different numbers b of bids that can be received

by the auctioneer. Using j and b we calculate h which

is the number of items that are left after the current

round r, and then add the relevant probability mass

to Pr,h. There are four nontrivial events that transfer

probability mass; these are, respectively:

A Nonauctioneer agent i 6= a is unable to send a bid

message to the auctioneer.

B Nonauctioneer agent i 6= a is one of b − 1 nonauc-

tioneers that get a bid to the auctioneer, there are

more than b items left, but agent i does not receive

the award message.

C Nonauctioneer agent i 6= a is one of b − 1 nonauc-

tioneers that get a bid to the auctioneer, there are

less than b items left for sale, and agent i 6= a is

outbid for all items.

D Nonauctioneer agent i 6= a is one of b − 1 nonauc-

tioneers that get a bid to the auctioneer, there are

less than b items left for sale, agent i 6= a wins one

of the remaining items, but the award message is

dropped.

The conditional probabilities A, B, C, and D are

multiplied by their preconditions for different combina-

tions of starting item count j and ending item count

m. This has the effect of summing up the probabili-

ties of all probability mass associated with agent i 6= a

continuing to not receive an item (at least from agent

i’s point-of-view). The probability mass associated with

the trivial event that all items have already been sold is

also carried forward each round, and added to the prob-

ably that the auctioneer sold out during that particular

round.

Given the iterative calculation, the probability that

a nonauctioneer i 6= a participates (agent i 6= a knows

it is allocated at least one item) is calculated:

P(Wi 6=a 6= ∅) = 1− Pm,0

which happens because, by the end of the iterative cal-

culation, Pm,0 has accumulated all probability mass as-

sociated with all event sequences in which agent i 6= a

never gets allocated an item (to its knowledge), by the

end of round m — and all items are necessarily sold by

then (due to the fact that the auctioneer wins one item

per round).

The expectations of the number of items won by

each nonauctioneer, the auctioneer, etc. can be calcu-

lated if we know P̂r,h, the probability that a particular

number of items exists unsold over all possible event

histories for each possible number of items left unsold

h at each round r. It is possible to compute each P̂r,h
iteratively given all P̂r−1,h. Again, by convention we al-

low round 0 to represent the time before the first round

of the auction, thus

P̂0,h =

{
1 if h = m

0 if h 6= m

The iterative calculation of P̂r,h is shown in Algo-

rithm 8.

Algorithm 8 Iterative Calculation of P̂r,h

1: for r ∈ {1 . . .m} do
2: P̂r,0:m ← 0
3: for j ∈ {0 . . .m} do
4: for b ∈ {1 . . . n} do
5: h← max(0, j − b)
6: P̂r,h ← P̂r,h + p2(b−1)(pq + q)n−b

(
n−1
b−1

)
P̂r−1,j

7: P̂r,1 ← P̂r,1 + P̂r−1,1

Given E
(
|W̃i 6=a|

)
the expected number of items ac-

quired by each nonauctioneer is calculated:

E
(
|Wi 6=a|

)
= pE

(
|W̃i6=a|

)
.
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Algorithm 9 Iterative Calculation of E
(
|W̃a|

)
1: F ← 0
2: for r ∈ {1 . . .m} do
3: for j ∈ {0 . . .m} do
4: for b← 1 . . . n do
5: if b ≤ j then
6: F ← F + p2(b−1)(pq + q)n−b

(
n−1
b−1

)
P̂r−1,j

7: else
8: F ← F + j

b
p2(b−1)(pq + q)n−b)

(
n−1
b−1

)
P̂r−1,j

9: E
(
|W̃a|

)
← F

Algorithm 10 Iterative Calculation of E
(
|W̃i 6=a|

)
for Batch Auction
1: E ← 0
2: for r ∈ {1 . . .m} do
3: for j ∈ {0 . . .m} do
4: for b← 2 . . . n do
5: if b ≤ j then
6: E ← E + p2(b−1)(pq + q)n−b

(
n−2
b−2

)
P̂r−1,j

7: else
8: E ← E + j

b
p2(b−1)(pq + q)n−b

(
n−2
b−2

)
P̂r−1,j

9: E
(
|W̃i6=a|

)
← E

The derivations of other expected quantities in term

of E
(
|W̃i 6=a|

)
follow the same progression as for the

Parallel Auction.

5.5 Analysis of Repeated G-Prim Auction when Bids

are Realizations of Random Variables

The relationship between Repeated G-Prim and Re-

peated Parallel is analogous to that between the Paral-

lel Auction and the G-Prim Auction—as long as m > n

(when n ≤ m Repeated G-Prim is equivalent to Re-

peated Parallel because all agents bid on all items in

a single round). Thus, when m > n the closed form so-

lution for the expected number of items won by nonauc-

tioneers for Repeated Parallel becomes a lower bound

for the expected number of items won by nonauction-

eers for Repeated G-Prim (and the reverse is true for

the expected number of items won by the auctioneer).

This happens because each agent has, on average, more

than a single round to attempt to bid for items that

it highly values (increasing the chances that it wins

them). Similarily, the probability that a nonauctioneer

wins any item in a Repeated Parallel Auction is a lower

bound on the same quantity for the Repeated G-Prim

Auction.

5.6 Analysis of Combinatorial Auction when Bids are

Realizations of Random Variables

The Combinatorial Auction only lasts one round, sim-

ilar to the Parallel Auction. Moreover, Given the in-

dependence of task values that is assumed in Scenario

1, the event that an agent is awarded any particular

task does not change that agent’s value of any other

task. Therefore, in Scenario 1 the Sequential Auction

and the Combinatorial Auction will yield identical re-

sults (assuming the same communications between auc-

tioneers and nonauctioneer are successful or dropped).

Thus, trivially, for Scenario 1 the expected number of

items visited by agents is the same for the Parallel Auc-

tion as for the Sequential Auction. The probability that

a nonauctioneer is awarded at least one item is also the

same. It is important to note that the similarity of re-

sults between the Sequential Auction and th Parallel

Auction is only valid for Scenario 1; this analysis does

not hold in the general case that the cost or value of

a set is not simply the cost or value of its individual

items—for example, in Scenario 2.

5.7 Analysis of Auctions When Item Costs are

Distance-Based

Costs in Scenario 2 are defined by the extra TSP length

required to visit a new location (Equation 2). When i

wins θj , the multi-TSP path and its sub-length over

i’s tasks cannot shorten; indeed, it lengthens almost

surely8. This is formalized in Proposition 1.

Proposition 1 P(`TSP(Wi,r ∪ {θj}) > `TSP(Wi,r)) =
1.

Lengthening i’s multi-TSP path causes i to visit

more of the environment (due to the triangle inequal-

ity), and decreases i’s cost of visiting other locations

with a higher probability than it increases it9. This is

formalized in Proposition 2.

Proposition 2 Assuming Wi,r = Wi,r−1 ∪ {θj}, then

`TSP(Wi,r) > `TSP(Wi,r−1) =⇒ P(Vi,r(θk) < Vi,r−1(θk)) > 1/2,

for all θk ∈ Θunsold at round r.

8 This statement makes the implicit assumption locations
are initially chosen by a random process that would sample
the environment densely, in the limit, if the number of lo-
cations were allowed to go to infinity. The “almost surely”
refers to the fact that, given randomly chosen locations, the
chances a new location lies along the old multi-TSP (in which
case the multi-TSP length remains the same) is zero.

9 Note that, this assumes item locations are initially cho-
sen by a random process that would sample the environment
densely, in the limit, if the number of locations were allowed
to go to infinity.
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A lower cost of visiting θk increases the chances that

an agent will win θk. This is formalized in Proposition 3.

Proposition 3 When p > 0 and θk ∈ Θunsold in r − 1,

Vh,r(θk) < Vi,r−1(θk) =⇒ P(θk ∈Wh,r) > P(θk ∈Wi,r−1).

Combining Propositions 2 and 3 yields Corollary 4.

Corollary 4 When p > 0 and θj , θk ∈ Θunsold at the

beginning of round r − 1 andWh,r = Wh,r−1 ∪ {θj}, then
P(θk ∈Wh,r+1) > P(θk ∈Wi,r).

Corollary 4 states that if h wins any task θj then

the probability h wins another task θk increases (in

Scenario 2). The following Corollary 5 holds because

if agent h’s chances of winning θk increase, the chance

that agents i 6= h wins θk must decrease.

Corollary 5 When p > 0 and θj , θk ∈ Θunsold in round

r − 1 and Wh,r = Wh,r−1 ∪ {θj}, then
P(θk ∈Wi 6=h,r+1) < P(θk ∈Wi 6=h,r).

Given randomly distributed start and item loca-

tions, the costs in round 1 of Scenario 2 meet all as-

sumptions required by the analysis of Scenario 1 (agents

draw values from the same distribution and the maxi-

mum value objective of Scenario 1 is met by negating

Scenario 2’s costs). This leads to Proposition 4.

Proposition 4 The probability that i wins round 1 of

an auction in Scenario 1 is equal to the probability that

i wins Round 1 of the same auction type in Scenario 2.

Corollary 6 holds because Parallel Auctions have one

round.

Corollary 6 For the Parallel Auction, all results de-

rived in Scenario 1 are valid for Scenario 2.

We now prove that the equations derived for the Se-

quential Auction in Scenario 1 become inequalities that

provide bounds on the Sequential Auction in Scenario

2 (Lemma 2 and Corollaries 7-10).

Lemma 2 When p < 1 and for all θj
PS2, Sequential(θj ∈ W̃a,r) ≥ PS1, Sequential(θj ∈ W̃a,r).

Proof The auctioneer has an advantage over nonauc-

tioneers when p < 1 because the auctioneer always has

perfect communication with itself. Consequently, a is

more likely to win round r ≥ 1 than i 6= a when p < 1;

and thus a has an increased chance of winning rounds

r > 1 by Corollary 4.

Lemma 2 has Corollaries 7 and 8, regarding the

probability that agents adopt at least one task; and

Corollaries 9 and 10, regarding the expected number of

tasks adopted by agents.

Corollary 7 When p < 1,

PS2, Sequential(θj ∈Wa,r) ≥ PS1, Sequential(θj ∈Wa,r).

Corollary 8 When p < 1,

PS2, Sequential(θj ∈Wi6=a,r) ≤ PS1, Sequential(θj ∈Wi6=a,r).

Corollary 9 When p < 1,

ES2, Sequential(|Wa|) ≥ ES1, Sequential(|Wa|).

Corollary 10 When p < 1,

ES2, Sequential(|Wi 6=a|) ≤ ES1, Sequential(|Wi6=a|),

G-Prim’s Scenario 2 performance is similarly bounded

by G-Prim’s Scenario 1 performance. Formal proofs fol-

low the same logic as for the Sequential Auction, but

are less useful because they go in the opposite direc-

tion of G-Prim’s closed-form bounds for Scenario 1.

Nonetheless, averaging over repeated trials of G-Prim

in Scenario 1 provides a means of obtaining a numerical

bound on its performance in Scenario 2.

Similar reasoning to Corollaries 7-10 can be used

to show that the iterative calculations that we derive

for the Repeated Parallel Auction for Scenario 1 are

bounds on those of Repeated Parallel Auction of Sce-

nario 1; and that the performance of Repeated Parallel

Auction of Scenario 1 bounds that of the Repeated G-

Prim Auction in Scenario 2 (but in the opposite direc-

tion of what would be required to use the performance

of Repeated Parallel Auction for Scenario 1 as a bound

on G-Prim in Scenario 2).

6 Analysis of Straightforward Extensions

The auction algorithms that have been presented up to

this point represent the most basic implementations of

each idea. However, there are two simple modifications

that may significantly improve performance in many

cases. (1) Re-sending each message multiple times, e.g.,

in the event that its receipt has not been acknowledged.

(2) Having the auctioneer send the winner lists of all

previous rounds along with the winner list of the cur-

rent round. We investigate each of these ideas in the

remainder of this section.

6.1 (Naively) Re-sending each message up to ct times

A simple way to increase the probability that important

data gets to a destination is to re-send data multiple

times. In the most naive implementation each messages

is simply sent ct times. We note that this is only useful if

the communication requirements of the auction are well

below the limits of the communication channel; other-

wise, naively sending more messages will likely cause

further communication degradation.
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The analysis that we have done up to this point can

be modified to handled this special case (in which chan-

nel capacity itself is not an issue) as follows: we redefine

q and p to be the probabilities that a particular piece of

data never gets delivered or eventually gets delivered,

respectively. We let q̂ and p̂ be the probabilities that

a particular message never gets delivered or gets deliv-

ered, q̂ = 1− p̂. The probability a piece of data never

gets sent is equal to the probability that each of ct mes-

sages is dropped,

q = q̂ct

and the probability a message eventually gets delivered

is the compliment event

p = 1− q̂ct = 1− (1− p̂)ct

Indeed, this also handles the closely related idea in

which an acknowledgment based protocol is used. In

an acknowledgment protocol each messages is re-sent

until the sender receives an acknowledgment from the

receiver, and the total number of times a piece of data

may be transmitted is limited to ct times.

It is important to note that this idea has limited

practical application if the communication required by

the auction already represents a significant amount of

the communication channel’s capacity; in which case

the Bernoulli model is a poor approximation due to

the fact that sending more data may simply decrease

communication quality.

6.2 Rebroadcasting the winners of previous rounds

during the current round

With the exceptions of the Parallel Auction and the

Combinatorial Auction, all auctions presented in Sec-

tion 4 require more than a single round. Another simple

way to increase agent participation is to rebroadcast the

winners of rounds 1, . . . , r − 1 along with the winners

of round r. That way, if one (or some) award messages

are dropped, then agents have additional chances to be

informed of the items they have won in earlier rounds.

Having the auctioneer resend the list of previous

winners along with the new winners does not increase

the number of messages that must be sent, only the

size of the award message. This strikes a balance be-

tween adding additional communication onto the chan-

nel and helping agents know which tasks they have won

when communication is imperfect. In the case of G-

Prim and the batch G-Prim Auctions, this increases

the total bandwidth sent from auctioneer to agents by

no more than a small constant factor (less than 2).

In G-Prim and batch G-Prim the auctioneer already

advertises all items that are still unsold during each

round, which requires bandwidth O(m). However, the

relative effects are larger for the sequential algorithm

and the naive batch method, which will have increased

bandwidth sent from auctioneer to agents by O(m) and

O(m/n), respectively.

As a rough approximation, if there is enough band-

width to use G-Prim or Batch G-Prim, then there is

likely enough bandwidth to use the modified version of

these algorithms that resend all winners each round.

Whether or not using these ideas with the sequential

algorithm or the naive batch method makes sense will

depend problem specifics such as the system being used

and environmental factors. As with the previous calcu-

lation, this analysis is also useful because it provides an

upper bound on how performance may be improved by

simply sending more messages.

We now we discuss how the performance of the Se-

quential Auction can be improved by this technique,

assuming Scenario 1 and a Bernoulli distribution. We

are unable to calculate a complete closed form solutions

for the quantities that we are interested in; however, we

are able to describe an iterative algorithm that can be

used to obtain the desired quantity. A similar iterative

calculation for the Repeated Parallel Auction appears

in the appendix. As with the versions of these algo-

rithms that do not resend winners, the results for the

Sequential Auction represent a bound on the G-Prim

Auction, and results for the Repeated Parallel Auction

represent a bound on the Repeated G-Prim, and per-

formance in Scenario 1 is a bound on performance in

Scenario 2 (but in the opposite direction of what would

be required to apply the results of the iterative calcula-

tions to G-Prim and Repeated G-Prim in scenario 2).

We observe that most of the auction dynamics of the

Sequential Auction with Winner Re-sends remain un-

changed with respect to the basic Sequential Auction.

However, if an agent wins a particular item in round r of

a multi-round auction, then it has m− r + 1 chances to

receive the award message from the auctioneer. Assum-

ing that the winning agent receives its earliest award

message in r̂ (where r̂ ≥ r) then the auctioneer has

m− r̂ + 1 chances to receive the acknowledgment be-

fore it assumes responsibility for the item.

The expected number of items won outright by the

auctioneer and each individual non-auctioneer remain

the same. Respectively:

E
(
|W̃a|

)
= m

n∑
k=1

1

k
p2(k−1)(qp+ q)n−k

(
n− 1

k − 1

)
and

E
(
|W̃i 6=a|

)
= m

n∑
k=2

1

k
p2(k−1)(qp+ q)n−k

(
n− 2

k − 2

)
.
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Taking responsibility for (or adopting) an item requires

both winning that item and also receiving the award

message; in this case the latter depends on the round

in which the item was won. Assuming that a nonauc-

tioneer wins an item in round r, then the probability

that agent does not receive an award message for that

item by the end of the auction is qm−r̂+1, and the proba-

bility that an award message is received is 1− qm−r̂+1.

Summing over the expected items won in each round

gives us the expected number of items adopted by a

single non-auctioneer:

E
(
|Wi 6=a|

)
=
∑m
r=1(1− qm−r+1)

∑n
k=2

1
kp

2(k−1)(qp+ q)n−k
(
n−2
k−2

)
.

The expected number of items adopted by a single

non-auctioneer and the set of all non-auctioneers is

E
(∑
i6=a

|Wi|
)

= (n− 1)E
(
|Wi 6=a|

)
.

The probability that the auctioneer never receives

an acknowledgment message for an item sold to some

non-auctioneer in round r is dependent on both the

probability an agent itself receives (the first) successful

transmission of the award message, and the probability

of a successful acknowledgment. The number of new

items that an agent becomes aware of winning upon

receiving an award message is dependent on the trans-

mission history. This makes closed form solutions for

both (A) the number of items visited by the auctioneer,

and (B) the number of items visited twice difficult to

calculate in closed form. However, these quantities can

be calculated in an iterative fashion according to algo-

rithm 11. The basic idea is to track how the expected

quantities of items change after every round, which is

illustrated in Algorithm 11.

We note that intermediate quantities that we track

in Algorithm 11 and subsequent algorithms are labeled

using capital letters; different algorithms use different

modifiers on capitol letters to help denote the fact that

the temporary quantities in different algorithms are un-

related to each other. C/C++ language style comments

appear in our presentation to help communicate what

each quantity represents. We use the word “adopted”

to denote the case when a nonauctioneer knows that it

has won an item—which is different from the case that

the nonauctioneer has been awarded the item (since,

in the latter case, the nonauctioneer may not have yet

received this knowledge in a successfully transmitted

award message).

The probability that a nonauctioneer agent does at

least one task in a Parallel Auction with the modifica-

tion we are considering can be calculated using a similar

iterative calculation that is displayed in Algorithm 12.

Algorithm 11 Iterative Calculation of E
(
|Wa|

)
given p, q, n, and m.

1: Ý ← 0; Ŕ← 0; Ĺ← 0; J́ ← 0; Ń ← 0; B́ ← 0
2: for r ∈ {1 . . .m} do
3: Ś ←

∑n
b=1

1
n
p2(b−1)(pq + q)n−b

(
n−1
b−1

)
// Ś ≡ E(num items won by auctioneer during round r)

4: Ḱ ←
∑n
b=2

1
n
p2(b−1)(pq + q)n−b

(
n−2
b−2

)
// Ḱ ≡ E(num items won by each nonauctioneer during

// round r)

5: Ý ← Ý + Ś
// Ý ≡ E(num items won by auctioneer through round r)

6: Ŕ← Ŕ+ (n− 1)Ḱ
// Ŕ ≡ E(num items won by all nonauctioneers through r)

7: Q́← (n− 1)rpqm−rḰ
// Q́ ≡ E(num items adopted, all nonauctioneers, end of r)

8: É ← B́ + J́ + Ḱ
// É ≡ E(non acked items in r [before awards sent])

9: Ĺ← Ĺ+ (J́ + Ḱ)p
// Ĺ ≡ E(num items each nonauctioneer adopts by the end

// of round r)

10: J́ ← (J́ + Ḱ)q
// J́ ≡ E(num items won but not adopted, by a particular

// nonauctioneer, after r)

11: Ń ← Ń + (n− 1)(p2É + qB́)
// Ń ≡ E(num items acked by all nonauctioneers by

// the end of round r)

12: B́ ← qpÉ + qB́
// B́ ≡ E(num items adopted but not acked by a particular

// nonauctioneer)

13: X́ = Ŕ− Q́
// X́ ≡ E(num items won but not adopted, by all

// nonauctioneers )

14: B́all = (n− 1)B́
// B́all ≡ E(num items adopted but not acked by all nonauctioneers)

15: E
(
|Wa|

)
← Ý + X́ + B́all

16: E
(
|Wi6=a|

)
← Ĺ

Algorithm 12 Iterative Calculation of

PSeq resend(Wi 6=a 6= ∅) given p, q, n, and m.

1: A← 0 ; B ← 0 ; C ← 1 ; D ← 0
2: for r ∈ {1 . . .m} do
3: E ←

∑n
b=2

1
n
p2(b−1)(pq + q)n−b

(
n−2
b−2

)
// E ≡ P(auctioneer wins in round r)

4: A← A+ (B + CE)p
// A ≡ P(nonauctioneer won before r and knows it won)

5: B ← (B + CE)q
// B ≡ P(nonauctioneer won by r but is ignorant of win)

6: C ← C(1− E)
// C ≡ P(nonauctioneer did not win by round r)

7: D ← 1− C
// D ≡ P(nonauctioneer won before round r)

8: PSeq resend(Wi6=a 6= ∅)← 1−A

7 Experiments

Simulation experiments, which are presented in Sec-

tions 7.1-7.3 are run on a Dell Precision computer with

64GB RAM and an Intel Core i7 processor (note only
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one core is used at a time). TSP and mixed integer pro-

gramming solutions were found using Google’s Opera-

tions Research Toolbox. We are able to run simulations

much more quickly than real-time. Experiments involv-

ing AscTec Pelican UAVs are presented in Section 7.4

(See Section 7.4 for a full description of the system used

for these hardware experiments).

7.1 Agent Utilization Assuming Random Valuations

and Bernoulli distribution

In this section we present the results of an extensive

comparison of agent utilization given the various auc-

tions for the case that valuations are random variables

representing cost, and where the auctioneer is attempt-

ing to minimize the sum of costs over all agents. The

Bernoulli communication model is assumed, which en-

ables us to compare the results of Monte Carlo sim-

ulations (1000 for each data-point) to our analytical

results. For the Monte Carlo simulations, every robot

determines a unique valuation for each item by drawing

a random number from the range [0 1], and we simulate

the nine cases where 3, 30, and 300 agents divide 10,

100, and 1000 tasks. Communication is varied across

the range p ∈ [0 1].

We note that results for the Combinatorial Auction

are identical to those for the Parallel Auction in the case

presented in this section, and plots for the Combinato-

rial Auction are omitted to save space. In particular,

the parallel and Combinatorial Auctions are identical

in the special case that there are no symbioses between

any items (and this happens here because valuations

are determined by random variables that are indepen-

dent of the other items owned or not owned by each

agent). Both the Parallel Auction and Combinatorial

Auction last a single round.

Data is presented in two different formats as follows:

1. Figures 5-8 present agent utilization statistics for

different auctions on the same plots to facilitate

the comparison of different auctions. Each figure

contains nine plots, one for each combination of n

and m, where n ∈ {3, 30, 300} is agent count and

m ∈ {10, 100, 1000} is item count.

– Figure 5: each plot shows the probability that

any particular nonauctioneer agent takes posses-

sion of at least one item, i.e., does at least one

task. This is useful for determining how likely

nonauctioneer agents are to contribute to the so-

lution in the various scenarios.

– Figure 6: each plot shows the expected number

of items that any particular nonauctioneer takes

possession of. This is useful for determining the

expected workload of nonauctioneers in different

scenarios.

– Figure 7: each plot shows the expected num-

ber of items the auctioneer takes possession of.

Note that the auctioneer takes possession of any

items that it wins outright, as well as any items

awarded to other agents but not acknowledged

by the end of the auction. This is useful for deter-

mining the expected workload of the auctioneer

in different scenarios.

– Figure 8: each plot shows the expected number of

items that are possessed by more than one agent,

i.e., the auctioneer and some nonauctioneer. In

a task allocation scenario, double visits repre-

sent wasted effort that happens when a nonauc-

tioneer takes possession of a task, but fails to

acknowledge its acceptance of that task to the

auctioneer (so the auctioneer assumes it must

take possession of the task).

– Figure 9 shows the expected solution cost, where

cost is calculated by summing the cost of all

tasks that are done to the agent(s) that do them.

When the auctioneer and a nonauctioneer both

do a task, then the costs to both agents are in-

cluded in the summation.

2. Figures 17-24 Appear in the appendix. Each figure

displays on the performance of a single auction type

(either the basic version, or versions where winner

data is re-sent in subsequent rounds), and show all

information about the expected number of items

won by a any particular nonauctioneer, all nonauc-

tioneers, and the auctioneer; as well as the expected

number of items visited twice. Again, each figure

contains nine plots, one for each combination of

n ∈ {3, 30, 300} and m ∈ {10, 100, 1000}. Seeing the

different expected item number statistics for a par-

ticular auction type on the same plot makes it easier

to see how item allocation shifts from the auctioneer

to the nonauctioneers as communication improves.

From looking at Figure 5-8 and 17-24 it is appar-

ent that auction variants that resend data each round

have better agent utilization than those that do not.

We also find that G-Prim and Repeated G-Prim have

the best agent utilization of all auctions, with G-Prim

outperforming Repeated G-Prim when communication

is particularly poor. A more detailed discussion of the

results from this experiment appears later in Section 8.
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Probability Nonauctioneer i Does > 0 Tasks (Bernoulli model)
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Fig. 5: The probability that a non-auctioneer agent (i 6= a) takes position of at least one item (in other words, does at least
one task), given different team sizes (rows), numbers of items (columns), and assuming various communication qualities in a
Bernoulli communication model (horizontal axes). Analytical values (lines) vs. results from simulations (markers) for various
auction algorithms (colors). Auction algorithms that resend award data in subsequent rounds are drawn as dashed lines and
with ‘+’ symbols, while auction algorithms that do not are drawn with solid lines and ‘o’ symbols. Note that in the lower
left plots there are more agents than items, and so most agents do not do a task. The analytical solutions are not depicted
for cases we are unable to calculate them, e.g., due to numerical limitations or the computational complexity of the iterative
calculations.
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Expected Number of Items Visited by Nonauctioneer i (Bernoulli model)
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Fig. 6: The expected number of items visited by each non-auctioneer (i 6= a), given different team sizes (rows), numbers
of items (columns), and assuming various communication qualities in a Bernoulli communication model (horizontal axes).
Analytical values (lines) vs. results from simulations (markers) for various auction algorithms (colors). Auction algorithms
that resend award data in subsequent rounds are drawn as dashed lines and with ‘+’ symbols, while auction algorithms that
do not are drawn with solid lines and ‘o’ symbols. The analytical solutions are not depicted when we are unable to calculate
them, e.g., due to numerical limitations or the computational complexity of the iterative calculations.
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Expected Number of Items Visited by Auctioneer (Bernoulli model)
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Fig. 7: The expected number of items visited the auctioneer, given different team sizes (rows), numbers of items (columns),
and assuming various communication qualities in a Bernoulli communication model (horizontal axes). The auctioneer visits
items that it wins as well as all unacknowledged sales. Analytical values (lines) vs. results from simulations (markers) for
various auction algorithms (colors). Auction algorithms that resend award data in subsequent rounds are drawn as dashed
lines and with ‘+’ symbols, while auction algorithms that do not are drawn with solid lines and ‘o’ symbols. The analytical
solutions are not depicted when we are unable to calculate them, e.g., due to numerical limitations or the computational
complexity of the iterative calculations.



A Comparison of Auctions for Task Allocation in Communication Limited Environments 23

Expected Number of Items Visited by Twice (Bernoulli model)
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Fig. 8: The expected number of items visited twice (that is, by the auctioneer and some other agent), given different team
sizes (rows), numbers of items (columns), and assuming various communication qualities in a Bernoulli communication model
(horizontal axes). Double visits represent items that were received by a nonauctioneer, but not successfully acknowledged.
Analytical values (lines) vs. results from simulations (markers) for various auction algorithms (colors). Auction algorithms
that resend award data in subsequent rounds are drawn as dashed lines and with ‘+’ symbols, while auction algorithms that
do not are drawn with solid lines and ‘o’ symbols. The analytical solutions are not depicted when we are unable to calculate
them, e.g., due to numerical limitations or the computational complexity of the iterative calculations.
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Expected Solution Cost (Costs of Tasks Completed Sum over all agents of), Bernoulli model
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Fig. 9: The expected solution cost (summed cost of tasks accepted, given random cost valuation on interval [01] for each task
by each robot), given different team sizes (rows), numbers of items (columns), and assuming various communication qualities in
a Bernoulli communication model (horizontal axes). Analytical values (lines) vs. results from simulations (markers) for various
auction algorithms (colors). Auction algorithms that resend award data in subsequent rounds are drawn as dashed lines and
with ‘+’ symbols, while auction algorithms that do not are drawn with solid lines and ‘o’ symbols. The analytical solutions
are not depicted when we are unable to calculate them, e.g., due to numerical limitations or the computational complexity of
the iterative calculations. If a task is done by both the auctioneer and a nonauctioneer (due to failed communication) then its
cost to both agents is included in the solution cost.
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7.2 Comparison of agent utilization between random

valuation and min TSP valuation.

In this section we compare agent allocation statistics

for the random valuation (that was used in the previous

section) to the scenario where valuations are based on

the minimum length solutions to traveling salesperson

problems. We look at the case where 5 agents partic-

ipate in auctions for 10 locations, and start and item

locations are drawn uniformly at random from a 100 by

100 kilometer square. The TSP-based costs are recal-

culated for an agent i after rounds in which i wins an

item. We run 1000 trials per data-point and plot the

mean values from experiments vs. the expected values

predicted by our analysis in Figure 10. We limit our

focus to the parallel, sequential, and G-Prim Auctions.

Figure 10 displays information for each auction and sce-

nario in its own plot. Different auction types appear as

columns, and different scenarios appear as rows.

Figure 11 shows both the probability that each par-

ticular nonauctioneer takes possession of at least one

item, and the resulting summed TSP lengths over all

agents for the 5 agent, 10 item, min TSP valuation case.

Of note is the non-tightness of the analytical bound for

the case of TSP valuation (which is derived from the

analysis of the random variable case).

An interesting result from this experiment is that

the analytical bounds are looser for the TSP-metric

than for the random valuation metric. Additional re-

sults are discussed in detail in Section 8.

7.3 Monte Carlo Simulations Evaluating Path Length

and Computation Time

In this experiment we evaluate how the various auctions

described in the previous section perform when used at

different levels of communication channel reliability—

using both the Bernoulli communication model as well

as the Gilbert Elliott communication models.

In particular, we focus on distance valuation func-

tions that are motivated by multi robot task allocation

problems, and consider two different objectives that the

auctioneer could attempt to optimize: min-sum TSP

lengths over all robots, and min-max TSP lengths over

all robots. For each objective (min-sum TSP and min-

max TSP) we evaluate the use of both the actual TSP

length as well as a commonly used approximation to the

TSP length that is much easier to compute, in practice.

– Actual TSP Valuation: When using the actual

TSP lengths, agents value new tasks by comput-

ing the TSP length of visiting all items they cur-

rently own plus each additional item up for auction.
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Fig. 10: The average number of items each agent vis-
its over various communication qualities, auctions, and for
Scenarios 1 and 2. In Scenario 1 bids are realizations of ran-
dom variables, in Scenario 2 bids are based on the extra dis-
tance required to visit task locations. Items are visited twice
if an agent receives an award message from the auctioneer
but fails to send an acknowledgment message back to the
auctioneer (and so the auctioneer also visits the item).

For min-sum and min-max this involves selling the

item(s) that result in the smallest actual min-sum

and min-max values, respectively.

– Approximate TSP Valuation: The TSP approx-

imation is based on the minimum spanning forest

length, where each robot contributes its own tree

in the forest. For min-sum this involves selling the

item(s) that results in the smallest new edge being

added to the spanning forest, while for min-max this

involves selling the item that results in the smallest

new spanning forest length. Once a spanning forest

has been computed, it is possible (with more post

processing) to find an approximation to each robot’s

actual TSP that is no greater than 1.5 times the

length of that robots actual TSP over the locations

that it owns10.

10 Indeed, the original Prim Allocation algorithm leveraged
the fact that this approximation method was used for valua-
tions.
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Scenario 2 with 5 agents 10 items
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Fig. 11: Left: the probability that a non-auctioneer (i 6= a)
does at least one task, analytical value vs. results from ex-
periments over various communication qualities for different
auction types. Right: Solution quality over various communi-
cation qualities.

In Section 7.1 we observed that multi-round auc-

tions had much better performance for variants that

resend winner lists each round (verses the basic imple-

mentations that do not). Therefore, we limit our exper-

iments in this section to (A) multi-round variants that

resend winner lists each round, and (B) single round

auctions.

For the Bernoulli communication model a message is

dropped based on a weighted coin flip. For the Gilbert-

Elliot communication model we assume perfect com-

munication in the good state (pg = 0) and nonexistent

communication in the bad state (pb = 1); we fix the

expected duration of a communication blackout (100

messages), and then calculate transition probabilities

(τg and τb) that yield the desired expected communi-

cation quality that we wish to test. The initial state is

determined such that the expectation of starting in each

state of the model is equal to its stationary probability.

This experiment shows that the overall ranking of

auctions differs depending on the level of communica-

tion that exists, the valuation function that is used,

and also between computation time and solution qual-

ity. Additional discussion is postponed until Section 8.

Results for the four valuation metrics appear in Fig-

ures 12-13, respectively. Each figure shows side-by-side

results for the Bernoulli model and the Gilbert-Elliot

communication model, and each data-point represents

the mean result over 50 trials. For these experiments we

assume 5 robots that bid to visit 10 points in the en-

vironment. Robot start locations and points are chosen

from a uniform random distribution in a square search

space that spans [−100, 100]× [−100, 100] kilometers.

We assume that robots have enough fuel to complete

their missions.

7.4 Hardware Experiments

Hardware experiments involve three agents: two As-

cTec Pelican quad-rotor UAVs with Odroid single board

computers, and an auctioneer with a Dell Precision

computer (64GB RAM and an Intel Core i7 processor).

The two UAVs receive position measurements from a

Vicon motion capture system in an indoor space that

spans 8 by 10 meters. We use the ETH-Zurich mod-

ular sensor fusion framework for state estimation by

Lynen et al (2013). Robot Operating System (ROS)

is used on all computers for local inter-process com-

munications. All three agents communicate using the

UDP-based Lightweight Communications and Marshal-

ing protocol by Huang et al (2010), over (lossy) 802.11n

wireless Ethernet.

We run 10 trials each of the G-Prim auction and

the Repeated G-Prim auction (for a total of 20 trials).

In both sets of experiments each robot used the TSP

valuation metric and the auctioneer (one of the robots)

used the min-max objective function. Tests take ap-

proximately 2-5 minutes to run including auctions and

task execution. Figure 14 depicts actual paths taken by

robots as they visit the items they won in two typical

auctions. The mean communication quality observed

over all experiments was 91.1% (i.e., the message drop

rate was 8.9%) and had a standard deviation of 10.9%.

The mean min-max path length found by the G-Prim

Auction was 23.811 meters (standard deviation 0.253

meters), and by the Repeated G-Prim Auction was 24.0

meters (standard deviation 0.895 meters).

Our Pelican robots are not equipped with sensors

that can be used to detect and avoid possible local

collisions. Therefore, we instead use NRL’s centralized

Puppeteer framework to ensure that the robots do not

collide when following their respective paths. We note

that the auction process is completely decentralized and

runs over 802.11n wireless Ethernet using UDP across

a busy network. In a field deployment in a larger en-

vironment it is reasonable to expect that robot-robot

encounters would be rare. More sophisticated on-board

sensors such as radar, camera, etc. could also be used

to prevent local collisions even when communication is

poor.

The main result of this experiment is a demonstra-

tion that G-Prim and Repeated G-Prim can be used on

real UAVs that communicate over a lossy channel.
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Min-Sum Objective
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Fig. 12: Using auctions over a lossy communication channel, 5 robots seek to minimize their summed path length (min-sum
objective) when visiting 10 target locations. Data-points represent mean results over 50 trials. Different auction methods and
valuation functions (spanning tree heuristic and traveling sales person) are compared.
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Fig. 13: Using auctions over a lossy communication channel, 5 robots use the min-max objective when dividing the work
of visiting 10 target locations. Data-points represent mean results over 50 trials. Different auction methods and valuation
functions (spanning tree heuristic and traveling sales person) are compared.

8 Discussion of Results

8.1 G-Prim and Repeated G-Prim

G-Prim, our generalization of the earlier Prim Alloca-

tion Algorithm, was found to work very well in practice;

both in terms of agent utilization, but also with respect

to solution quality. When p < 1 in the Bernoulli model,

the G-Prim Auction enables more agents to win tasks

than either the Sequential or Parallel Auctions. By hav-

ing each agent i bid for the item that i values most,

G-Prim reduces the chances that an item highly valued

by i is sold to some other agent in the event that a mes-

sage to/from i is dropped. G-Prim also tends to result

in better solutions overall (Figure 11-Right). The price

of these advantages is that the auctioneer must use ad-

vertisement messages of size O(m) each round, instead
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AscTec Pelican Paths (two selected experiments)
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Fig. 14: The paths taken by two AscTec Pelican quad-rotors
while visiting five target points. Left and Right show two dif-
ferent experiments. The left solution was the result of the
G-Prim auction, the one on the right was the result of a
Repeated G-Prim Auction. Observed communication quality
was above 90% in both experiments.

Fig. 15: Top:AscTec Pelican quad-rotors we use in our hard-
ware experiments. Bottom: Experimental Setup with three
agents (two AscTec Pelican quad-rotor agents and laptop-
based auctioneer) using 802.11n wireless Ethernet.

of the O(1) sized messages used by the Sequential Auc-

tion. Bidders retain the same message sizes in G-Prim

as they do in the Sequential Auction.

We believe that the G-Prim Auction may have gen-

eral applications well beyond multi-robot task alloca-

tion. Indeed, the bidding mechanism is straightforward—

each agent bids for the item that it wants the most

each round, and in each round the auctioneer awards

the item with that round’s best bid to the agent that

bid for it during that round.

The relationship between the Sequential Auction

and the G-Prim Auction is somewhat analogous to the

relationship between the Repeated Parallel Auction and

the Repeated G-Prim Auction. In the repeated auc-

tions each agent that manages to bid is awarded with

an item; however, by enabling agents to submit bids

for the n items that they most desire, the auctioneer is

more likely to award agents items that the agents be-

lieve are more beneficial than other remaining options

(except during the last round).

8.2 Communication loss affects auctions

The most obvious result from this work is that dropped

communication significantly affects the performance of

auctions. Moreover, dropped communication affects dif-

ferent auctions differently. While total communication

failure results in the auctioneer taking responsibility

of all items, partial breakdown effects different auc-

tions in different ways. Indeed, given a particular set

of items, valuation function, and objective function,

auctions that have similar performance when commu-

nication is perfect may have very different performance

when the communication between the auctioneers and

the bidders partially breaks down.

8.3 Re-sending winners in multi-round auctions

For multi-round auctions we find that re-sending win-

ners of earlier rounds along with the current round’s

winners is an easy way to improve performance across

all multi-round auctions with respect to agent utiliza-

tion and solution quality. While this result is arguably

intuitive, the amount of performance improvement in-

creased with both the number of items and the number

of agents. Re-sending winner data does not increase the

number of messages that must be sent, but it does in-

crease the size of the winner announcement messages to

O(m), which is on par with other message sizes used for

the Parallel, G-Prim, and Repeated G-Prim Auctions,

but larger than the O(1) messages used in the Sequen-

tial Auction and the O(m/n) sized messages used in

the Repeated Parallel Auction.

This result is also evident in the repeated auctions

Repeated Parallel and Repeated G-Prim) that have more

than a single round but fewer rounds than the Sequen-

tial and G-Prim Auctions.
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8.4 Repeated Auctions

A notable difference between the Repeated Auctions

and other auctions is that Repeated Auctions award an

item to each agent that manages to bid in a particular

round (as long as the number of unsold items is greater

than the number of agents). Overall, this causes more

agents to be used in the task allocation (for any com-

munication level above nonexistent) but also causes so-

lution quality to degrade slightly vs. otherwise similar

multi-round auctions. This slight performance degra-

dation tends to vanish as the number of agents and/or

items increases.

8.5 Communication models

The Bernoulli communication model is very simple and

only scratches the surface of the various ways that com-

munication may be limited in practice. Nonetheless, we

believe that it represents an interesting case where the

chance of messages being sent between auctioneer and

bidders are fixed and i.i.d. Moreover, the straightfor-

ward analysis of the Bernoulli model enables us to un-

derstand how the underlying dynamics of different auc-

tions break down in different ways communication be-

tween agents decreases.

Our results comparing the TSP metrics differ some-

what depending on if the Bernoulli model or the Gilbert-

Elliot communication model is used. In general, the rate

of packet drop affects different algorithms in different

ways. The transition points (where the ranking order

of the various algorithms in terms of quality changes)

happen at a lower message drop rate if the Bernoulli

model is used than if the Gilbert-Elliot model is used.

Regardless of the auction algorithm and communi-

cation model that is used, the average time required

to solve an auction increases as communication gets

worse. This is likely due to a number of reasons, in-

cluding a more time consuming valuation function and

route-planning that must be run on the auctioneer after

it assumed responsibility for more items. All algorithms

experience the increase in mean CPU time at lower drop

rates when the Gilbert-Elliot model is used than when

the Bernoulli model is used.

8.6 Analytical Solutions and Numerical Limits

Due to numerical limits of computers, the analytical so-

lutions that we derive for expected agent utilization can

only provide accurate calculations, in practice, for lim-

ited numbers of agents and items. For the closed form

solutions this is due to the appearance of the binomial

coefficient within the solution. For the numerical solu-

tions for which we provide pseudocode, another limiting

factor is the computational complexity of the resulting

calculations.

Despite their limits, we believe that both analytical

solutions and numerical limits are useful for providing

intuition about how agent utilization may be affected

by communication.

The probability that the auctioneer does any task

depends on both the number of items it wins, as well

as the number of items won by other agents that are

unacknowledged by those agents. While it is possible to

numerically calculate these quantities, the calculations

are more involved than those included here. We note

that the auctioneer is responsible for running the auc-

tion, regardless of how many items it eventually takes

possession of.

8.7 Auctions when TSP metrics are used

The poor performance of the Parallel Auction when

communication is good is due to the fact that all agents

must bid on all items without accounting for any sym-

biosis between them. This is a known phenomenon in

auctions, in general. The fact that the parallel algo-

rithm improves when communication is poor (at least

for the min-sum objective) is due to the artifact that we

have a low item to agent ratio. If the min-sum objective

is used, then the “start-up” overhead of using an addi-

tional agent is exaggerated in such cases because the

agent usually needs to travel a relatively great distance

to get to any item (this does not happen with the min-
max objective because there is no start-up overhead of

using an additional agent as long as its path to an item

and back is less than the longest tour planned by any

robot currently in use). We conjecture that this effect

would become less pronounced if there were many more

items up for auction.

In the case of the min-max objective, the Repeated

Parallel Auctions perform the best when communica-

tion is poor. We attribute this to the fact that there are

multiple opportunities to have a successful communica-

tion, and so the chances that the auctioneer is stuck vis-

iting all the target points itself is reduced vs. the Paral-

lel Auction. Moreover, since there are multiple rounds,

it is possible for the bids in later rounds to account

for symbiosis with items won in earlier rounds. The re-

peated Sequential Auctions also require relatively little

computation time (an order of magnitude less than the

other algorithms).

The “best” auction algorithm depends both on the

objective function and the communication quality, but
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is qualitatively consistent between the different messag-

ing models. If very high loss rates are observed when the

min-max objective function is used (e.g., greater than

50%) then we find that the Repeated G-Prim Auctions

has the best performance.

8.8 Note on Parallel Auction With Spanning Tree

TSP Estimate

When the Parallel Auction is used with the spanning

forest approximation to the TSP cost function, then

all agents that submit bids are awarded items in the

Voronoi cell of a Voronoi graph created from the loca-

tions of the bidding agents. This happens because if no

items are owned to begin with then an agent’s spanning

tree is a star graph rooted at the agent, and the TSP

estimate cost function for each item is simply the dis-

tance from that agent to an item. No items are owned

prior to round 1 in a Parallel Auction, and all items

are sold in a single round. Thus all bidding agents are

awarded the items that are closer to themselves than to

any other bidding agent.

8.9 TSP Valuation vs. Their Approximations

A very obvious (and intuitive) trend across all experi-

ments, regardless of communication quality, is that us-

ing TSP-based valuation consistently outperforms us-

ing valuation based on the spanning-tree heuristic with

the same type of auction. That said, the TSP valu-

ation takes longer to calculate, and will become pro-

hibitively expensive long before that spanning-tree val-

uation does. The relationship between TSP and span-

ning tree based valuation is to be expected.

9 Conclusion

We evaluate the performance of a variety of auctions

for multi-robot task allocation in scenarios where some

of the messages between the auctioneer and the bidders

may be dropped.

We study six auctions. Three of the auctions we

study have been widely used in the past, and include:

the Parallel Auction, the Sequential Auction, and the

Combinatorial Auction. Another, the G-Prim Auction,

is based on a generalization of Prim Allocation. Finally,

the remaining two are different variants of an idea in

which every agent that bids in a round wins something;

we call these Repeated Parallel and Repeated G-Prim,

respectively, depending on the way that items up for bid

each round are chosen. Finally, variations of the multi-

round auctions (Sequential, G-Prim, Repeated Parallel,

and Repeated G-Prim) are also tested while using a

simple modification in which the auctioneer includes

the winners of previous rounds whenever it broadcasts

new winners in subsequent rounds.

Assuming a Bernoulli communication model, we de-

rive closed-form solutions for the expected agent uti-

lization in each of the Sequential, Parallel Auctions,

and Repeated Parallel Auctions, and bound the perfor-

mance of G-Prim and Repeated G-Prim in terms of the

Sequential Auction.

In simulations and experiments we consider the per-

formance of these auctions in two different Scenarios,

and using variety of different valuation/cost functions

and approximations. The first scenario involves mini-

mizing or maximizing the value of items sold, where

item values are random variables, depending on if bids

represent the cost of undertaking a particular task or

the value they will receive from doing a particular task,

respectively. The second scenario assumes that items

are randomly drawn locations, and defines cost as the

extra distance required to visit a location. In the second

scenario we consider both the min-sum and min-max

formulations of the problems (handling the cases where

agents seek to minimize total distance traveled over all

agents, and agents seek to minimize the furthest dis-

tance traveled by any agent, respectively). We test two

different ways of calculating/estimating this resulting

costs: in the first, a computationally expensive “opti-

mal” TSP-based valuation is used, and in the second a

spanning-tree based heuristic approximation is used.

We find that the G-Prim Auction outperforms the

other methods with respect to agent utilization across a

wide variety of scenarios, and has more optimal solution

cost (or value) assuming item valuations are random

variables. Results with respect to the TSP based so-

lution quality were mixed, with different auctions per-

forming better or worse at different points along the

communication spectrum. That said, more work is nec-

essary to characterize the performance of the TSP based

methods for larger numbers of agents and items; as the

small number of agents and items evaluated in the TSP

solution length comparison may have been too small to

illustrate the differences that were seen for larger num-

bers of agents and items in the random valuation case.

Re-sending winners in subsequent rounds was found

to be an easy way to increase the performance of all

multi-round auctions. In general, single-round auctions

were found to have much worse performance than the

multi-round auctions in communication limited scenar-

ios. The main reason for this is that agents that happen

to miss the one and only round of bidding must sit idle.
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This is a particularly notable for the single round Com-

binatorial Auction, which provides the best allocation

of items to those agents that manage to bid in the gen-

eral case (multi-round auctions cannot, in general, find

an optimal solution in the case that item valuations

are dependent on whether or not a bidder wins other

items). Multi-round auctions are able to spread the neg-

ative effects of lost communication more evenly across

different agents, so each agent has a higher probabil-

ity of eventually submitting bids and winning tasks.

Multi-round auctions are also naturally suited to re-

sending winner data across multiple rounds without sig-

nificantly increasing the number of messages that must

be sent.
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A Iterative Calculations for Repeated Parallel

Auction with re-sends in Scenario 1

In this section we present the iterative calculation of quanti-
ties for the Repeated Parallel Auction with re-sends in Sce-
nario 1, assuming a Bernoulli communication model. Inter-
mediate quantities are denoted with capital letters, and vari-
ations of them.

B Additional Auction Performance Curves for

Scenario 1

In this section we present additional figures from the first
series of experiments. Each figure in this section pertains to a
single auction, and shows how agent utilization changes over
various swarm sizes and item counts.

Algorithm 13 precomputation one: iterative com-

putation of C̀[:][:] given p, q, n, and m.

1: À[1 : m+ 1][1 : m+ 1][1 : m+ 1]← 0
// À[r][i][x] is the number of scenarios that end during round x

// assuming r items are sold by round j

2: B̀[1 : m+ 1][1 : m+ 1][1 : m+ 1]← 0
// B̀[r][j][x] ≡ P(r items sold by round j starting at round x)

3: C̀[1 : m+ 1][1 : m+ 1]← 0
// C̀[x][r] ≡ P(auction lasts to round x, assuming it is already

// at round r)

4: À[1][1][:]← 1

5: B̀[1][1][:]← 1

6: C̀[1][1]← 1
7: for x ∈ {0 . . .m} do
8: for r ∈ {1 . . . x} do
9: for i ∈ {1 . . . x+ 1} do

10: if À[r][i][x+ 1] > 0 then
11: for k ∈ {1 . . . n} do
12: D̀ ← p2(k−1)(pq + q)n−k ∗

(
n−1
k−1

)
// P(scenario to scenario transition)

13: if i = j then
14: continue
15: else if i+ k ≤ x+ 1 then
16: j ← i+ k
17: À[r + 1][j][x + 1] ← À[r + 1][j][x + 1] +

À[r][i][x+ 1]
18: else
19: j ← x+ 1
20: B̀[r + 1][j][x + 1] ← B̀[r + 1][j][x + 1] +

D̀B̀[r][i][x+ 1]

21: C̀[x+ 1][:]← B̀[:][x+ 1][x+ 1]
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Algorithm 14 precomputation two: iterative com-

putation of Ā[:] given p, q, n, and m.

1: Ā[1 : m+ 1]
2: for x← {m. . . 0} do
3: j ← x+ 1
4: C̄ ← 0 ; N̄ ← 0 ; D̄ ← 0
5: for z ∈ {x . . . 0} do
6: F̄ ← C̄

// E(num items adopted by end of round if award

// message not received )

7: Ḡ← 1− F̄
// E(num items not adopted by end of round if award

// message not received)

8: C̄ ← p+ qF̄
// E(num items adopted by end of round if award

// message not received)

9: H̄ ← D̄ + Ḡ
// E(num items adopted but not acked at middle of

// round if award message received)

10: Ī ← pH̄
// E(num items first acked this round if award

// message received)

11: J̄ ← Ī + N̄
// E(num items adopted and acked by end of round if

// award message received)

12: K̄ ← N̄
// E(num items adopted and acked by end of round if

// award message not received)

13: L̄← 1− J̄
// E(num items adopted and not acked by end of round

// if award message received)

14: M̄ ← F̄ − K̄
// E(num items adopted and not acked by end of round

// if award message not received)

15: N̄ ← pJ̄ + qK̄
// E(num items acked by end of round)

16: D̄ ← pL̄+ qM̄
// E(num items adopted and not acked by end of round)

17: Ā[j]← N̄
// E(num items sold that are eventually acked,

// given j rounds remain)

Algorithm 15 Finding PRPNImp(Wi 6=a 6= ∅),
C̆[:][:][:], D̆[:][:][:] and D̆[:][:][:] given p, q, n, and m.

1: Ă[1 : m+ 1][1 : m+ 1]← 0
// Ă[r][i]is number of scenarios that end at round r when

// i items are sold in round x)

2: B̆[1 : m+ 1][1 : m+ 1]← 0
// B̆[r][i] ≡ P(i items are sold by the end of round r)

3: C̆[1 : m+ 1][1 : m+ 1][1 : m+ 1]← 0
// C̆[r][i][x] ≡ P(selling item i in round r when x remain)

4: D̆[1 : m+ 1][1 : m+ 1][1 : m+ 1]← 0
// D̆[r][i][x] ≡ P(selling item i to auctioneer in round r when

// x items remain)

5: Ĕ[1 : m+ 1][1 : m+ 1][1 : m+ 1]← 0
// Ĕ[r][i][x] ≡ P(selling item i to nonauctioneer in round r

// when x items remain)

6: F̆ [1 : m+ 1][1 : m+ 1]← 0
// P(nonauctioneer has not won by end of round r when

// x items remain)

7: Ğ[1 : m+ 1][1 : m+ 1]← 0
// P(nonauctioneer has won but not adopted by end of

// round r when x items remain)

8: Ă[1][1]← 1

9: B̆[1][1]← 1

10: F̆ [1][1]← 1
11: for x ∈ {1 . . .m} do
12: r ← x+ 1
13: for last ∈ {0 . . .m− 1} do
14: i← last+ 1 ;
15: if Ă[r − 1][i] > 0 then
16: for num received ∈ {1 . . . n} do
17: k ← num received
18: H̆ ← p2(k−1)(pq + q)n−k

(
n−1
k−1

)
// P(scenario to scenario transition)

19: first item← last+ 1
20: f ← first item+ 1
21: Ĭ ← (k − 1)/(n− 1)

// P(particular nonauctioneer bid)

22: J̆ ← 1− Ĭ
// P(particular nonauctioneer did not bid)

23: if last+ num received ≤ m then
24: last item← last+ num received
25: l← last item+ 1
26: Ă[r][l]+ = Ă[r − 1][i]

27: K̆ ← 1
// P(particular nonauctioneer wins, if it bid)

28: else
29: last item← m
30: l← last item+ 1
31: K̆ ← (last item− first item+ 1)/k

// P(particular nonauctioneer wins, if it bid)

32: B̆[r][l]+ = H̆B̆[r − 1][i]

33: Q̆← 1− K̆
// P(particular nonauctioneer wins, if it bid)

34: R̆← J̆ + ĬQ̆
// P(particular nonauctioneer does not win,

// if it bid)

35: F̆ [r][l]+ = H̆R̆F̆ [r − 1][i]

36: L̆← (1− R̆)F̆ [(][r]− 1, i)
// P(particular nonauctioneer wins its first item)

37: Ğ[r][l]+ = H̆q(L̆+ Ğ[r − 1][i])

38: M̆ ← m− last item // rounds remaining

39: x← M̆ + 1
40: C̆[r][f : l][x]+ = H̆B̆[r − 1][i]

41: D̆[r][f : l][x]+ = (1/k)H̆B̆[r − 1][i]
42: if num received > 1 then
43: Ĕ[r][f : l][x]+ = (1− 1/k)/(n− 1)H̆B̆[r − 1][i]

44: N̆ ← sum(F̆ [:][end]) // P(nonauctioneer never wins)

45: PRPNImp(Wi6=a 6= ∅)← sum(Ğ[:][end]) + N̆
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Algorithm 16 Iterative calculation of E
(
|Wa|

)
for

RPI given p, q, n, m, C̀[:][:], Ā[:] , C̆[:][:][:], D̆[:][:][:]

and D̆[:][:][:]

1:
_

A← 0;
_

B← 0;
_

C← 0;
_

D← 0;
_

E← 0;
2: for item ∈ {1 . . .m} do
3: i← item+ 1

4:
_

F= 0
5: for round ∈ {1 . . .m} do
6: r ← round+ 1
7: for remain ∈ {0 . . .m} do
8: x← remain+ 1
9: for rounds left ∈ {0 . . .m} do

10: j ← rounds left+ 1

11:
_

A + = C̆[r][i][x]C̀[x][j]
// E(num items sold)

12:
_

B + = D̆[r][i][x]C̀[x][j]
// E(num items won by auctioneer)

13:
_

C + = Ĕ[r][i][x]C̀[x][j]
// E(num items won by nonauctioneer)

14:
_

F + = (1− qj)Ĕ[r][i][x]C̀[x][j]
// P(sold to nonauctioneer and adopted)

15:
_

E + = Ā[j]Ĕ[r][i][x]C̀[x][j]
// E(num items adopted and acked by

// nonauctioneer)

16:
_

D + =
_

F
// E(num items awarded to each nonauctioneer)

17:
_

H ∗ = (1−
_

F )
// P(particular nonauctioneer does not participate)

18: E
(
|Wi6=a|

)
←
_

D

19:
_

J←
_

D (n− 1)
// E(num items visited by all nonauctioneers)

20:
_

I← (
_

D −
_

E)(n− 1)
// E(expected num items visited twice)

21: E
(
|Wa|

)
←
_

B +(
_

C −
_

D)(n− 1)+
_

I

Parallel Auction (and Combinatorial Auction),
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Fig. 16: Parallel Auction Agent Utilization Performance
Curves. The average number of items each agent visits over
various communication qualities in Scenario 1 (in which bids
are realizations of random variables), assuming a Bernoulli
communication model. Items are visited twice if an agent re-
ceives an award message from the auctioneer but fails to send
an acknowledgment message back to the auctioneer (and so
the auctioneer also visits the item). In the special case that
no symbiosis exist between items (which happens in Scenario
1) the performance of the Parallel Auction and the Combi-
natorial Auction are identical.
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Sequential Auction, Bernoulli model
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Fig. 17: Sequential Auction Agent Utilization Perfor-
mance Curves. The average number of items each agent vis-
its over various communication qualities in Scenario 1 (in
which bids are realizations of random variables), assuming a
Bernoulli communication model. Items are visited twice if an
agent receives an award message from the auctioneer but fails
to send an acknowledgment message back to the auctioneer
(and so the auctioneer also visits the item).

G-Prim Auction, Bernoulli model
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Fig. 18: G-Prim Auction Agent Utilization Performance
Curves. The average number of items each agent visits over
various communication qualities in Scenario 1 (in which bids
are realizations of random variables), assuming a Bernoulli
communication model. Items are visited twice if an agent re-
ceives an award message from the auctioneer but fails to send
an acknowledgment message back to the auctioneer (and so
the auctioneer also visits the item).
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Repeated Parallel Auction, Bernoulli model
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Fig. 19: Repeated Parallel Auction Agent Utilization
Performance Curves. The average number of items each agent
visits over various communication qualities in Scenario 1 (in
which bids are realizations of random variables), assuming a
Bernoulli communication model. Items are visited twice if an
agent receives an award message from the auctioneer but fails
to send an acknowledgment message back to the auctioneer
(and so the auctioneer also visits the item).
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Fig. 20: Repeated G-Prim Auction Agent Utilization
Performance Curves. The average number of items each agent
visits over various communication qualities in Scenario 1 (in
which bids are realizations of random variables), assuming a
Bernoulli communication model. Items are visited twice if an
agent receives an award message from the auctioneer but fails
to send an acknowledgment message back to the auctioneer
(and so the auctioneer also visits the item).
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Sequential Auction, Re-sending Winners Each
Round, Bernoulli model
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Fig. 21: Sequential Auction With Winner Rebroad-
casts Agent Utilization Performance Curves. The average
number of items each agent visits over various communication
qualities in Scenario 1 (in which bids are realizations of ran-
dom variables), assuming a Bernoulli communication model.
Items are visited twice if an agent receives an award message
from the auctioneer but fails to send an acknowledgment mes-
sage back to the auctioneer (and so the auctioneer also visits
the item).

G-Prim Auction, Re-sending Winners Each Round,
Bernoulli model
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Fig. 22: G-Prim Auction With Winner Rebroadcasts
Agent Utilization Performance Curves. The average number
of items each agent visits over various communication qual-
ities in Scenario 1 (in which bids are realizations of random
variables), assuming a Bernoulli communication model. Items
are visited twice if an agent receives an award message from
the auctioneer but fails to send an acknowledgment message
back to the auctioneer (and so the auctioneer also visits the
item).
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Fig. 23: Repeated Parallel Auction With Winner Re-
broadcasts Agent Utilization Performance Curves. The av-
erage number of items each agent visits over various commu-
nication qualities in Scenario 1 (in which bids are realizations
of random variables), assuming a Bernoulli communication
model. Items are visited twice if an agent receives an award
message from the auctioneer but fails to send an acknowledg-
ment message back to the auctioneer (and so the auctioneer
also visits the item).
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0

2

4

6

8

10

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 3 agents and 10 itemsn = 3, m = 10

N
u

m
b

er
o
f

it
em

s
v
is

it
ed

Success rate p
0.0 0.5 1.0

0

20

40

60

80

100

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 3 agents and 100 itemsn = 3, m = 100

Success rate p
0.0 0.5 1.0

0

200

400

600

800

1000

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 3 agents and 1000 itemsn = 3, m = 1000

Success rate p
0.0 0.5 1.0

0

2

4

6

8

10

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 30 agents and 10 itemsn = 30, m = 10

N
u

m
b

er
o
f

it
em

s
v
is

it
ed

Success rate p
0.0 0.5 1.0

0

20

40

60

80

100

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 30 agents and 100 itemsn = 30, m = 100

Success rate p
0.0 0.5 1.0

0

200

400

600

800

1000

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 30 agents and 1000 itemsn = 30, m = 1000

Success rate p
0.0 0.5 1.0

0

2

4

6

8

10

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 300 agents and 10 itemsn = 300, m = 10

N
u

m
b

er
o
f

it
em

s
v
is

it
ed

Success rate p
0.0 0.5 1.0

0

20

40

60

80

100

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 300 agents and 100 itemsn = 300, m = 100

Success rate p
0.0 0.5 1.0

0

200

400

600

800

1000

0 0.20.40.60.8 1

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

probability of message send

RPPImp with 300 agents and 1000 itemsn = 300, m = 1000

Success rate p
0.0 0.5 1.0

Expected Lower BoundUpper Bound Mean Num items visited
Auctioneer

Each non-auctioneer
All non-auctioneers
Twice

Fig. 24: Repeated G-Prim Auction With Winner Re-
broadcasts Agent Utilization Performance Curves. The av-
erage number of items each agent visits over various commu-
nication qualities in Scenario 1 (in which bids are realizations
of random variables), assuming a Bernoulli communication
model. Items are visited twice if an agent receives an award
message from the auctioneer but fails to send an acknowledg-
ment message back to the auctioneer (and so the auctioneer
also visits the item).


