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Abstract We study a search game in which two multi-

agent teams compete to find a stationary target at an

unknown location. Each team plays a mixed strategy

over the set of search sweep-patterns allowed from its

respective random starting locations. Assuming that

communication enables cooperation we find closed-form

expressions for the probability of winning the game as

a function of team sizes and the existence or absence of

communication within each team. Assuming the target

is distributed uniformly at random, an optimal mixed

strategy equalizes the expected first-visit time to all

points within the search space. The benefits of commu-

nication enabled cooperation increase with team size.

Simulations and experiments agree well with analytical

results.
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1 Introduction

We consider the problem of team-vs.-team competitive

search, in which two teams of autonomous agents com-

pete to find a stationary target at an unknown location.

The game is won by the team of the first agent to lo-

cate the target. We are particularly interested in how

coordination within each team affects the outcome of

the game. We assume that intra-team communication

is a prerequisite for coordination, and examine how the

expected outcome of the game changes if one or both

of the teams lack the ability to communicate—and thus

coordination.

This game models, e.g., an adversarial scenario in

which we are searching for a pilot that has crashed in

disputed territory, and we want to find the pilot be-

fore the adversary does (see Figure 1). Both we and

the adversary have multiple autonomous aircraft ran-

domly located throughout the environment to aid in

our respective searches (e.g., that were performing un-

related missions prior to the crash), but neither agents

nor adversaries have formulated a plan a priori. In this

paper we answer the questions: How does team size af-

fect game outcome? How beneficial is communication?

What is an optimal search strategy?

Related work is discussed in Section 2. Nomencla-

ture, a formal statement of assumptions, and the for-

mal game definition appear in Section 3. In Section 4

we derive a closed-form expression for the expected out-

come of an “ideal game” in which both teams search at

the maximum rate for the entire game. A mixed Nash

target

sweep sensor

space searched by team 1

space searched by team 2

Fig. 1: Four agents (dark blue) compete against three ad-
versaries (light red) to locate a target (black point). Com-
munication enables members of the same team to cooperate
(e.g., blue team), lack of communication prohibits coopera-
tion (e.g., red team). The sweep sensors are, by definition,
infinitesimally thin in the direction of travel.
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equilibrium exists at the point that each team random-

izes their distributed searches such that all points are

swept at the same expected time. In Section 5 we in-

vestigate a game played on S1 and show that it is ideal.

In general, the ideal version of the game provides a use-

ful model that allows us to evaluate how coordination

affects game outcome, but is impossible to realize in

many environments due to a number of boundary con-

ditions. In Section 6 we extend our results by bounding

the performance of non-ideal cases in subsets of RD and

in TD. We find that non-ideal games become asymptot-

ically close to ideal as the size of the environment in-

creases toward infinity. Supporting simulations and ex-

perimental results appear in Section 7; discussion and

conclusions appear in Sections 8 and 9, respectively.

2 Related Work

The target search problem was formalized at least as

early as 1956 by Koopman (1956), who studied aircraft

detection of naval vessels in a probabilistic framework.

Variations of the problem have been studied in many

different communities, resulting in a vast body of re-

lated work. Indeed, even the subset of related work in-

volving multi-agent teams is too large to cover here. Ex-

tensive surveys of different formulations and approaches

can be found in Chung et al. (2011), Waharte and Trigoni

(2010), and Dias et al. (2006). Previous work on target

search ranges from the purely theoretical to the applied,

and has used tools across a variety of fields includ-

ing: differential equations (Mangel, 1989), graph the-

ory (Trummel and Weisinger, 1986), game theory (Sujit

and Ghose, 2004), numerical methods (Bertuccelli and

How, 2005; Forsmo et al., 2013), control theory (Flint

et al., 2002; Hu et al., 2013), heuristic search (Sato

and Royset, 2010), economics (Chandler and Pachter,

2001; Dias, 2004), and biology (Kim et al., 2013; Sydney

et al., 2015).

One difference between the current paper and pre-

vious work is the scenario that we consider. We assume

that an adversarial relationship exists between two dif-

ferent teams of searchers that compete to locate the

same target. In contrast, in cooperative search a single

team of agents tries to locate one or more targets (Vin-

cent and Rubin, 2004; Beard and McLain, 2003) that

may be stationary (Hu et al., 2013) or moving (Kim

et al., 2013), and a key assumption is that all searchers

cooperate with each other.

Pursuit-evasion games assume a different but re-

lated scenario in which one agent/team actively tries

to avoid capture by another agent/team (Vidal et al.,

2002; Gerkey et al., 2005; Noori and Isler, 2013; Kwak

and Kim, 2014), leading to an adversarial relationship

between the searchers(s) and the target(s). Capture the

flag (Huang et al., 2015) assumes that one team is at-

tempting to steal a target that is guarded by the other

team. Our scenario differs from both pursuit-evasion

and capture the flag in that the adversarial relation-

ship is between two different teams of searchers, each

individually performing cooperative search for the same

target.

Although we consider the general case of the com-

petitive target search game played in subsets of RD, we

also analyze a special 1-dimensional case in the 1-sphere

S1. Our analysis of the game in S1 shares similarities

with linear search (Demaine et al., 2006), and cow path

problems (Zhu and Frazzoli, 2012; Spieser and Frazzoli,

2012). Differences include our extensions to higher di-

mensional spaces, and that (Demaine et al., 2006) con-

siders an infinite search domain, while we consider a fi-

nite search domain. Our higher dimensional extensions

build on coverage methods that use lawn-mower sweep

patterns (Choset and Pignon, 1998). Our world model

shares many of the same assumptions as Choset and

Pignon (1998); in particular, an initial uniform prior

distribution over target location and perfect sensors.

Using sweep patterns for single agent coverage is stud-

ied by Choset and Pignon (1998), while Vincent and

Rubin (2004) extends these ideas to a single multi-agent

team searching for a moving and possibly evading tar-

get. Spires and Goldsmith (1998) use the idea of space

filling curves to reduce the 2D search problem to a 1D

problem.

Our work explicitly considers how each team’s abil-

ity to communicate affects the expected outcome of

the search game. This allows us to analyze scenarios in

which teams have asymmetric communication abilities.

A number of previous methods have considered limited

communication, but have done so in different ways than

those explored here. For example, robots were required

to move such that a communication link could be main-

tained (Beard and McLain, 2003), and/or the ability to

communicate between agents was assumed to be de-

pendent on distance (Sujit and Ghose, 2009; Hu et al.,

2013), limited by bandwidth (Flint et al., 2002), ad-

versaries (Bhattacharya et al., 2016), other constraints

(Hollinger et al., 2015), or impossible (Feinerman et al.,

2012).

A preliminary version of this work appeared as a

conference paper at the International Workshop on the

Algorithmic Foundations of Robotics (WAFR) in 2016

(Otte et al., 2016), and as non-archival supplementary

material submitted along with that work. The current

paper improves on the archival conference version by

including:



Competitive Target Search with Multi-Agent Teams: Symmetric and Asymmetric Communication Constraints 3

– A formal analysis of non-ideal cases in subsets of

Euclidean space RD and toroid spaces TD and prov-

ing that such games approach the ideal case, in the

limit, as the size of the environment increases with-

out bound.

– An in-depth consideration of the special S1 case that

facilitates visualization of the space of mixed strate-

gies and provides intuition.

– Analysis of the the non-ideal effects of different sweep-

sensor shape in D > 2 dimensional space.

3 Preliminaries

The search space is denoted X. The multi-agent team is

denoted G, the adversary team is denoted A, and an ar-

bitrary team is denoted T , i.e., T ∈ {G,A}. There are

n = |G| agents in the multi-agent team, and m = |A|
adversaries in the adversary team. The i-th agent is de-

noted gi and the j-th adversary aj , where i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. Both teams search for the same

target q. Agents, adversaries, and target are idealized as

points, and we abuse our notation by allowing them to

indicate their locations in the search space, gi, aj , q ∈ X.

The term ‘actor’ is used to describe a member of

the set G ∪A. The state space

S = X ×Θ

of a single actor includes position X and directional

heading Θ. Let Sgi represent the state space of the i-th

agent. The product state space of the team is

SG = S1 × . . .× Sn.

A particular configuration of the team is denoted sG,

where

sG ∈ SG.

Similarly, for the adversary

sA ∈ SA = S1 × . . .× Sm.

It is convenient to define the product space of locations

for each team. Formally,

g=(g1, . . . , gn)∈ XG=X1× . . .×Xn

and

a=(a1, . . . , am)∈ XA=X1× . . .×Xm

where we continue our abuse of notation that actors

denote their own locations.

We use the subscript ‘0’ to denote a starting value.

For example, the starting location of gi is gi,0 and the

starting configuration of the team is g0.

3.1 Assumptions

In general, we consider X ⊂ RD a convex subset of

D-dimensional Euclidean space, where D ≥ 2 and X

is bounded. We also consider the D-dimensional torus

X = TD, and the special case when the space is a 1-

dimensional sphere, X = S1. When X ⊂ RD we as-

sume it is “well behaved” such that it is convex, and

has a boundary ∂X that can be decomposed into a fi-

nite number of locally Lipschitz continuous pieces. Our

general formulation assumes X is a continuous1 space.

The target is assumed to be stationary. Let DX be

the probability density function for a uniform distribu-

tion over X. Agents, adversaries, and targets are ide-

alized as points and have initial locations drawn ac-

cording to DX . We will usually assume that this sam-

pling is independent and identically distributed (i.i.d.),

DX = DX,iid, and it will be clear from context when we

use an alternative assumption.

The Lebesgue measure2 in a D-dimensional space

is denoted LD(·). Let ΩX and ΩS be the smallest σ-

algebras over X and S, respectively. The (extension of)

the Lebesgue measure in ΩS is LΩS
(·). It follows from

our assumptions that:

P(X̂) =

∫
X̂

DX(x) =
LD(X̂)

LD(X)

and

P(Ŝ) =
LΩS

(Ŝ)

LΩS
(S)

for all measurable subspaces X̂ ⊂ X and Ŝ ⊂ S, re-

spectively, where P (·) denotes the probability measure,

and the integrals are Lebesgue. The probability spaces

over starting locations and starting states are defined

(X,ΩX ,P) and (S,ΩS ,P), respectively.

We assume agents and adversaries use sweep sensors

with perfect accuracy (see Figure 2). A sweep sensor

in RD has an infinitesimally thin footprint defined by

a subset of a (D−1)-dimensional hyperplane oriented

perpendicular to the the direction of travel. We denote

the sensor footprint Br, where r refers to the radius

of the smallest (D−1)-ball that contains the footprint,

see Figure 2. Although LD(Br) = 0, e.g., the volume

of a 2-dimensional disc is 0 in R3, the target is detected

as the sensor footprint sweeps past it. We assume X is

“large” in the sense that the minimum diameter of X

1A discrete formulation can easily be obtained by replac-
ing Lebesgue integrals over continuous spaces with summa-
tions over discrete sets, and reasoning about the probability
of events directly instead of via probability density.

2Note that in TD this is technically the push-forward ex-
tension of the Lebesgue measure that one would naturally
assume.
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Sweeping in R2 Sweeping in R3

Path in R2 Path in R3

1-D sensor footprint in R2 2-D sensor footprint in R3

2-D swept volume in R2 3-D swept volume in R3

t0

ta

tb

t0 ta tb

r r

Fig. 2: Examples of sweep sensing in R2 (Left) and R3 (Right)
for three different times t0 < ta < tb. In R2 the sweep sensor
footprint is a 1-D line segment oriented perpendicular to the
direction of travel, in R3 it is a 2-D patch oriented perpen-
dicular to the direction of travel. Swept volume increases as
the robot moves forward.

is much greater than (“�”) r. In “large” search spaces

the sweep sensor provides a reasonable idealization of

any sensor with finite observation volume3.

We assume that agents and adversaries cannot de-

tect the opposite team or physically interact with each

other. This is a reasonable model when the environment

is large such that chance encounters are unlikely. Actors

are ignorant of their own teammates’ locations a priori

(for example, as if all actors are performing their own

individual missions when the search scenario unexpect-

edly develops). Actors are assumed to sweep at a con-

stant forward velocity v, where 0 < v <∞, and to have

infinite rotational acceleration so that they are able to

change direction instantaneously. Each actor may only

change direction at most a countably infinite number of

times4. We assume that each team is rational and will

eventually sweep the entire space.

3.2 Paths, Multipaths, and Spaces

Let ρ denote a single actor’s search path, ρ ∈ S. Let

B(s) denote the set of points in X swept by that ac-

tor’s sensor when the actor is at a particular point

s ∈ ρ. The set of points swept by an actor traversing

3Note that even for sensors with positive measure foot-
prints, 0 < LD−1(Br) <∞ (e.g., a D-ball instead of a (D−1)-
ball) nearly all space is searched as the forward boundary of a
sensor volume sweeps over it (in contrast to the space that is
searched instantaneously at startup due to being within some
agent’s sensor volume).

4This prevents “cheating” where an agent that contin-
uously rotates through an uncountably infinite number of
points is able to use its zero-measure sweep sensor as if it
were a volumetric sensor of non-zero-measure (the measure
of a countably infinite union of sweep footprints is still 0).

path ρ is therefore
⋃
s∈ρB(s). A space covering path is

denoted ρ̂ and has the property that its traversal will

cause all points in the search space to be swept, i.e.,

X ⊂
⋃
s∈ρ̂B(s).

A search multipath ψG is a set of paths containing

one path ρi per agent in the team G,

ψG =
⋃
gi∈G
{ρi}.

Let ψ̂G denote a space covering search multipath. One

traversal of ψ̂G by the members of G sweeps all points

in the search space, ⋃
s∈sG∈ψ̂G

B(s) ⊂ X.

Similarly quantities are defined for the adversary:

ψA =
⋃
aj∈A
{ρj}

⋃
s∈sA∈ψ̂A

B(s) ⊂ X.

Let ΨG (and ΨA) denote the space of all possible search

multipaths given a team’s state space SG (and adver-

sary’s state space SA). Formally,

ΨG =
⋃
{ψ | SG}

and

ΨA =
⋃
{ψ | SA}.

3.3 Communication and Coordination Models

The function C : {G,A} → {0, 1} denotes the communi-

cation ability of a team. Communication within a par-

ticular team T is either assumed to be perfect C(T ) = 1

or nonexistent C(T ) = 0. That is, team members can ei-

ther communicate always or never. Communication en-

ables coordination, which allows the team to find a tar-

get more quickly in expectation. When C(T ) = 1, the

members of T attempt to equally divide the effort of

searching X such that each x ∈ X is swept by exactly

one agent and each agent travels an equal distance. We

investigate the 2 by 2 space of game scenarios this al-

lows, C(G)× C(A) = {0, 1} × {0, 1}.
In a (not always realizable) case of perfect coordina-

tion, team members equally divide the effort of search-

ing X such that each x ∈ X is swept by exactly one

agent and each agent travels an equal distance.

When X = S1 perfect coordination is only possi-

ble if agents begin the game equally spaced around S1,

which is an event with measure 0 if g0 is drawn accord-

ing to DX,iid.
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In order to investigate perfect coordination when

X = S1 we investigate a variation of the competitive

search game in which the starting configuration of a

communicating team is still drawn uniformly at ran-

dom but constrained such that its members’ starting

locations are equally spaced (fanned-out) around S1.

That is, the initial locations within a particular com-

municating team T are not i.i.d. (because there must

be L1(X)/|T | distance between nearby members), but

they are distributed uniformly random over S1. In this

case, we say that agent locations are drawn according

to the distribution function DX,fan.

Drawing start locations from DX,fan closely approx-

imates “real” behavior when traveling to a particular

point in the environment takes much less time than

searching the entire environment.

3.4 Two-Team Target Search Game: General

Formulation

Given our assumptions, the first team to sweep the tar-

get’s location wins the game. The family of competitive

two-team target search games we consider is defined as

follows:

Given a search space X, a stationary target q ∈ X,

a multi-agent team G = {g1, . . . , gn}, and an adversary

team A = {a1, . . . , am}; with initial locations drawn i.i.d.

from DX(q), DX(gi,0), and DX(gi,0), respectively; com-

munication C(G), C(A) ∈ {0, 1}; and chosen movement

along multipaths ψG ⊂ X and ψA ⊂ X; then team G

wins iff q ∈ B(gi) for some gi ∈ sG ∈ ψG before q ∈ B(aj)

for some aj ∈ sA ∈ ψa.

3.5 Game Outcomes, Multipath Spaces, and Strategies

Let Ωoutcome = {ωlose, ωwin, ωtie} denote the space of

game outcomes, where ωwin is the event that a mem-

ber of team G finds the target first, ωlose denotes the

event that an adversary finds the target first, and ωtie

denotes a tie. Given our formulation within a continu-

ous space, ties are a measure 0 set, P (ωtie) = 0, that

can be ignored for the purposes of analyzing expected

performance. In discrete space one could break ties in

a number of ways, e.g., by randomly selecting the actor

that finds the target first.

Strategies are equivalent to multipaths—any valid

multipath ψG that starts at g0 is a particular search

strategy for team G. Let Ψ denote the space of all

strategies. Let ΨG be a function that maps starting

configurations g0 to the subset of all valid strategies

for G that begin at g0. Let Ω denote the (smallest)

σ-algebra over Ψ . Formally, ΨG : SG → Ω. The subset

of all valid strategies available to G given g0 is thus

denoted ΨG(g0), where ΨG(g0) ⊂ Ψ .

A conditional mixed strategy is both: (1) conditioned

on the event that team G starts at a particular g0, and

(2) mixed such that the particular strategy ψG ∈ ΨG(g0)

used by team G is drawn at random from ΨG(g0) ac-

cording to a chosen probability density Dg0
(ψG). By

designing Dg0
(ψG) appropriately, it is possible for team

G to play any valid conditional mixed strategy given g0.

Given Dg0(ψG), a probability measure function Pg0

can be constructed such that
∫
ΨG(g0)

Dg0
(ψG) = 1 and

such that for all subsets Ψ̂ ⊂ ΨG(g0) we have

Pg0(ψG ∈ Ψ̂) =

∫
Ψ̂

Dg0(ψG).

A particular conditional mixed strategy (conditioned

on g0 ∈ SG) is thus a probability space that can be

represented by the triple (ΨG(g0), ΩG(g0),Pg0
), where

ΩG(g0) is the (smallest) σ-algebra over ΨG(g0).

A mixed strategy (ΨG, ΩG,PG) is the set of condi-

tional mixed strategies over all g0 ∈ SG, where

ΩG =
⋃

g0∈SG

ΩG(g0)

and

PG(ψ |g0) = Pg0(ψ)

for all g0 ∈ SG. Note that a mixed strategy triple is not

a probability space, per se, because it does not include

the probability measure of the starting configurations

g0. That said, when a mixed strategy is combined with

such a measure, e.g., the measure implied by DX,iid, or

DX,fan, then a probability space is the result. Analogous

quantities, (ΨA, ΩA,PA) and (ΨA(a0), ΩA(a0),Pa0
), are

defined for the adversary.

Given our assumption that the two teams cannot

detect each other, one team’s mixed strategy is nec-

essarily independent of the other team’s starting loca-

tion. Let t(ψ, x) denote the earliest time at which a

team following ψ sweeps location x ∈ X. Given ψG and

ψA, and a target at q (with location unknown to either

team), team G wins if and only if t(ψG, q) < t(ψA, q).

Let Xwin(ψG, ψA) ⊂ X denote the subset of the search

space where t(ψG, x) < t(ψA, x).

Xwin(ψG, ψA) = {x ∈ X | t(ψG, x) < t(ψA, x)}.

Team G wins if and only if q ∈ Xwin. When G plays ψG
and A plays ψA, we get:

Proposition 1 Assuming the target is located uniformly

at random in X, and the starting locations for members
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of G and A are drawn uniformly at random, the proba-

bility team G wins is equal to the ratio of search space

it sweeps before the adversary,

P (ωwin|ψG, ψA) =
LD(Xwin(ψG, ψA))

LD(X)
.

The probability team G wins in a particular search

space while playing a particular adversary is calculated

by integrating Dg0(ψG) over ΨG(g0) for all g0 and inte-

grating Da0
(ψA) over ΨA(a0) for all a0. Assuming the

target and teams are distributed uniformly at random,

this is:

P (ωwin) =
1

LΩSG
(SG)

∫
SG

1

LΩSA
(SA)

∫
SA

∫
ΨG(g0)

Dg0(ψG)

∫
ΨA(a0)

Da0(ψA)
LD(Xwin(ψG, ψA))

LD(X)
.

(1)

where the Lebesgue integrals are respectively over all

g0 ∈ SG, all a0 ∈ SA, all ψG ∈ ΨG(g0) and all ψA ∈ ΨA(a0).

We use “∗” to denote quantities related to optimal-

ity. An optimal mixed strategy is defined:

(Ψ∗G, ΩG,P∗G) = arg max
((ΨG,ΩG,PG))

P (ωwin) .

For brevity we denote the expected value of ‘·’ over

all SG, SA, Ψ∗G, and Ψ∗A as E∗[·],

E∗[·] ≡ ESG,SA,Ψ∗
G,Ψ

∗
A

[·].

4 Optimal Strategies for Ideal Games

Let Xswept denote the space team G has swept (Xswept

is different from Xwin in that Xswept may include space

that has also been swept by the adversary). The instan-

taneous rate team G sweeps new space is given by:

d

dt
[LD(Xswept)].

The optimal instantaneous rate at which an agent sweeps

new space can be expressed as the agent’s velocity mul-

tiplied by the (D − 1)-dimensional hypervolume of the

sensor footprint: vLD−1(Br). Given our assumptions,

we have the following:

Proposition 2 The optimal instantaneous normalized

rate that a single agent sweeps new space is:

c∗ = v
LD−1(Br)

LD(X)
.

4.1 Both Teams Can Communicate (Ideal Case)

The optimal instantaneous normalized rate (c∗) occurs

when there is no sensor overlap between agents. Build-

ing on Proposition 2 we get:

Corollary 1 The optimal instantaneous normalized rate

that n agents can cooperatively sweep new space is:

d∗

dt
[
LD(Xswept)

LD(X)
] = nv

LD−1(Br)

LD(X)
= nc∗.

In an “ideal” cooperative search we assume that the

team can maintain the optimal rate of sweep for the en-

tire duration of search. The time required for an ideal

search with n agents is tn,sweep = 1/(nc∗). The game is

guaranteed to end by time tfinal = min(tn,sweep, tm,sweep)

(i.e., for any realization of random start and target lo-

cations).

We assume both teams play a mixed strategy de-

fined by a probability distribution over members of a set

of strategies. We observe that any bias or predictability

by a particular team (e.g., a mixed strategy that leads

to a subset of the environment being swept sooner or

later in expectation, over all possible starting locations)

could be exploited by the opposing team. This obser-

vation leads to the following proposition.

Proposition 3 A mixed strategy that causes some por-

tion of the environment to be swept sooner or later, in

expectation, over the set of all strategies and distribu-

tions of agent and adversary starting locations is a sub-

optimal strategy.

As a corollary of proposition 3 we have the following:

Corollary 2 If an optimal ideal mixed strategy (Ψ∗G, ΩG,P∗G)

exists for a team G, then in that strategy the first sweep

time for any point x ∈ X is distributed uniformly at

random between 0 and tn,sweep (over the space of all

possible starting configurations).

We note that even if our assumption of uniform and

i.i.d. starting locations were dropped, then an ideal

strategy can still be achieved as long as the conditions

in Corollary 2 are met.

In an ideal game each team plays an optimal mixed

strategy over a set of ideal search strategies. (As we will

show later, this becomes possible, in the limit, as the

size of the environment increases). The following is true

by the definition of a Nash equilibrium:

Proposition 4 Assuming optimal ideal strategies ex-

ist for both teams, and the members of each team are

able to communicate, a mixed strategy Nash equilibrium

exists when both teams play an optimal mixed strategy.
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At such a Nash equilibrium, the first sweep time of any

point x by one team is completely decorrelated from

the first sweep time of x by the other team (over the

space of all possible actor starting locations).

Let Xnew(t) be the space that has not yet been

swept by either team by time t, and d
dt [

LD(Xnew(t))
LD(X) ] be

the instantaneous normalized rate team G sweeps this

unswept space at time t.

In an ideal game this rate is constant, and integrat-

ing over time yields the probability of winning an ideal

game in which both teams play optimal mixed strate-

gies.

P (ω∗win) =

∫ tfinal

0

E∗
[
d

dt

LD(Xnew(t))

LD(X)

]
dt (2)

Details of the derivation of Equation 2 can be found in

Appendix A. An expression for the necessary expected

value is also derived in Appendix A, and presented in

the following Lemma 1.

Lemma 1 Assuming optimal ideal mixed strategies ex-

ist and both teams play an optimal ideal mixed strategy,

E∗
[
d

dt

LD(Xnew(t))

LD(X)

]
= (1− tmc∗)nc∗.

The full proof of Lemma 1 appears in Appendix A.

In other words, team G covers new territory at a

rate that decreases, in expectation, proportionally to

the proportion of space the adversary has covered up

to time t. Substituting this result back into the previous

equations and noting that tfinal = 1/(c∗max(n,m)):

P (ω∗win) =

∫ 1/(c∗ max(n,m))

0

(1− tmc∗)nc∗ dt.

Solving this equation yields the following corollary.

Corollary 3 The probability team G wins an ideal game

assuming both G and A are able to communicate and

play optimal ideal mixed strategies is

P (ω∗win) =

{
n/(2m) when n ≤ m
1−m/(2n) when n ≥ m

.

4.2 Case 2: The Multi-Agent Team G Cannot

Communicate but the Adversary Team A Can (Ideal

Case)

The starting location of each agent on team G is sam-

pled i.i.d. and uniformly at random. Therefore, a game

in which team G cannot communicate but the adver-

sary team A can communicate is equivalent to a situa-

tion in which the adversary team A plays n sub-games,

one vs. each single-agent sub-team {gi} ⊂ G. The ad-

versary team A wins the overall game if and only if it

wins each of the n sub-games. For the adversary to win

the overall game, some a ∈ A must sweep the target

before each {gi} ⊂ G. That said, we can restrict our fo-

cus to the particular adversary aj ∈ A that sweeps the

target before all other adversaries ak 6=j ∈ A. Assuming

A plays an optimal ideal strategy, then:

– Each aj ∈ A sweeps only 1/m of the space.

– All aj ∈ A sweep mutually disjoint subsets of space.

– The total time required for A to collectively sweep

the entire space is 1/(mc∗).

– Only a single adversary will sweep the target.

Combining these facts with uniformly random sampling

of starting locations and target locations leads to the

following theorem (see Appendix B for details):

Theorem 1 The probability team G wins an ideal game,

assuming team G cannot communicate but the adver-

sary team A can communicate, and the adversary team

A plays optimal ideal mixed strategies, while each {gi} ⊂ G
plays an optimal ideal single agent mixed strategy, is:

P (ω∗win) =

(
1− 1

m

)n
(m− 1)−m+ n+ 1

n+ 1

The full proof of Theorem 1 appears in Appendix B.

4.3 Case 3: Team G Can Communicate but the

Adversary Team A Cannot (Ideal Case)

This case is complementary to the previous one, due to

symmetry and the fact that P (ω∗tie) = 0. We swap n

and m and also ωlose and ωwin from the results in the

previous section to get:

Corollary 4 The probability team G wins an ideal game,

assuming team G can communicate but the adversary

team A cannot, and team G plays an optimal ideal

mixed strategy, while each of the adversary team’s indi-

vidual uncoordinated sub-teams {aj} ⊂ A for 1 ≤ j ≤ m
plays an optimal ideal mixed strategy, is:

P (ω∗win) = 1−
(
1− 1

n

)m
(n− 1)− n+m+ 1

m+ 1

We also note that P (ω∗lose) = 1− P (ω∗win) .

4.4 Case 4: Neither Team Can Communicate (Ideal

Case)

The case when neither team has communication must

be analyzed separately, but is somewhat trivial.
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Theorem 2 The probability team G wins an ideal game,

assuming no team can communicate but all actors in-

dividually play an optimal ideal mixed strategy, is:

P (ω∗win) =
n

n+m
P (ω∗lose) =

m

n+m
.

Proof Our assumption of uniformly random i.i.d. start-

ing locations of actors and target, combined with the

fact that optimal mixed strategies decorrelated the ex-

pected sweep time of any particular point x, means

that, in expectation, each actor has a 1/(n+m) chance

of being the agent with the least amount of travel (i.e.,

time) required to sweep q. The probability that team G

finds the target before A can be calculated as the ratio

of agents to total actors. ut

5 Competitive Target Search in X = S1

We now apply the general results derived in Section 4

to a simple family of competitive target search games

played on the 1-dimensional sphere. We design the game

such that teams with communication are able to coor-

dinate their starting locations by drawing them from

DX,fan (teams that cannot communicate use DX,iid).

Start location coordination was not considered in the

previous section, but is a practical necessity in X = S1

due to the topological constraint that moving from one

location to another requires passing through all points

between them5. This game is a reasonable model for

scenarios in which searching space requires significantly

more time than moving through it. It also allows us to

visualize all possible game outcomes as a function of

starting locations, which is useful for building intuition.

Formally, the game we consider in this section is defined

as follows:

Given a search space X = S1, a stationary tar-

get q ∈ X drawn from DX(q) = DX,iid(x), and a multi-

agent team G = {g1, . . . , gn} with communication

C(G) ∈ {0, 1} and initial location drawn from

DX(gi,0) =

{
DX,iid(x) if C(G) = 0

DX,fan(x) if C(G) = 1

5This formulation is chosen because we are interested in
scenarios where communication provides a significant coordi-
nation advantage. The topological constraints of S1 signifi-
cantly penalize an in-game redistribution from an initial i.i.d.
space to an even spacing (that would otherwise be expected
to facilitate maximum coordinated search). Although we do
not explore it in this paper, an alternative game formulation
in X = S1 would be to have all teams draw their start loca-
tions from DX,fan, regardless of their ability to communicate.
In such a case, teams with communication can coordinate by
having all members search in the directions expected to be
most advantageous given their start locations.

and resulting movement chosen along multipath ψG ⊂ X,

and an adversarial team A = {a1, . . . , am} with commu-

nication C(A) ∈ {0, 1} and initial location drawn from

DX(aj,0) =

{
DX,iid(x) if C(A) = 0

DX,fan(x) if C(A) = 1

and resulting movement chosen along multipath ψA ⊂ X;

team G if q ∈ B(gi) for some gi ∈ sG ∈ ψG before q ∈ B(aj)

for some aj ∈ sA ∈ ψa, and otherwise the adversary team

A wins.

The symmetry of S1 combined with the uniformly

random positioning of actors and target means that

there is an equivalence between strategies such that,

with an abuse of notation:

ΨG(g0 + x) = ΨG(g0) + x. (3)

In other words, the set of possible strategies for a team

starting at g0 is identical to the set starting at g0 + x,

except that each component of the multipath is trans-

lated by x. Given any optimal conditional mixed strat-

egy (Ψ∗G(g0), ΩG(g0),P∗g0
) for some g0, we can con-

struct an optimal conditional mixed strategy

(Ψ∗G(g0 + x), ΩG(g0 + x),P∗g0+x) for any g0 + x as:

D∗g0+x(ψG) = D∗g0
(ψG + x). (4)

Similarly, given any (Ψ∗A(a0), ΩA(a0),P∗a0
) for some a0,

the adversary’s (Ψ∗A(a0 + x), ΩA(a0 + x),P∗a0+x) can be

constructed for any a0 + x as:

D∗a0+x(ψA) = D∗a0
(ψA + x). (5)

Each actor may either move in the forward or back-

ward direction around S1. Given our formulation and

assumptions there is no incentive to back-track once

an agent has started to move in a particular direction.

Thus, for any g0 we can assume Dg0
(ψG) = 0 for all ψG

that involve backtracking (and similar for adversaries).

In an uncoordinated team, each agent independently

chooses to move forward or backward. Each agent is ig-

norant of its teammates starting locations, and so it

must travel around the entire space to guarantee that

all of S1 is swept. This yields two useful paths (sub-

strategies) for each agent. Let ρ+
i,0 denote a path where

the i-th agent starts at gi,0 then moves in the positive

direction around S1 until it again reaches gi,0. Let ρ−i,0
denote the opposite path, where the i-th agent starts at

gi,0 and then moves in the reverse direction until again

reaching gi,0. All strategies for the team have the form⋃
gi∈G{ρi ∈ {ρ

+
i,0 , ρ

−
i,0}} and so the strategy space for

an uncoordinated team starting at g0 is thus:

Ψun
G (g0) =

ψG |ψG =
⋃
gi∈G
{ρi,0 ∈ {ρ+

i,0 , ρ
−
i,0}}

 .
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Ideal coordination allows a team to divide the work

such that each agent only needs to cover 1/n of S1.

All agents start equally spaced around S1 and move in

the same direction (either forward or backward). Given

g0, the strategy space Ψ co
G (g0) available to the team

contains two strategies:

Ψ co
G (g0) = {ψ+

G(g0), ψ−G(g0)}

where L = L1(S1), and ψ+
G(g0) is the strategy where all

agents move forward by distance L/n and ψ−G(g0) is the

strategy where all agents move backward by distance

L/n.

The adversary has uncoordinated Ψun
A (a0) and co-

ordinated Ψ co
A (a0) strategy sets that are analogous to

Ψun
G (g0) and Ψ co

G (g0), respectively.

5.1 Case 1: Both Teams Can Communicate

The communication model is C(G)× C(A) = 1× 1 and

the initial placement of agent and adversaries are drawn

according to the distributions DX(gi,0) = DX,fan(gi,0)

and DX(aj,0) = DX,fan(aj,0), respectively. The sets of

strategies available to the agent and adversary are Ψ co
G (g0)

and Ψ co
A (a0). Both team G and the adversary team A

are able to coordinate and distribute evenly (but at

random offset) around S1.

For any particular combination of g0 and a0 there

are only two strategies we need to consider for each

team: (1) all agents move forward, (2) all agents move

backward. Their combination defines a 2 by 2 space of

game possibilities,

Ψ co
G (g0)× Ψ co

A (a0) = {ψ+
G(g0), ψ−G(g0)} × {ψ+

A(a0), ψ−A(a0)}.

Equation 1 simplifies to:

P (ωwin) =
1

LΩSG
(SG)LΩSA

(SA)

∫
SG

∫
SA

∑
ψG∈Ψco

G (g0)

∑
ψA∈Ψco

A (a0)

Dg0(ψG)Da0(ψA)
LD(Xwin(ψG, ψA))

LD(X)

The symmetry of mixed strategies vs. S1 (equations 3-5)

means that the potential benefits of using either ψ+
G(g0)

(moving forward) or ψ−G(g0) (moving backward) are in-

dependent of g0. An optimal strategy exists such that

for all g0 and a0:

Dg0
(ψ+
G(g0)) = cG,+ = D∗(ψ+

G)

Dg0
(ψ−G(g0)) = cG,− = D∗(ψ−G)

for constants cG,+ and cG,−. Similarly:

Da0(ψ+
A(a0)) = cA,+ = D∗(ψ+

A)

Da0(ψ−A(a0)) = cA,− = D∗(ψ−A)

for constants cA,+ and cA,− for the adversary. This,

combined with the fact that the integral is Lebesgue,

and Tonelli’s Theorem (and the fact that all quantities

are finite and nonnegative) allows us to reorganize our

equation for P (ωwin) as follows:

P (ωwin) =
∑

ψG∈{ψ+
G,ψ

−
G}

∑
ψA∈{ψ+

A,ψ
−
A}

D∗(ψG)D∗(ψA)

LΩSG
(SG)LΩSA

(SA)

∫
g0∈S

∫
a0∈S

LD(Xwin(ψG, ψA))

LD(X)

From this point on the analysis is most naturally

accomplished by considering the expected outcome of a

smaller team vs. a larger or equal sized team. In general,

either G or A may be the smaller team. However, our

derivation assumes that G is the smaller team – with

the understanding that the two team’s quantities can

be swapped to calculate the reverse situation. (Using

Tonelli’s Theorem, and the fact that all quantities are

finite and nonnegative, the integrals can be arranged

such that the larger team’s integral is on the outside).

The rotational symmetry of S1 allows us to shift the

coordinate system such that the first adversary starts at

the origin, without loss of generality. We also rescale the

problem such that LD(X) = 1, without loss of general-

ity. All actors are identical, thus we relabel adversaries

2 through m such that adversaries a1, a2, a3, . . . , am
start at 0, 1/m, 2/m, . . . , (m − 1)/m, and the location

0 = 1. Similarly, we can relabel agents g1, . . . gn such

that agents are spaced 1/k distance one after the other

around S1. Note that g1 is located anywhere on (0, 1]

with equal probability given the sampling distribution

DX,fan. On S1 there are two possible orientations for

each agent (forward and backward), but initial orien-

tation has no bearing on the strategies available to

each agent given the movement model we are assum-

ing. Therefore, the problem is equivalent to a lower di-

mensional projection that: (1) ignores rotational com-

ponents of S, (2) ignores different permutations of agent
and adversary order within S, and (3) assumes a fixed

adversary starting location in which the first adversary

starts at the origin:

P (ωwin) =
∑
ψG∈{ψ+

G,ψ
−
G}

∑
ψA∈{ψ+

A,ψ
−
A}
D∗(ψG)D∗(ψA)

∫
g1∈X LD(Xwin(ψG, ψA)).

We now derive closed-form solutions for each of the

integrals that appear in the four terms of this equation.

Each term represents a different combination of teams

deciding to move forward or backward around S1.

Given any g1 and ψG ∈ {ψ+
G, ψ

−
G} and ψA ∈ {ψ+

A , ψ
−
A},

it is possible to evaluate LD(Xwin(ψG, ψA)). For any

particular n, m, ψG, and ψA it is possible to draw

an outcome diagram showing how LD(Xwin(ψG, ψA))

changes over any possible g1 ∈ X, an example for the

scenario where n = 3 and m = 5 appears in Figure 4.

Note that, due to reflective symmetry of S1 we can re-

duce our consideration to two cases: (1) both teams

move in the same direction and (2) the two teams move

in opposite directions. For either case, the distribution
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a1

a2

a3

a4

a5

g1

g2

g3

S1

adversary start locations

agent start locations

space adversary visits first

space agent visits first

xg0

xg0

(A) (B) (C)

(D) (E)

a1

a2

a3

a4

a5

g1

g2

g3

S1

S1

a1 a2 a3 a4 a5 a1g1 g2 g3

Fig. 3: Two teams, consisting of
3 agents (blue) and 5 adversaries
(red), each start equally spaced
around S1 (A). The relative offset
between the two teams (first ac-
tors) is xg0 . Assuming the adver-
sary moves in the positive direc-
tion around S1, (B) and (C) depict
the cases where team G moves in
the positive and negative direction
around S1, respectively. Territory
visited first by agents/adversaries
shaded blue/red, respectively. (D)
and (E) show the same scenarios
as (B) and (C), respectively, but
S1 is illustrated as a line segment
instead of a circle.

G and A move in the same direction G and A move in opposite directions

A G A G

adversary start locations vs. different xg0

agent start locations vs. different xg0

space adversaries visits first

space agents visits first

game instance from Fig. 3

agent starts from Fig. 3

adversary starts from Fig. 3

xg0

L

0
0 LL

m
2L
m

3L
m

4L
m

0 L
m

2L
m

3L
m

4L
m

L

L

0

Fig. 4: Territory visited first (by agents/adversaries shaded blue/red, respectively) over the full space of ideal games that can
be played between 3 agents and 5 adversaries, assuming both teams play an optimal strategy and the adversary moves in
the positive direction around S1. Left and Right depict the cases where team G moves in the positive and negative direction
around S1, respectively. Each point along the vertical axis represents a different relative offset between the two teams (first
actors), i.e., xg0 = g1 − a1. For example, the case depicted in detail in Figure 3 is illustrated by the dashed black line. Red and
blue lines show the starting locations of each actor vs. xg0 .

of first-reached territory changes vs. the relative offset

between the two teams, which is equivalent to g1.

Figure 3-B,D and Figure 4-Left depict the case where

both teams move in the same direction. The territory

that will be captured by any particular actor from the

smaller team slowly decreases as its starting position

approaches that of a member of the larger team. This

will always create nm triangles in our outcome space

(Figure 4-Left), each with an area of 1/(2m2). Thus,∫
g1∈X LD(Xwin(ψ+

G, ψ
+
A)) =

∫
g1∈X LD(Xwin(ψ−G , ψ

−
A)) = n

2m .

Similar analysis can be conducted for the case where

the teams move in the opposite direction (Figure 3-

C,E and Figure 4-Right). The division of territory is

slightly more complex since a particular agent of the

smaller team will take all territory between it and the

midpoint between it and the approaching adversary’s

initial location, and possibly some territory beyond the

first adversary — i.e., up to the point where it meets

the next adversary. In Figure 4-Right the midpoints are

represented by black dotted lines that appear on the

boundary of the red and blue regions. This also creates

triangular shaped regions that represent territory cap-

tured by the small team. Moreover, although the second

group of triangles is shaped differently from the first,

there is the same number as in the first case, and each

triangle has the same area as in the first case. Thus,∫
g1∈X

LD(Xwin(ψ+
G, ψ

−
A)) =

n

2m

and ∫
g1∈X

LD(Xwin(ψ−G , ψ
+
A)) =

n

2m
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rg1,0

g2,0

g1
g2

g1,0

g1,a
g1,b

g1

Resweep Sweep outside X Boundary

Fig. 5: Left: Two agents start within r of each other and
have search paths that immediately overlap, causing some
area to be swept by both of them (hashed). Center: Two
agents start within 2r of each other but their search pat-
terns do not immediately overlap; however, some area must
be reswept by some agent later in the search. Right: a sin-
gle robot turns near the boundary of the search space as it
moves from g1,0 → g1,a → g1,b → g1; this causes some space
to be swept multiple times (hashed) and space outside the
search space to be swept (criss-crossed).

and so

P (ωwin) =
∑

ψG∈{ψ+
G,ψ

−
G}

∑
ψA∈{ψ+

A,ψ
−
A}

D∗(ψG)D∗(ψA)
n

2m

We observe that the mixed strategy distribution that

either team chooses is inconsequential with respect to

the expected outcome of the game. That is, we can

swap probability density between cG,+ = D∗(ψ+
G) and

cG,− = D∗(ψ−G) and it still holds that P (ωwin) = n/(2m).

Combining these results with the alternative case

where A is smaller than G gives:

P (ωwin) =

{
n/(2m) when n ≤ m
1−m/(2n) when n ≥ m

and

P (ωlose) =

{
1− n/(2m) when n ≤ m
m/(2n) when n ≥ m

This implies that, for the scenario considered in this

section, an ideal optimal mixed strategy is always real-

ized for the case of perfect coordination. It also means

that the techniques used in Section 4 to extend case 1

to cases 2 and 3 (that is, assuming that the adversary

must win n sub-games played vs. a single agent team)

can also be used to extend these results to other com-

munication situations in S1. Such extensions leverage

the fact that DX,fan and DX,iid are equivalent for single

agent teams.

6 Extensions to Non-Ideal Games, TD, and

Subsets of RD

The realization of an ideal case requires that optimal

mixed strategies exist such that Equation 2 holds. This

idealization is possibly broken by:

I The startup locations of the robots.

II The environment.

III The sensor model (this only applies when D > 2).

In TD and large convex subsets of RD we are able to

bound the departure from the ideal case. We find that

for D = 2 the actual performance approaches the ideal

case prediction as the sensor radius of the robot de-

creases toward 0 (or, in an equivalent interpretation,

as the size of the environment increases without bound

relative to the sensor radius). For D > 2 a similar result

holds whenever the shape of the sensor footprint forms

a tiling over the search space.

We can bound the individual effects of I, II, and III,

respectively (i.e., assuming the others can be ignored).

The general case where I, II, and III simultaneously

occur can be found by combining these results. Full

proofs are presented in Appendix C (in Appendices C.1,

C.2, and C.3 we bound the individual effects of I, II,

and III, respectively). However, now we summarize the

major results now in the following Sections 6.1, 6.2, and

6.3, respectively.

6.1 Summary of Results Considering the Effects of

Non-Ideal Start Locations

We now summarize the major results regarding the ef-

fects of non-ideal start locations. Let tstartup be an up-

per bound on the cumulative time the team spends

performing non-ideal movement during a search. Let

t̃startup be an analogous quantity for the adversary team.

For convenience we also define

t̂final = min(tstartup +
1

nc∗
,

1

mc∗
)

and

t̃final = min(t̃startup +
1

mc∗
,

1

nc∗
).

Theorem 3 Assuming that both teams can communi-

cate, and an optimal mixed strategy exists for both teams,

and that both teams play an optimal mixed strategy, and

that the game is ideal in every sense except for starting

locations, the probability we win is bounded as follows:[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc

∗ ≤ P (ωwin)
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P (ωwin) ≤ 1−

[∫ t̃final

t̃startup

(1− tnc∗)mc∗ dt

]
− t̃startupnc

∗

The Full proof of Theorem 3 appears in Appendix C.1.

We observe that, by Theorem 3, in any TD or subset

of RD we have the following limiting behavior:

lim
r→0

tstartup

tfinal
= 0.

That is, startup effects tend to vanish, in the limit, as

sensor range shrinks toward 0. Or, in other words, rel-

ative startup inefficiencies vanish as environments get

larger vs. sensor range.

6.2 Summary of Results Considering Turns and Other

Non-Ideal Boundary Effects

In this section we present bounds derived for the case

of turns and other non-ideal boundary effects. tstartup,

t̃startup, t̂final, and t̃final have similar meanings as in Sec-

tion 6.1; however, the non-ideal effects they account for

in this subsection are related to boundary effects that

occur near the edge of the search space (see Figure 5-

Right for an example).

Theorem 4 Assuming that both teams can communi-

cate, and an optimal mixed strategy exists for both teams,

and that both teams play an optimal mixed strategy, and

that the game is ideal in every sense except for bound-

ary conditions of re-sweep and sweep outside the search

space, the probability we win is bounded as follows:[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc

∗ ≤ P (ωwin)

P (ωwin) ≤ 1−

[∫ t̃final

t̃startup

(1− tnc∗)mc∗ dt

]
− t̃startupnc

∗

The full proof of Theorem 4 is presented in Appendix C.2.

6.3 Summary of Results Considering Sensor Models

when D > 2

In more than two dimensions it is possible to have

sweep sensors that are non-tessellating (e.g., discs, see

Figure 6-Right). The rate that new territory is swept

depends on how much overlap is required with previ-

ous search passes. A detailed explanation is provided

in Appendix C.3; but as a result, the sweep rate c∗ in

Equation 2 can no longer be assumed constant, and will

y

x

y

x
z

Fig. 6: Square and hexagonal sensors allow a tiling when pro-
jected along the axis of travel (along z) to the plane at z = 0,
Left and Center. Discs do not permit a tiling (Right).

change up to a finite6 number of times K, where K is

a function of the geometries of the sensor footprint and

the search space and the numbers of agents and adver-

saries.

We break our analysis into K different intervals de-

pending on the number of times that either team changes

their sweep rate (changes happen whenever either team

exhausts the amount of space that it can sweep at a par-

ticular rate). Let the k-th time interval starts at time tk
and end at time tk+1. By the beginning of the k-th time

interval the adversary has already swept Fk proportion

of the total search space. During the k-th interval the

rate team G sweeps new (for us) territory is determined

by ncG,k and the rate the adversary sweeps new (for

them) territory is determined by mcA,k.

The total fraction of area that has been swept by

the adversary prior to the start of the k-th interval is

given by

Fk = 1−
K−1∑
k=1

∫ tk+1

tk

tmcA,k dt

As a corollary of Lemma 1 we get:

Corollary 5 the probability we win, assuming an opti-

mal mixed strategy exists for both teams, and both teams

play an optimal mixed strategy, when both teams com-

municate, and the game is ideal except for sensor foot-

print is

P (ωwin) =

K−1∑
k=1

∫ tk+1

tk

(Fk − tmcA,k)ncG,k dt.

6To guarantee that this number is finite, we require that
the sensor footprint contains some convex subset of space. In
other words, degenerate sensors of measure zero or fractal-
like geometry might produce an infinite number of different
sweep rates.
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The full analysis building up to Corollary 5 is presented

in Appendix C.3.

These these type-III effects are a consequence of ge-

ometry. Unlike type-I and II sub-optimal effects, they

are not reduced as the size of the environment is in-

creased.

7 Simulations and Experiments

We compare the results derived in the previous section

to repeated trials of search and rescue in contested envi-

ronments performed both in simulation and on a mixed

platform of real and virtual agents. Simulations use a

continuous space representation (in contrast to the dis-

cretized representation used in the simulations that ap-

peared in a preliminary version of this work Otte et al.

(2016)).

Multipaths are selected from a library of predefined

sweep patterns, such that each pattern: forms a cycle,

sweeps the entire space, and is designed to minimize

sweep overlap between different parts of the search.

An example of such a multipath library appears in

Figure 9. If an agent/adversary cannot communicate

with its team then it moves to the nearest point on

a randomly selected cycle and then follows it. If an

agent (resp. adversary) can communicate with its team

then all team members agree on a cycle, divide the

path into n (resp. m) contiguous sub-paths, and then

allocate one sub-path per team member. Next, each

agent/adversary moves to its start point and searches

along its allotted sub-path.

Agents are assigned to the multipath such that the
maximum distance any particular agent needs to travel

is approximately minimized (to within ε). In particu-

lar, we discretize the multipath into steps of length ε

(where ε = 0.1 km in our simulations involving 10 and

100 km width search spaces) and then solve the bot-

tleneck bipartite graph matching for each of the ˆ̀/(nε)

possible matching vs. start locations using a modified

version of Hopcroft and Karp (1971) and picking the

best one. Figure 9 depicts the mean first-visit time for

points in the environment, assuming a five agent team,

for two different search areas both with and without

communication.

Simulations are run in the Julia language using vari-

ous sized search spaces. Selected results comparing pre-

dictions based on the ideal case vs. the average results

from Monte Carlo simulations are presented in Figure 7.

The mixed platform combines Asctec Pelican quadro-

tor UAVs that have onboard Odroid single board com-

puters with simulated agents that run on a laptop us-

ing the Ubuntu 14.04 operating system. The quadro-
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Fig. 7: The probability of winning an ideal game (lines) and
observed win ratios given simulations (points) for various
sized teams (horizontal axis) playing against 4 adversaries.
Different line and point colors show the four various commu-
nication scenarios. Top to bottom sub-figures show small to
large search spaces. Note that the ideal predictions more

accurately match results from Monte Carlo simulations
as the size of the search space increases.

tors receive position measurements from a Vicon mo-

tion capture system and runs ETH-Zurich modular sen-

sor fusion framework for state estimation (Lynen et al.,
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Strategy Library created from cycles
in a 10 X 10 km search space
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Fig. 8: An example sweep trajectory library with 8 different
cycles in a 10 by 10 km space. Black arrows indicate the
direction a cycle is traveled by the team. This library assumes
robots have sweep sensors with radius 1 km.

5 Agent Multipaths with Startup Phase
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Fig. 9: 5 agent multipaths in 10 by 10 and 100 by 100 km en-
vironments (left and right, respectively). Robots start at the
large black dots and then join the cyclic multipath (blue/gray
lines) at equally spaced locations during the startup phase
(black lines). The target location is marked with a black ‘x’.
Sweep sensor radius is 1 km. The lower left corners of the
two search spaces are both located at (0, 0). Agents travel
clockwise in both examples.

2013). Robot Operating System (ROS) is used on all

computers for local interprocess communications and

NRL’s Puppeteer framework is used for coordination

of all vehicles, which uses Lightweight Communications

and Marshalling (Huang et al., 2010) for intervehicle

communications.

The mixed platform experiments use a discrete grid

environment where movement is allowed along the car-

dinal directions. Grid cells are 2 by 2 meters, and the

contested search space is 12 by 12 meters. We use a

virtual target sensor such that an actor discovers the
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Fig. 10: First visit times of locations in the environment, av-
eraged over repeated trials. A team of 5 agents, each with a 1
km radius sweep sensor, is deployed in a 10 by 10 km search
area (top) and a 100 by 100 km search area (bottom). The
speed of all agents is 1 km per minute. These figures were
generated using Monte Carlo simulations in which the color
at each pixel in the 50 X 50 pixel images represents the av-
erage over 500 random trials in which the target was placed
at a point drawn uniformly at random within that pixel and
each agent was placed at a point drawn uniformly at ran-
dom in the entire search space. Each of the four sub-figures
represents the outcomes of 1.25 million trials.

target if their locations are closer than 1 meter. All ac-

tors fly at an altitude of 2 meters, which corresponds

to a field of view of approximately 60◦ when searching

for ground targets with a downward facing camera. A

random number generator is used to determine starting

locations of the real actors as well as the virtual actors

and the target. We perform repeated trials for a two-

agent team (consisting of one Asctec Pelican and one

virtual agent) vs. an adversary (Asctec Pelican). We

perform 10 successful trials: 5 trials for the case where

team G can communicate and 5 for the case where it

cannot. An additional trial was aborted by our safety

system when the distance between two actors (in this

case the virtual agent and the adversary) fell below a

safety threshold of 1 meter. Results from experiments

with the mixed platform appear in Figure 11.
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a target (black). Left and Right: Examples of paths when
agents do and do not collaborate, respectively.

Table 1: Game outcomes of repeated trials.

Cooperation
Trial Winner

1 G
2 G
3 G
4 A
5 A

No Cooperation
Trial Winner

1 A
2 G
3 A
4 G
5 A

8 Discussion

8.1 Using the Ideal Case as a Model for Non-Ideal

Cases

Our analysis, simulations, and experiments show that

using the ideal case to predict P (ωwin) works reason-

ably well, and provides a more accurate prediction as

the size of the environment increases. We also show that

the relative effects of non-ideal startup locations and

boundary conditions vanish, in the limit, as the size of

the environment increases. This is easy to observe in

Figures 7 and 10. In general, departure from the ideal

case is due to the boundary issues involving bad startup

locations, environmental geometry, and non-tiling sen-

sor footprints. The bounds derived in Sections C.1 vs.

C.2 suggest that the non-ideal effects cause by envi-

ronmental geometry will usually be greater than those

caused by conflicting start locations. Those in C.1 are

proportional to nr, while those in C.2 are proportional

to the size of the search space boundary. Thus, although

both effects tend toward zero, in the limit, as the size

of the environment increases, the relative importance

of turns vs. start location conflicts increases without

bound.

In Figure 7 we also observe that the average experi-

mental performance of all communication scenarios ap-

pears to approach that of the “no teams communicate”

scenario. This makes sense given that the outcome of

the “no teams communicate” scenario is essentially de-

termined by drawing a single actor uniformly at random

from the set of all actors (agents and adversaries), and

awarding the win to the team of the actor that is drawn.

Likewise, if the environment is so small that the target

will probably be found during the startup phase, then

the outcome of the game is determined mostly by the

actors’ randomly determined starting locations than by

any collaborative action enabled by communication.

8.2 Communication vs. Game Outcome

With respect to communication symmetry vs. asymme-

try, our results verify the intuition that team G benefits

from a situation in which G can communicate and team

A cannot. More interesting is the result that moving

from a scenario where both G and A can communicate

to a scenario where neither G nor A can communicate

benefits G only if n < m.

The advantages of performing a coordinated search

vs. uncoordinated search increase vs. team size. Uncom-

municating larger teams will outperform uncommuni-

cating smaller teams, in general.

8.3 Communication as a Prerequisite for Cooperation

Our assumption that communication is a prerequisite

for cooperation only makes sense in scenarios in which a

search was not anticipated or planned in advance, and

in which case neither team has a priori information

about the search space geometry, starting locations, or

team size. Teams are created out of whatever agents

happen to be nearby, e.g., performing unrelated mis-

sions.

If, on the other hand, all agents in the team had

advanced knowledge that a search would be required

within a particular space, cooperation could also be

achieved by having the team agree on a search strategy

a priori. This is known as using a “locker-room agree-

ment.” This would mitigate the effect of communication

loss on team cooperation. However, it would also require

that the team be equipped with a library of strategies

(space covering multipaths for different sized search-

spaces) and some way of determining which strategy to

use on-the-fly (since the size of the search space, and

each agent’s initial position within it, would not be pre-

dictable).
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8.4 Thoughts Regarding Competitive Target Search

and the Stealth Assumption

The version of the two-team target search game that

we consider assumes that neither team can observe the

other, which is consistent with a stealth scenario. How-

ever, because the teams cannot observe each other, there

is no back-and-forth interaction in which one team adopts

its own strategy in response to moves made by the other

team, etc. Instead, each team makes a single move that

consists of selecting the multipath its agents will fol-

low. One might reasonably ask “what are the interest-

ing aspects of this game”? We now discuss what we find

interesting about the scenario we consider.

Any known pure strategy can easily be thwarted by

the adversary. Even though the adversary cannot di-

rectly observe our agents, if the adversary knows we are

playing a particular pure strategy, then it can sweep

search slightly ahead of min(n,m) of our agents —

thwarting those min(n,m) agent’s abilities to win. For

this reason, any optimal strategy must be a mixed strat-

egy; something that has major ramifications for the mo-

tion planning and coordination of our multi-agent team.

The expressions describing the probability of win-

ning an ideal game are (perhaps unexpectedly) simple.

This simplicity helps to provide intuition about the rel-

ative importance of team size and a team’s ability to

communicate. The bounds that we derive show that

the ideal game itself has a convenient relationship to

the non-ideal game: the ideal game exists as the limit

of any non-ideal game, as the size of the environment

increases relative to sensor radius. Thus, the intuition

provided by the simple equations for the ideal game

becomes more accurate as the size of the search space

increases.

The particular stealth two-team target search game

that we study belongs to a much larger family of com-

petitive target search games. We hope that our formal-

ization of this game will inspire other to consider this

and other related scenarios.

8.5 A Note About Spiral Search Strategies

Spiral strategies work well when the search area is a disc

(or close to a disc). If an environment is approximately

disc-shaped, then a near-optimal spiral strategy is as

follows: create a closed path by connecting the two arms

of a double spiral (in particular, two equally spaced

involutes of a circle) with short path segments, i.e., one

near the edge of the search space and the other near the

origin in the center of the spiral. The resulting closed

path is homomorphic to a circle. An agent can move

away from the center along one of the arms and return

to the center along the other. Starting at any point

along this closed path, a single agent will eventually

sweep the entire search space and end up back where

it started. A team of n agents begins the search by

spacing out equally along the closed path (and with a

random offset from the origin of the spiral); next, all

agents move in the same direction around the closed

path. In disc-like environments, this strategy is close-

to-ideal—the strategy becomes ideal in the limit, as the

size of the environment increases.

In environments that are not disc-like we believe

that any spiral strategy will perform poorly for the fol-

lowing reasons: (1) If a single spiral is used (as was

described above), then a large amount of area will be

swept that is outside of the search space. (2) Alterna-

tively, if multiple spirals are used to cover the space,

then any covering will require significant overlap be-

tween different spirals (and some of the spirals will

also sweep a large amount of area outside of the search

space).

9 Summary and Conclusions

We study the effects of cooperation on multi-agent two-

team competitive search games, a class of games in

which two multi-agent teams compete to locate a sta-

tionary target placed at an unknown location. Given an

assumption that communication is required for coordi-

nation, this enables us to analyze how communication

symmetry and asymmetry between teams affects the

outcome of the game. For the case involving perfect

finite sweep sensors, random initial placement of ac-

tors/target, and non-observability of the other team’s
movements, we find closed-form solutions for the prob-

ability of winning an “ideal game” in which transient

boundary effects are ignored.

We leverage this result to bound the expected game

outcome in the presence of boundary effects includ-

ing: sensor overlap at starting locations, turning at the

search space boundary, and non-tiling sensor footprints

(tiling is only an issue when D > 2). In general, the

(non-tiling) transient boundary effects vanish, in the

limit, as the size of the search space increases toward

infinity.

When D = 2 (and also for tiling sensor footprints

when D > 2) a team maximizes its chances of winning

by playing a mixed strategy such that all points are

eventually swept, the expected time a point is (first)

swept is identical for all points, and there is as little

search overlap as possible. We note this expectation is

performed over the space of all multipaths starting at all

possible starting configurations of the team (and with

respect to a probability density function of our choosing
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that characterizes the likelihood a particular multipath

is used given each possible starting location). A Nash

equilibrium exists for an ideal game.

The chances of winning the search game increases

vs. team size, and also increases if the team is able to

communicate. Moving from a situation in which both

teams can communicate to a situation where neither

team can communicate will benefit the smaller team

and hinder the larger team (this effect becomes stronger

as the difference between the two teams’ sizes increases).

Monte Carlo simulations and experimental results

on a mixed platform with quadrotor UAVs validate that

the observed outcomes of non-ideal games are predicted

reasonably well by equations derived for the ideal case,

and that these predictions become more accurate as the

size of the search space increases.
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A Details of Proofs Leading up to Lemma 1

We now present technical details leading up to the proof of
Lemma 1.

Given particular multipath strategies ψG and ψA for our
team and the adversary, respectively, we can compute the ra-
tio of space our team visits first by integrating the normalized
rate new (to anybody) territory is swept by our team:

LD(Xwin(ψG, ψA))

LD(X)
=

∫ tfinal

0

d

dt

[
LD(Xnew(t))

LD(X)

]
dt,

where tfinal = min( 1
nc∗ ,

1
mc∗ ). Thus, Equation 1 can be re-

formulated for the Nash equilibrium of an ideal game with
cooperation within both teams as:

P (ω∗win) =
1

LΩSG
(SG)

∫
SG

1

LΩSA
(SA)

∫
SA

∫
Ψ∗
G
(g0)

∫
Ψ∗
A
(a0)

Dg0(ψG)Da0(ψA)

∫ tfinal

0

d

dt

[
LD(Xnew(t))

LD(X)

]
dt

where integrals are Lebesgue. Using the independence of the
two team’s optimal mixed strategies, i.e., Dg0(ψG) and Da0(ψA)
for all g0 and a0 yields:

P (ω∗win) =

∫ tfinal

0

1

LΩSG
(SG)LΩSA

(SA)

∫
SG

∫
SA

∫
Ψ∗
G
(g0)

∫
Ψ∗
A
(a0)

Dg0(ψG)Da0(ψA)
d

dt

[
LD(Xnew(t))

LD(X)

]
dt

We observe that the quantity inside the outermost integral

describes the expected value of d
dt

[ LD(Xnew(t))
LD(X)

] over all SG,

SA, Ψ∗G, and Ψ∗A. Recall that the expected value of ‘·’ over
all SG, SA, Ψ∗G, and Ψ∗A as E∗[·] ≡ ESG,SA,Ψ∗

G
,Ψ∗

A
[·]. Thus, for-

mally,

E∗
[
d

dt

LD(Xnew(t))

LD(X)

]
=

1

LΩSG
(SG)LΩSA

(SA)

∫
SG

∫
SA

∫
ΨG(g0)

∫
ΨA(a0)

Dg0,(ψG)Da0(ψA)
d

dt

[
LD(Xnew(t))

LD(X)

]

and

P (ω∗win) =

∫ tfinal

0

E∗
[
d

dt

LD(Xnew(t))

LD(X)

]
dt
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Lemma 1 Assuming optimal ideal mixed strategies exist and
both teams play an optimal ideal mixed strategy,

E∗
[
d

dt

LD(Xnew(t))

LD(X)

]
= (1− tmc∗)nc∗.

Proof At time t the adversary (operating according to its own

ideal optimal strategy) has swept tmv
LD−1(Br)

LD(X)
portion of

the entire search space. The interplay between the mixed ideal
optimal strategies for each team forces the expected instanta-
neous overlap between teams to be uncorrelated. Thus, for all
t ∈ [0, tfinal], the instantaneous expected rate team G sweeps

LD(Xnew) is discounted by a factor of 1− tmvLD−1(Br)

LD(X)
vs.

d∗

dt
LD(Xnew(t))

LD(X)
.

E∗
[
d
dt

LD(Xnew(t))
LD(X)

]
=
(

1− tmvLD−1(Br)

LD(X)

)
d∗

dt

[
LD(Xswept)

LD(X)

]
.

Substitution with Proposition 2 and Corollary 1 yields the
desired result. ut

B Details of Analysis Leading to Theorem 1

We now present details of our analysis leading up to and
including the proof of Theorem 1.

Proposition 5 Given a uniform distribution of starting loca-

tions for all a ∈ A and target locations q, and assuming an ideal
mixed strategy is played by A, then the distribution of times at

which that target-sweeping adversary aj sweeps the target is uni-

form on the interval [0, 1/(mc∗)].

Let tA be a realization of a uniformly random sample from
[0, 1/(mc∗)]. Given our assumptions:

P (tA < t) =
t

1/(mc∗)
.

where 0 ≤ t ≤ 1/(mc∗). Note that the probability density of
tA on [0, 1/(mc∗)] is mc∗, formally:

ft(t) =

{
mc∗ if 0 ≤ t ≤ 1/(mc∗)

0 otherwise
. (6)

Team G does not communicate and can be viewed as a
confederation of n independent single-agent sub-teams
{g1}, . . . {gn}. Each subteam {gi} plays a single agent ideal
mixed strategy such that gi sweeps (new to gi) space at the
rate c∗ and so gi requires 1/c∗ time to sweep the entire space
by itself. This leads to the single-agent team counterpart to
Proposition 5:

Proposition 6 Given a uniform distribution of starting loca-
tions for gi and target locations q, and assuming a single agent

ideal mixed strategy is played by {gi}, then the distribution of

times at which agent gi sweeps the target is evenly distributed on
the interval [0, 1/c∗].

Let tg,i be a realization of a uniformly random sample from
[0, 1/c∗]. Given our assumptions on start locations, and as-
suming a single-agent ideal mixed strategy is played by {gi},
the probability gi sweeps the target before time t is:

P (tg,i < t) =
t

1/c∗

where 0 ≤ t ≤ 1/c∗.
The target is swept by team G as soon as it is swept

by any agent gi ∈ G, thus team G essentially gets to draw n

i.i.d. uniformly random samples tg,1, . . . tg,n from [0, 1/c∗] and
play the best (smallest) of these vs. the adversary team A’s
single draw from [0, 1/(mc∗)]. Let tG = mini(tg,i) denote a
realization of the smallest out of n values sampled uniformly
at random and i.i.d. from [0, 1/c∗].

The distribution of tG can be determined directly using
order statistics. The probability that at least one of the n

(uncommunicating) subteams {g1}, . . . {gn} sweeps the target
before time t is:

P (tG < t) = 1−
(

1−
t

1/c∗

)n
(7)

Team G wins whenever tG < tA. We observe that P (ω∗tie) =
P (tG = tA) = 0 and given our assumptions:

P (ω∗win) = P (tG < tA) = 1− P (tG > tA) = 1− P (ω∗lose) .

Theorem 1 The probability team G wins an ideal game, as-

suming team G cannot communicate but the adversary team A

can communicate, and the adversary team A plays optimal ideal
mixed strategies, while each {gi} ⊂ G plays an optimal ideal sin-

gle agent mixed strategy, is:

P (ω∗win) =

(
1− 1

m

)n
(m− 1)−m+ n+ 1

n+ 1

Proof We can compute P (ω∗win) using the Law of Total Prob-
ability:

P (ω∗win) =

∫ ∞
−∞

P (tG < tA|tA = t) ft(t)dt.

We note that ft(t) = 0 for all t < 0 and for all t > 1/(mc∗)
because the game has not started yet and the adversary will
have already won, respectively. Substituting Equation 6 and 7
we get:

P (ω∗win) =

∫ 1/(mc∗)

0

(
1−

(
1−

tA

1/c∗

)n)
mc∗dt

and performing the integration yields:

P (ω∗win) = 1 +
m
(
m−1
m

)n+1

(n+ 1)
−

m

n+ 1
.

The final result is obtained using algebra. ut

C Details of Proofs Pertaining to Non-Ideal

Cases

In Sections C.1, C.2, and C.3 we bound the individual non-
ideal effects of type I, II, and III, respectively that were dis-
cussed in Section 6. The each effect is analyzed assuming the
others can be ignored. The general case where I, II, and III si-
multaneously occur can be found by combining these results.
Here we focus on the case where both teams can communi-
cate. Bounds on cases where one or the other team cannot
communicate can be found by extending these results as was
done for the ideal case7 in Section 4.

7That is, using the fact that G winning a game with n
communicating agents vs. m non-communicating adversaries
is equivalent to G winning each of the m independent sub-
games involving each different adversary (and vice versa).
This is how the results from Section 4.1 were extended in
Sections 4.2 and 4.3.
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Boundary effects caused by non-ideal startup locations
and environmental geometry both cause the team to perform
more than the ideal amount of sweeping (see Figure 5). We
use the same basic proof technique for their analysis in Sec-
tions C.1 and C.2.

The analytical technique used in Sections C.1 and C.2
relies on the fact that search-hindering non-ideal effects are
expected to be increasingly detrimental to G’s probability of
winning the game the earlier in the game they occur. This

happens because the ratio
dLD(Xswept)

dLD(Xnew)
decreases vs. time. It

is possible to construct a scenario that is even worse than a
worst-case non-ideal search, in term’s of team G’s probability
of winning the game, by: (first) assuming that all negative
ramifications of a non-ideal search happen at the beginning
of the search for team G, instead of whenever they actually
occur; (second) Assuming the adversary team A sweeps at
the ideal-game rate for the entire game. The relative length
of the non-ideal startup phase in this modified scenario is
guaranteed to be worse than the worst-case8, and is bounded
by a dimensionally dependent constant length of time.

A road-map of our analytical technique, including the
construction of the worse than worst-case scenario we use,
is now presented:

1. We break the space X into two non-overlapping sets,
Xideal and Xstartup, depending on if the sweep search
through it is “ideal” (it is swept at a time when the team
is sweeping new space at the maximum rate).
(a) Let all search space that is not reswept be combined

in set Xideal.
(b) Let all search space that is ever reswept (plus, when

relevant, all non-search space that is swept) be com-
bined in set Xstartup. Multiple copies of each reswept
portion of space are included in Xstartup — if a sub-
set of space is swept i different times, then i different
copies of that subset are included. For the following
discussion each copy is considered distinct such that
each contributes its own volume to LD(Xstartup). Thus,
by construction, LD(Xstartup) + LD(Xideal) ≥ LD(X).

2. We consider (a worse than worst-case scenario) where the
time costs, but not the target detection benefits, of sweep-
ing Xstartup are incurred prior to performing an ideal
search through Xideal.
(a) We design a multipath that is guaranteed to sweep

Xstartup, including all duplicate copies of reswept space,
and derive an upper bound tstartup on the time re-
quired for the team to travel this multipath.

(b) We assume team G begins the game by moving along
a path sufficient to sweep Xstartup — but not actually
performing search as it moves along this path (e.g.,
with its detection sensor turned off). For each dura-
tion of non-ideal behavior that occurs in a normal
scenario, this essentially shifts an equivalent duration
of non-ideal behavior to the beginning of the search
without providing any target detection benefits.

(c) However, after accounting for the penalty we receive
for not searching before tstartup, we assume that search
through Xideal happens at the ideal rate. In other
words, for the purposes of deriving performance bounds,

8In other words, the scenario we consider is provably worse
than a worst-case scenario. Thus, the bounds we derive are
outside bounds on a worst-case scenario; and as a result, they
are also outside bounds on the actual scenario. Note that we
choose to use the worse than worst-case scenario because it
is straightforward to analyze (unlike the worst-case scenario
and the actual scenario).

we essentially pay an up-front performance penalty
“with interest” to move each piece of non-ideal search
such that it happens before tstartup.

(d) Finally, we account for actually searching Xstartup
(since we moved through it without searching before
tstartup).

i. Our original search would have already completed
by this point; thus, we can assume that any rate
of sweep for the second pass over unique ele-
ments of Xstartup and our scenario will still be
worse than the original (and provide a valid per-
formance bound).

ii. Thus, it is permissible to assume the ideal search
rate in this phase (for convenience) without de-
stroying the worse than worst-case bound.

We now apply this technique in Sections C.1 and C.2.

C.1 Non-Ideal Starting Locations

If two robots on the same team start closer than 2r, then ei-
ther some nonzero measure subset of space will be swept by
both of them (see Figure 5-Left), or some nonzero measure
subset of space will be swept by them and during some other
point in the search (see Figure 5-Center). Such an event oc-
curs with nonzero probability given an assumption of uniform
random i.i.d. start locations.

The ill-effects of non-ideal start locations can be bounded
by considering the following worse than worst-case scenario:
all n team members start at exactly the same point
g0 = (x1,0, . . . , xn,0), and then begin the game by moving
(without actually searching) to the closest configuration g∗0
at which type-I effects would not have occurred if the robots
had started at g∗0 in the first place (see Figure 13). We assume
that the entire team waits to start searching until all robots
have reached their coordinate of g∗0, and that this requires
tstartup time.

The probability the adversary wins before tstartup is
tstartupmvLD−1(Br)

LD(X)
. After, tstartup our expected search rate is

that of the ideal case such that dLD(Xnew(t))
dt

decreases vs.
dLD(Xswept(t))

dt
by the usual factor of 1− tmvLD−1(Br)

LD(X)
after

tstartup.

Recalling that c∗ = v
LD−1(Br)

LD(X)
, the resulting worse than

worst-case bound on the probability we win the game is:

P (ωwin) ≥

[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc∗ (8)

where

t̂final = min(tstartup +
1

nc∗
,

1

mc∗
).

As discussed above, this bound accounts only for inefficiencies
in search caused by non-ideal search locations.

In toroid TD environments the furthest distance that any
individual member of the team must move during the startup
phase is 2r(n−1) (see Figure 13) and so tstartup < 2r(n− 1)/v.

A similar bound exists for convex subsets of RD as long as
other boundary effects can be ignored, and W > 2rn, where
W is the maximum distance between any two points in X
along a geodesic. In other words, W is the maximum width
of the environment. We assume other boundary effects can be
ignored, but address them directly in Sections C.2 and C.3.
We now limit our consideration to W > 2rn, i.e., wide envi-
ronments. In thin environments, such that W ≯ 2rn, moving
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Fig. 12: Intuition for the worse than worst-case bound: an
example in which |G| = 5 and |A| = 5. (A) Ideal sweep rates.
(B) Sweep rates in a non-ideal case in which G has three
periods of non-ideal sweep (τ1, τ2, τ3) and A has two (τ4, τ5).
(C) The corresponding worse than worst-case bound, in which
periods of non-ideal sweep have been moved to the beginning
of search for G and eliminated for A. (D) Territory capture
rate for both teams in all three cases. (E) Total area swept
in all three cases; by construction G sweeps less space in the
bounding case than in the non-ideal case and A sweeps more
(shaded regions and arrows show difference). (F) Total area
captured in all three scenarios; by construction G captures
less space in the bounding case than in the non-ideal case and
A captures more (shaded regions and arrows show difference).
Games end once all territory is captured (green).

xi,0 = x∗1,0 x∗2,0 . . . x∗n−1,0 x∗n,0

r 2r(n− 1)

Fig. 13: An ideal strategy could be played if all robots start
at g∗0 = (x∗1,0, . . . , x

∗
n,0). Different colors represent area swept

by different robots. In the worst-case, all robots all start
at the same position, g0 = (x1,0, . . . , xn,0) = (x1,0, . . . , x1,0),
and movement from g0 to g∗0 requires each robot to move no
further than 2r(n − 1), which can be accomplished in time
tstartup = 2r(n− 1)/v .

to an ideal start location may require time on the same order
as sweeping the environment.

An upper bound on the probability we win is found by
swapping the roles played by team G and the adversary. We
let t̃startup < 2rm/v denote the startup time required for an
adversary that must compete with an ideal version of team
G (for achieving this other bound), and define

t̃final = min(t̃startup +
1

mc∗
,

1

nc∗
).

The preceding discussion leads to the following theorem:

Theorem 3 Assuming that both teams can communicate, and
an optimal mixed strategy exists for both teams, and that both

teams play an optimal mixed strategy, and that the game is ideal

in every sense except for starting locations, the probability we
win is bounded as follows:[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc

∗ ≤ P (ωwin)

and

P (ωwin) ≤ 1−

[∫ t̃final

t̃startup

(1− tnc∗)mc∗ dt

]
− t̃startupnc∗.

C.2 Turns and Other Non-Ideal Boundary Effects

Re-sweeping of previously swept space occurs near the bound-
ary of the search space due to the necessity of turning (Fig-
ure 5-Right). Moreover, sweeping all of the space within the
search space sometimes requires sweeping some portion of
space outside the search space (Figure 5-Right). Finally, a
third boundary effect occurs due to the fact that, in general,
the search spaces cannot be covered by an integer number of
sweep passes (this also happens in TD, see Figure 14). All of
these effects can be analyzed simultaneously.

We assume that the team starts at locations that do not
suffer from the startup effects discussed in Section C.1. We
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Fig. 14: Two robots perform a nearly ideal search over a T2

space. Different colors represent the different subspaces swept
by either robot. The space cannot be divided into an integer
number of non-overlapping wraps around the space and so
some space is swept more than once (hashed). The manifold
at the center of the reswept space is marked with a dot-dash
line.

X ⊂ R2 Xstartup Xideal

Fig. 15: (A) A nearly ideal two robot search strategy to cover
the convex space. Red and blue represent different robots.
Space boundary is black, red and blue dashed lines depict
the multipath, shades of gray depict search sweeps, light blue
and light red depict sweeps that re-sweep some area. The
strategy can be broken into an non-ideal part over Xstartup
and an ideal part over Xideal.

also assume that the projection of the sensor footprint along
the direction of movement permits a tiling over D − 1 space,
see Figure 6 (we investigate the case where this is not true in
Section C.3).

Given these assumptions, the space swept in any TD search
space or subset of RD can be decomposed into two different
non-overlapping subsets: the first (Xstartup) contains all space
involved in turning induced resweep as well as all non-search
area that is swept, while the second (Xideal) contains the
remaining search space (that involved an ideal search). An
example appears in Figure 15.

Similar to the analysis in Section C.1, we derive tstartup
an upper bound on the time required to sweep Xstartup (in-
cluding any necessary resweeps). And as in Section C.1, the
worse than worst-case scenario we use for our analysis re-
quires team G to wait for Xstartup time before beginning an
ideal search (during which time the adversary searches at the
ideal rate).

The first step to find tstartup is to bound the length of
a path that is guaranteed to cover Xstartup (see Figure 16).
Consider the largest hypercube that is contained within the
robot’s sensor footprint and that is aligned with the direc-

(A) (B) (C)

(D) (E) (F)

2r

Fig. 16: It is possible to design a strategy for sweeping
Xstartup, the non-ideal part of a search. (A) The non ideal
part of a search (red, blue, gray) and the search space bound-
ary (black). (B) The search space boundary is covered with
grid cells that have side lengths twice the minimum sensor
radius. (C) Adding additional grids within r of the original
grid cells is sufficient to cover Xstartup. (D) We can design
a strategy that sweeps the latter gridded space (there are
Ncover grid cells) in time < c26rNcoverLD−1(∂X) where c2
depends on the dimensionality of the search space. (E-F) as
the radius of the sensor decreases relative to the size of search
space the portion of time spent sweeping Xstartup decreases
toward 0.

tion of forward movement. We call this hypercube Ĉr. Let
the boundary of the search space be denoted ∂X. Note, in
toroid spaces the only boundary effects are related to the last
pass, and so for TD, ∂X represents the manifold located be-
tween the paths taken during the first and last sweeps (See
Figure 14).

Since ∂X is essentially a lower-dimensional manifold em-
bedded in our D-dimensional search space, it is possible to
cover ∂X with Ncover hypercubes (each of dimension D),
where

Ncover < c2rLD−1(∂X)

here c2 is a constant that counts the maximum number of
tiled hypercubes required to cover a non-axis aligned line seg-
ment of length

√
D, and where

√
D is the maximum distance

between any two points in the same unit grid cell. Figure 16-
A-B-C depicts such a covering.

It is important to note that c2 is a dimensionally de-
pendent constant. It is possible to construct a tour upper
bounded by ˆ̀ that covers all grid cells within c2 of ∂X (and
thus covers Xstartup). We note that ˆ̀is also, by design, longer
than the cumulative length traveled along the subset of the
original multipath involved in the boundary effects we are
investigating in this section. We calculate ˆ̀ by considering
a naive tour of the hypercube covering of the search space
boundary (see Figure 16-Bottom). For each hypercube, it is
possible to construct such a covering by traveling a distance
that is at most three times a side length (i.e., 6 times rc) as
follows: 2rc to reach the center of the nearest face, 2rc to reach
the opposite face and thus sweep the entire cube, and 2rc to
exit through the center of any other face (in most cases it
will be much less than this since multiple cubes can be swept
without changing direction). Thus, ˆ̀< 6Ncoverrc and so

ˆ̀< 6c2rNcoverLD(∂X).
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The time required to perform the startup phases is upper
bounded by

tstartup < ˆ̀/v

This bound implicitly assumes a worst-case situation in which
all boundary effects must be dealt with by a single agent.
Thus, this bound on tstartup may be up to n times too large
(i.e., in the best-case boundary problems are divided evenly
between agents). We can now proceed as in the previous sub-
section (using our new definition of tstartup in Equation 8).
This discussion leads to the following theorem:

Theorem 4 Assuming that both teams can communicate, and

an optimal mixed strategy exists for both teams, and that both
teams play an optimal mixed strategy, and that the game is ideal

in every sense except for boundary conditions of re-sweep and

sweep outside the search space, the probability we win is bounded
as follows:[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc∗ ≤ P (ωwin)

P (ωwin) ≤ 1−

[∫ t̃final

t̃startup

(1− tnc∗)mc∗ dt

]
− t̃startupnc

∗

We note that NcoverLD(Ĉr)
LD(X)

→ 0, in the limit, as the size

of the environment increases relative to the sensor radius.
The non-ideal effects from this section can be combined

with those from the previous subsection by simply combin-
ing the startup phases used for analysis into a single startup
phase of combined duration.

C.3 Sensor Model when D > 2

A sensor sweep footprint that forms a space tiling in D − 1
dimensions is required for ideal search, See Figure 6. Non-
tiling footprints require neighboring sweep passes to overlap
in order to sweep the full space. When D > 2 the vast majority
of sensor models will not permit a sweep footprint that forms
a space tiling in D − 1 dimensions. While an appropriately
chosen sensor footprint, such as the D − 1 dimensional L∞-
ball, does permit such a covering, other common symmetrical
coverings such as the D − 1 dimensional L2-ball do not. We
now investigate the effects of what happens when a non-tiling
sensor is used.

Assume that, other than the tiling of the search sensor,
the search is otherwise ideal (i.e., we are ignoring the startup
and boundary effects that were addressed in Sections C.1 and
C.2). Search necessarily happens in a number of different sep-

arate phases that are characterized by different
dLD(Xswept)

dt
(sweep rates of space we have not yet swept) and thus differ-

ent dLD(Xnew)
dt

(sweep rates of space that has not been swept
by ether team).

For example, we could perform search in two meta-phases
represented by the gray discs and red circles in Figure 17.
During the first phase, search happens at the ideal rate due
to the fact that each pass (gray disc) covers terrain that we
have never visited before. However, after some time, sweeping
any new space will necessarily require re-sweeping some pre-
viously swept terrain (red circles). Thus, in the second phase,
dLD(Xswept)

dt
and dLD(Xnew)

dt
are substantially reduced.

We could alternatively sweep the entire space much more
quickly using a multipath defined by sensor discs inscribed

Fig. 17: Two different sweep patterns that use the same sensor
footprint, projected along the direction of travel to remove
depth (as in Figure 6-bottom). This particular (projected)
patch could be tessellated arbitrarily many times in the hor-
izontal and/or vertical directions. Left: Sensor footprints of
the robot appear (gray, dashed red) for a two phase search
strategy that covers the space using an ideal search with 12
passes per patch (6 gray, 6 red). Right: the same space can
be swept using only 8 passes per patch (blue); although this
requires sweeping the entire space more quickly, it requires
searching below the ideal search rate after the first 1/3 of
search.

by the blue hexagons in Figure 17. The price we pay for a
quicker overall search turns out to be an earlier decrease in
dLD(Xswept)

dt
and dLD(Xnew)

dt
.

The fact that we can control
dLD(Xswept)

dt
via choosing

how different sweep passes overlap adds a significant amount
of complexity to our analysis. Each time either team’s search
rate changes, we must use a slightly different version of Equa-
tion 2. This can be accomplished by breaking our analysis into
K different intervals depending on the number of times that
either team changes their sweep rate.

Let the k-th time interval start at time tk and end at time
tk+1. By the beginning of the k-th time interval the adversary
has already swept Fk proportion of the total search space.
During the k-th interval the rate team G sweeps new (for us)
territory is determined by ncG,k and the rate the adversary
sweeps new (for them) territory is determined by mcA,k.

The total fraction of area that has been swept by the
adversary prior to the start of the k-th interval is given by

Fk = 1−
K−1∑
k=1

∫ tk+1

tk

tmcA,k dt

As a corollary of Lemma 1 we get:

Corollary 5 The probability we win, assuming an optimal mixed
strategy exists for both teams, and both teams play an optimal

mixed strategy, when both teams communicate, and the game is

ideal except for sensor footprint is

P (ωwin) =
K−1∑
k=1

∫ tk+1

tk

(Fk − tmcA,k)ncG,k dt.

We note that these effects do not vanish as the size of the
environment increases relative to the sensor footprint.

Corollary 5 works for the case that both teams commu-
nicate. In general, extending these results to cases where one
team cannot communicate is more involved than how the
ideal results from Section 4.1 were extended in Sections 4.2
and 4.3. Each of the sub-games vs. a single (i.e., non-communicating)
agent must be analyzed separately to account for the fact that
each agent will independently choose when and how much its
own sweeps will overlap between different passes through the
environment.


