
Noname manuscript No.
(will be inserted by the editor)

Dynamic Teams of Robots
as Ad Hoc Distributed
Computers: Reducing the
Complexity of Multi-Robot
Motion Planning via Subspace
Selection

Michael Otte ·
Nikolaus Correll

Received: date / Accepted: date

Abstract We solve the multi-robot path planning prob-

lem using three complimentary techniques: (1) Robots

that must coordinate to avoid collisions form tempo-

rary dynamic teams. (2) Robots in each dynamic team

become a distributed computer by pooling their com-

putational resources over ad hoc wireless Ethernet. (3)

The computational complexity of each team’s problem

is reduced by carefully constraining the environmental

subspace in which the problem is considered.

An important contribution of this work is a method

for quicky choosing the subspace, used for (3), to which

each team’s problem is constrained. The heuristic is

based on a tile-like pebble motion game, and returns

true only if a subset of the environment will permit a

solution to be found (otherwise it returns false). We

perform experiments with teams of four and six CU

Prairiedog robots (built on the iRobot Create platform)

deployed in a large residence hall, as well as ten robots

in random simulated environments.

Keywords Motion Planning · Multi Robot Team ·
Ad Hoc Distributed Computer · Any-Com · Dynamic

Team

1 Introduction

Autonomous robots are usually equipped with on-board

computers. Robots use their computers to aggregate

sensor information, reason about the environment, and

react to unexpected events in real-time. Most robots

are also equipped with a wireless device that enables

communication with other robots over a wireless net-

work. Given these resources, there is an opportunity

that nearby robots can use wireless communication to

pool their computational resources, thus creating an

ad hoc distributed computer (Figure 1). For some ade-

quate level of network reliability, we expect such a dis-

tributed computer to be more capable of solving com-

putationally challenging problems than any single robot

alone.

Centralized multi-robot motion planning, which is

concerned with guaranteeing the mutual safety of robots

operating in close proximity to each other, is a prob-

lem well suited to being solved with such an ad hoc

distributed computer. Centralized multi-robot motion

planning is a computationally challenging NP-hard prob-

lem; moreover, solving it benefits all robots in a partic-

ular geographic area. Even robots that are not part of

a predefined team must coordinate with nearby robots

to ensure mutual safety, and thus benefit from pooling

resources with nearby agents to solve their joint motion

planning problem.

In this paper we leverage the fact that the computa-

tional complexity of each team’s joint motion planning

problem can be reduced by constraining the hypervol-

ume of the joint configuration space in which the dy-

namic team’s problem is defined. Such a spatial reduc-

tion is only useful if it does not prevent us from finding

a solution. Thus, an important contribution of this work

is the presentation of an admissible heuristic function

for subspace selection that allows us to easily check if a

particular subset of space is sufficiently large for solving

the multi-robot path planning problem. The heuristic

is based on the solvability of pebble motion games, and

returns true only if the space is sufficiently large (and

obstacle-free) to solve a problem with n robots.

Subspace selection and dynamic teams both reduce

the size of the configuration space, but in different and

complimentary ways. While dynamic teams reduce the

M. Otte
(work done at) University of Colorado at Boulder
Dept. Computer Science
E-mail: ottemw@gmail.com

Nikolaus Correll
University of Colorado at Boulder
Dept. Computer Science

2 Michael Otte, Nikolaus Correll

ad-hoc IEEE 80211.g
 wireless Ethernet

ad hoc distributed computation

Robot 1

Sensors

Actuators

IEEE 80211.g
wireless card

CPU 1

RAM 1 Disc 1

Computer 1

Robot 2

Sensors

Actuators

IEEE 80211.g
wireless card

CPU 2

RAM 2 Disc 2

Computer 2

Robot n

Sensors

Actuators

IEEE 80211.g
wireless card

CPU n

RAM n Disc n

Computer n

IEEE 80211.g wireless Ethernet

ad hoc distributed computer

Fig. 1: Left: Six Prairiedog robots using ad hoc distributed computation to solve a motion planning problem.

Right: Schematic of an ad hoc distributed computer created across a group of robots.

hypervolume of the configuration space by minimizing

its dimensionality (Otte and Correll, 2013a, 2014), sub-

space selection reduces the hypervolume assuming that

a particular dimensionality has already been selected.

Thus, subspace selection is well suited for combination

with dynamic teams, and we investigate their combina-

tion.

In the rest of this section we discuss more formally

how subspace selection and dynamic teams reduce the

size of the configuration space. The C-FOREST dis-

tributed branch and bound sampling-based motion plan-

ning technique, which is used by the dynamic teams to

solve the motion problems in the resulting subspace, is

also discussed.

1.1 Motivation for dynamic teams and subspace

selection

The centralized multi-robot motion planning problem

has complexity of the form O(‖X‖n), where ‖X‖ is the

measure of a single robot’s configuration space, and n

is the number of robots that are considered. Previous

work (Al-Wahedi, 2000; van Den Berg et al, 2009; Stan-

dley and Korf, 2011; Sharon et al, 2012) has shown that

problem complexity can often be reduce by considering

separately each non-overlapping sub-problem. In prac-

tice this amounts to only considering the joint problem

of two or more robots if their individual solutions con-

flict, i.e., would result in a collision between two or more

robots. More formally, these methods work by solving

separate problems in each space X |R1|, . . ., X |Rk| such

that teams R1, . . . , Rk do not conflict with each other

and |R1|+ . . .+ |Rk| = n, instead of in the much larger

X |R1| × . . .×X |Rk| = Xn full configuration space of all

robots.

The method of considering a joint problem for sets

of robots that conflict has been called using dynamic

teams (Otte and Correll, 2014), dynamic networks (Clark

et al, 2003), subdimensional expansion (Wagner and

Choset, 2015; Wagner et al, 2012), etc., and results

in computational complexity that can be described as

O(‖X‖|Rmax|), where |Rmax| ≤ n is the number of robots

in the largest subteam. In (Otte and Correll, 2014) we

experimentally observed that even the use of dynamic

teams may be insufficient to achieve tractability in large

environments with large ‖X‖.
Subspace selection is a complementary means of re-

ducing computational complexity in which each team

R restricts its own |R|-dimensional problem to a re-

duced subset of space SR ⊆ XR containing the poten-

tial conflicts that created the dynamic team in the first

place, see Figure 2. Subspace selection decreases com-

putational complexity whenever ‖S‖|Rmax| < ‖X‖|Rmax|,

often by orders of magnitude, but at the price of global

optimality.

The use of subspace selection assumes that we have

a judicious way to choose SR, which is why we require a

sufficiency heuristic for solvability of the motion plan-

ning problem in SR.

1.2 Motivation for C-FOREST

C-FOREST is a distributed branch and bound tech-

nique designed for sampling-based motion planning al-

gorithms that is easy to parallelize across an ad hoc

distributed computer (Otte and Correll, 2013b, 2014;

Otte, 2011).

Each computational node works to solve the same

planning problem by building its own (unique) ran-

dom tree; thus, a forest of trees is built in parallel. C-

FOREST differs from OR-parallelization (i.e., voting)

in that C-FOREST’s random trees communicate with

each other during the search. Tree-to-tree communica-

tion during the search enables distributed branch and

bound as well as the exchange of other useful informa-

tion.

Dynamic Teams of Robots as Ad Hoc Distributed Computers 3

1

1

3
2

2

4

4

5

5

3

Robots 1, 2, 3, 4, and 5 start in their own teams (black,
magenta, blue, red, and green, respectively). ‘O’s denote start
locations and ‘X’s denote goal locations. Each robot plans its
own path; however, this leads to possible collisions (black
asterisks) for robots 1 vs. 2, and robots 4 vs. 5.

1

1

3
3 2

2

4

4

5

5

4,5R1,2R

Each set of conflicting robots combines into a team (team
R1,2 is gold and R4,5 is green). Each team forms an ad
hoc distributed computer to solve its mutual motion plan-
ning problem in a reduced subset of space (non grayed-out
regions) near the conflict point.

1

1

3
3

2

2

4

4

5

5

4,5R
1,2R

The solution of team R1,2 conflicts with that of robot 3. Thus,
team R1,2,3 (orange) is formed by combining team R1,2 with
robot 3.

1

1

3
3

2

2

4

4

5

5

1,2,3R 4,5R

Team R1,2,3 solves its mutual motion planning problem.

1

1

3
3

2

2

4

4

5

5

After a team has solved its mutual problem, its robots merge
the multi-robot solution into their own plans and synchronize
along the shared solution.

Fig. 2: Dynamic teams, based on conflicts, form ad hoc

distributed computers to motion plan using subspace

selection.

Whenever a better path is discovered by any ran-

dom tree, the graph nodes of that path are broadcast

to all other trees. This enables: (1) All nodes to prune

their trees and sample space based on the best solu-

tion found by any tree—increasing search speed and

focusing remaining effort on exploring helpful portions

of the configuration space. (2) By inserting the nodes

of the best path into their own trees, different nodes

exchange data about useful explorations into new ho-

motopy classes and are able to improve the best known

path directly

Given a robot team in which each agent has its own

CPU, each robot is responsible for growing (at least)

one C-FOREST tree. Robots communicate wirelessely,

and so the team becomes an ad hoc distributed com-

puter to solve its joint problem using C-FOREST.

C-FOREST (like any distributed branch and bound

approach) will require more communication than OR-

Parallelization. That said, even if C-FOREST saturates

the channel during planning such that no messages get

through, then the final round of path broadcasts and

agreement makes the performance essentially identical

to that of OR-parallelization.

1.3 Motivation for an Any-Com algorithm

Distributed computing algorithms typically assume a

reliable communication medium. In contrast, wireless

communication in real world environments is inherently

unreliable, and so distributed algorithms designed to

run on an ad hoc distributed computer must be de-

signed to function despite this unreliability. Any-Com

algorithms (Otte and Correll, 2013a; Otte, 2011) are

defined by the property of graceful performance de-

clines versus degrading communication, and are thus

well suited to this task. In (Otte and Correll, 2014;

Otte, 2011) we demonstrate that C-FOREST has good

any-com properties.

2 Related Work

2.1 Our previous work

In our previous work (Otte and Correll, 2013a) we pre-

sented an algorithm for distributing the computation

of asymptotically optimal centralized multi-robot mo-

tion planning across a robot team. In (Otte and Cor-

rell, 2013b), we described the underlying parallelization

technique, called C-FOREST, and showed that it often

has super-linear speedup on a traditional distributed

computer with reliable communication. In (Otte and

Correll, 2014) we implemented a distributed version of

4 Michael Otte, Nikolaus Correll

C-FOREST across a dynamic team of robots that used

ad hoc distributed computing over an unreliable wire-

less connection. Also in (Otte and Correll, 2014) we

observed that a combination of dynamic teams (to re-

duce problem complexity) and ad hoc distributed com-

puting (to maximize computing power) was still unable

to solve relatively simple four-robot problem when the

environment was large. In (Otte and Correll, 2014) we

conjectured that computational complexity would be

further reduced by judiciously selecting a subset of the

original problem space in which to resolve conflicts be-

tween different robots, and that this might increase the

number of problem instances for which a solution could

be found within a practical amount of time. In the cur-

rent paper we investigate this idea, and refer to it as

subspace selection.

Much of the material in the current paper originally

appeared as the final chapter in the first author’s PhD

dissertation (Otte, 2011), but has not previously been

presented at a conference or in a journal paper. The

current paper also contains additional analysis that did

not appear in (Otte, 2011). In particular, proofs that

the solvability of a tile moving game in free space rect-

angles can be used as a sufficiency heuristic for solv-

ability of the multi-robot motion planning problem in

a reduced subset of the configuration space.

2.2 Previous work using subspace selection and/or

dynamic teams

In (Clark et al, 2003) robots form teams that include all

other robots within communication range. Whenever

two different teams get close enough to communicate

they merge to form a larger team. A network-level pro-

tocol ensures that all robots in a team exchange world

state information, so that each robot is able to solve

the centralized motion planning problem for the team.

This can be described as OR-parallelization of kyno-

dynamic PRM, in which different random solutions are

computed independently but in parallel and the best

one used. Each robot has a dedicated off-board com-

puter. One difference versus our work is that communi-

cation between the computers in (Clark et al, 2003) is

reliable, although range effects are simulated in (Clark

et al, 2003) such that robots may only communicate

with nearby robots. In contrast, our communication is

wireless and unreliable.

In (Clark et al, 2003) teams are created and joined

based on communication range only, which means that

teams may form when robots do not conflict. As a result

teams using the method in (Clark et al, 2003) will often

be larger (and will therefore need to solve more complex

problems) than in our work.

The idea of starting each robot in its own team,

and then combining robots into teams based on con-

flicts, has previously appeared in (Al-Wahedi, 2000; van

Den Berg et al, 2009; Standley and Korf, 2011; Sharon

et al, 2012), although the idea is frequently described

as solving decoupled or independent sub-problems. The

most closely related of these works is (Al-Wahedi, 2000),

which uses both dynamic teams and subspace selection

in conjunction with a fast-marching level set method

to find paths in a simulated checkerboard environment.

Differences versus our work include our use of sampling-

based motion planning, parallel computation, and phys-

ical teams of robots (as well as the specific conditions

under which different teams can be combined).

Previous work (van Den Berg et al, 2009) has ap-

proached the multi-robot path planning problem from

a centralized graph theoretic point of view, assuming a

PRM roadmap graph of the environment is provided a

priori for each agent. An A* algorithm-based solution

is presented by Standley and Korf (2011). Other work

by Sharon et al (2012, 2015) considers a version of the

problem on a predefined movement grid over the envi-

ronment and allows a user-defined number of greedy at-

tempts to resolve conflicts between agents before teams

are combined; A* and a number of its descendants are

used in experiments. Sharon et al (2012, 2015) also ob-

serve that conflict-based team combination optimal mo-

tion planning algorithms are, in general, exponentially

complex in the size of the largest team. Differences be-

tween our work and (van Den Berg et al, 2009; Standley

and Korf, 2011; Sharon et al, 2012, 2015) are that these

previous ideas do not consider communication issues

between agents, do not use subspace selection, and do

not use the distributed resources of a multi-robot team

as a distributed computer to solve the problem faced

by the team.

In the current paper we solve a relaxation of asymp-

totically optimal motion planning in continuous space

that attempts to find short paths but trades asymp-

totic optimality for better practical performance (this

is discussed further in Section 4.2); in contrast, Stand-

ley and Korf (2011); Sharon et al (2012, 2015) use an

optimal algorithm in discrete space, and van Den Berg

et al (2009) uses a resolution optimal approach.

Recent work (Wagner and Choset, 2015) on M* and

recursive-M* (and other related algorithms) considers a

general modification to graph-based shortest path plan-

ning algorithms (with specific implementation within

the A* algorithm and a number of its descendants),

that handles team combination at a low level within

the graph-search algorithm; experiments are performed

on a predefined graph. M* and related algorithms prop-

agate collision set data backward through nodes along

Dynamic Teams of Robots as Ad Hoc Distributed Computers 5

the search path (all the way to conflicting robots’ start

points), which are then added to the priority queue

as new joint space points. Additional search effort has

the effect of rebuilding the search tree while account-

ing for the coupled states of conflicting robots. Of the

algorithms presented by Wagner and Choset (2015),

recursive-M* is the most closely related to our approach.

Runtime complexity is equivalent to planning in the

joint configuration space of the largest team after the

final backpropogation and subdimensional expansion.

Recursive M* considers the joint movement of conflict-

ing robots in the subset of the search-tree preceding

nodes at which disjointed policies lead to a collision.

This is a form of subspace selection (where the par-

ticular space selected is determined by start locations,

collision points, and the topology of the workspace).

Our work differs from Wagner and Choset (2015) in

that we consider both communication issues between

robots and the potential for parallel processing within

a robot team. Finally, Wagner and Choset (2015) use a

single robot graph that is provided over the workspace

a priori (and is identical for all robots).

The sRRT algorithm (Wagner et al, 2012) applies

some of the principles used in M* to extensions of RRT.

sPRM, also presented by Wagner et al (2012), does the

same for PRM, which basically requires providing re-

cursive M* an input PRM graph for each robot. Our

work differs in that collision set information is encoded

in the heuristically chosen sub-areas located near to the

point of collision (enabling each robot in the team to

use its individual paths both to and from the sub-area,

and often allowing smaller sub-ares to be used—but at

the cost of asymptotic optimality).

A related idea is to have each agent plan its own

path, have each agent share those paths with nearby

robots, and then have those or other robots check for

pair-wise path conflicts. In (Scerri et al, 2007) tokens

that correspond to single-robot paths are passed among

the robots, and robots that have possession of tokens

are allowed to report when they detect pair-wise con-

flicting paths. The robots involved in the collision then

replan. Desaraju and How (2012) also use tokens to fa-

cilitate pair-wise conflict resolution. Tokens are passed

to the robots that report the most useful path mod-

ifications, and those robots are empowered to modify

their teammates’ conflicts. Methods that only fix pair-

wise problems are incomplete, since it is possible to de-

sign pathological cases involving conflict between more

than two robots that cannot be resolved by replanning

for only two robots; however, such methods often work

well for problems in which path conflicts are rare.

Dynamic teams based on shared problems and/or

communication have also been used in the context of

other (non-motion) planning problems; for example, cov-

erage, e.g., for search-and-rescue, (Arrichiello et al, 2009;

Voyles et al, 2010), surveillance (Hsieh et al, 2007), re-

mote sensing (Allred et al, 2007), exploration (Voyles

et al, 2009), and maintaining a communication link

(Dixon and Frew, 2007; Elston et al, 2009), etc.

2.3 Previous work on pebble motion games

Multi-robot motion planning is shown to be a relax-

ation of pebble motion games (Kornhauser et al, 1984;

Auletta et al, 1999; Peasgood et al, 2006; Surynek,

2009; Standley and Korf, 2011; Goldreich, 2011; Kro-

ntiris et al, 2013; Solovey and Halperin, 2014; Yu and

Rus, 2015; de Wilde et al, 2014; Surynek, 2014) that

are themselves a more general form of the 15-puzzle

(Johnson et al, 1879; Loyd and Gardner, 1959; Wilson,

1974; Ratner and Warmuth, 1986). Pebble motion is

relevant to the subspace selection used in our work be-

cause any subspace that contains enough free space to

solve the n pebble motion problem is sufficiently large

that a sampling-based motion planning algorithm will

find a solution to the n robot problem in that sub-

space with probability one, in the limit, as the number

of samples approaches infinity (in our work pebble size

represents robot width plus a non-zero clearance term

used to ensure a solution can be found with probability

greater than zero).

Early work by Johnson et al (1879) showed that the

15-puzzle had two classes of random starting configura-

tions, one that can be solved and one that cannot. This

result was extended to non-separable graphs (with a

few caveats) by Wilson (1974), while Kornhauser et al

(1984) show that the number of moves required along

an optimal solution path between any two configura-

tions is O(n3) and present a polynomial-time decision

algorithm that calculates whether or not a particular

problem instance is solvable (but does not provide a

solution to the instance).

Finding an optimal solution to any N-by-N pebble

motion puzzle (which includes the 15-puzzle) was shown

to be NP-complete in (Ratner and Warmuth, 1986).

Finding an optimal solution for the general pebbles on

graphs problem is shown to be NP-hard by Goldreich

(2011). A linear time decision algorithm for the special

case that the graph is a tree is given by Auletta et al

(1999), who also provide a super-polynomial algorithm

for solving an instance. This idea is used to create an

(incomplete) algorithm for solving a pebble motion-like

version of centralized multi-robot path planning prob-

lem by Peasgood et al (2006).

From a topological level, a spanning tree with n+ 1

leaves over the motion graph of the environment is a

6 Michael Otte, Nikolaus Correll

sufficient (but not necessary) condition to solve the cen-

tralized feasible motion planning problem with n robots

(and is quick to solve), (Surynek, 2009). A mechanism

for finding a solution in a number of other graphs, be-

yond spanning trees, is given by Surynek (2009). A cell

based formulation is considered by Standley and Korf

(2011), who performs extensive experimental trials us-

ing different algorithms from artificial intelligence.

Faster practical algorithms for the general case are

presented in (Krontiris et al, 2013; de Wilde et al, 2014).

Algorithms for the biconnected graph case appear in

(Surynek, 2014) and algorithms for the c colored robot

case (where any robot of a particular color may go to

any location associated with the same color) appear in

(Solovey and Halperin, 2014). Recent work by Yu and

Rus (2015) focuses on scenarios in which a set of pebbles

on a graph cycle may move along that cycle without the

existence of a free space.

All of the pebble motion algorithms discussed in this

subsection either assume that a graph structure is pro-

vided a priori (Kornhauser et al, 1984; Auletta et al,

1999; Surynek, 2009; Standley and Korf, 2011; Goldre-

ich, 2011; Krontiris et al, 2013; Solovey and Halperin,

2014; Yu and Rus, 2015; de Wilde et al, 2014; Surynek,

2014) or calculate a graph at runtime (Peasgood et al,

2006) and then solve the pebble motion problem on

that graph. In contrast, we leverage a decision test for

pebble motion solvability in free space rectangles to en-

sure that we pick a sufficiently large subspace in which

to solve the multi-robot motion planning problem via

a sampling-based motion planning algorithm.

2.4 Related work for distributed computation on a

team of robots

The basic idea of distributed computing over an ad hoc

wireless network or within a robotic team has appeared

in a handful of previous works. In (Khoo and Horswill,

2002) an inference engine is implemented across a three-

computer team made up of two robots and a command

module. The idea of sequentially cycling the computa-

tion related to solving a shared coordination problem

across a multi-agent team is presented in (Ford et al,

2010) (i.e., the computation of what is essentially a sin-

gle virtual process rotates through the CPUs of all team

members).

Agile computing1 (Suri et al, 2006, 2008; Suri and

Cabri, 2014) and the “Object Interaction Language (OIL)”

(Sutton et al, 2010) promote the idea of using a middle-

ware layer to discover and share resources and services

among nodes in a distributed computing network that

1This is unrelated to agile software development practices.

may include ad hoc wireless. In (Johnson et al, 2008),

agile computing is applied in the context of mixed teams

of humans and robots. In (Otte, 2016), a distributed

neural network is created over a swarm of robots and

trained to classify images projected onto the swarm;

each robot is responsible for maintaining a slice of neu-

rons that communicate with their neighbors on other

robots using wireless communication. Although Hol-

land et al (2005) and Nardi et al (2006) consider the

design of a particular robotic platform, it is speculated

in these works that distributed computation in a robotic

swarm could be enabled over a wireless communication

medium.

The fact that distributed algorithms for multi-agent

teams operating over unreliable communication have

graceful performance declines versus degrading com-

munication (i.e., the “Any-Com” property) has been

previously observed in (Otte and Correll, 2013a, 2014;

Otte, 2011; Rutishauser et al, 2009; Amstutz et al, 2009;

Hollinger et al, 2011; Best et al, 2016).

3 Preliminaries

This section contains formal definitions of our nomen-

clature, followed by a high level description of our heuris-

tic subspace selection.

3.1 Nomenclature

A robot is denoted r. We assume that there are n

robots labeled r1, . . . , rn. A (temporary) team of robots
is defined as the set containing its members. For ex-

ample a team containing robots ri, . . . , rk is denoted

Ri,...,k = {ri, . . . , rk}, where we abuse the notation by

dropping the set notation ‘{’ and ‘}’ in the subscript

for the sake of readability.

The full configuration space of robot ri is denoted

Xi. A particular configuration of robot ri denoted xi.

Robot ri starts at configuration xstarti ∈ Xi and must

achieve xgoali ∈ Xi.

The full joint configuration space of a team is given

by the product space of its members, i.e., the full joint

configuration space of team R = {i, . . . , k} is

XR = Xi × . . .×Xk and a point within this space is

xR ∈ XR.

This work is intimately related to different subspaces

of each robot’s configuration space as well as the prod-

uct spaces created from them. Let Si be a subset of

robot ri’s configuration space, where Si ⊆ Xi. The prod-

uct space of multiple subspaces is denoted

Si,...,k = Si × . . .× Sk ⊆ Xi,...,k.

Dynamic Teams of Robots as Ad Hoc Distributed Computers 7

If a collision point is detected such that team

R = {i, . . . , k} is created, then we consider the conflict-

ing robots’ joint sub-problem that is defined in

SR = Si,...,k ⊆ XR. In practice SR is a subset of the

configuration space located “near to” the collision(s)

that cause(d) R to be created in the first place. The

particular method of choosing SR is largely up to the

user, but we assume that some form of heuristic is used

(e.g., those in Surynek (2009); Peasgood et al (2006);

Clark et al (2003) or the one we present in Section 4)

to ensure the probability a solution can be found is suf-

ficiently high for the application being considered.

For the ease of presentation we assume that robots

are physically identical such that, when multiple robots

form a team, the relevant subspace of each robot’s con-

figuration space is identical. In other words, the joint

motion planning problem considered by team

R = {i, . . . , k} is in space SR = Si,...,k such that

Si = . . . = Sk. The assumption Si = . . . = Sk is not re-

quired in general; however, robots must agree on the

particular planning space SR in which the joint prob-

lem is defined.

We denote points within SR as sR ∈ SR. For a sub-

problem defined in SR the team starts at

sstartR = sstarti × . . .× sstartk where sstarti 6= sstartj for all

i 6= j (robots start at different locations) and sstarti is

the point where robot i enters SR (i.e., immediately

before the conflict that caused the dynamic team to

form).

Similarly, the team agrees to achieve the subgoal

sgoalXR
= sgoali × . . .× sgoalk where sgoali 6= sgoalj for all i 6= j

(robots go to different locations) and sgoali is the point

where robot i exits SR (i.e., immediately after the con-

flict that caused the dynamic team to form).

A feasible path for robot ri is a sequence of ` points

Pi = xi(1), . . . xi(`) such that xi(1) = xstarti and

xi(`) = xgoali and it is safe for robot i to move from

point xi(j) to xi(j+1) for all j such that i ≤ j ≤ `− 1.

Similarly, a multipath Pi,...,k = si,...k(1), . . . si,...,k(`)

through Si,...,k is a mutually safe set of paths for robots

i, . . . , k such that si,...k(1) = sstarti,...,k and si,...,k(`) = sgoali,...,k

and it is safe for each robot i, . . . , k to move from si,...k(j)

to si,...k(j + 1) for all j such that i ≤ j ≤ `− 1. The

multipath of team R is denoted PR

We assume the existence of a (family of) path and

multipath measures ‖ · ‖ that we seek to minimize.

Curve length through the joint state space is one possi-

ble choice for ‖ · ‖ (in other words, the one-dimensional

Lebesgue measure). Ideally, given an environment with

n robots, we hope to find P∗i,...,n, the particular Pi,...,n

that minimizes ‖Pi,...,n‖. In practice this is usually in-

tractable, and so we settle for P̂i,...,n, the multipath

with smallest ‖Pi,...,n‖ that we can find given some set

of practical constraints. Practical constraints include,

for example, a user-defined planning time limit as well

as our greedy process of increasing team size and con-

sidering higher dimensional problems only in the vicin-

ity of robot-robot collision points.

3.2 Overview of heuristic subspace selection

In our implementation we use a lightweight heuristic

that either: (1) affirms that the problem instance in

SR permits a solution or (2) returns that such a guar-

antee cannot be made (in which case SR may or may

not permit a solution). We note that this heuristic only

checks for a sufficient condition that a pebble motion

solution can be found, it does not solve the pebble mo-

tion problem. We continue increasing the size of SR by

in inflation factor δ until the heuristic guarantees that

a solution can be found (or, in the worst case, until

SR = XR). This heuristic checks if a rectangle ΞH,W of

height H and width W exists in Sw.s.
R such that ΞH,W

contains no obstacles, and where Sw.s.
R is the projection

of SR into the the team’s two-dimensional workspace.

We shall refer to obstacle-free rectangles in Sw.s.
R as

“free space rectangles”.

Requirements for H and W are explicitly proved in

Section 5, and depend on robot width ρ and the clear-

ance term ε (where ε > 0 ensures a sampling-based so-

lution will be found with probability greater than zero).

The heuristic also checks that each robot in the subteam

can safely reach ΞH,W assuming other robots’ start lo-

cations in the sub-problem are treated as obstacles and

the projection of each robot i’s start and goal in Sw.s.
R

are surrounded by free space squares σstart
i and σgoal

i ,

respectively.

4 Algorithm

At a high level, an ad hoc distributed computer is formed

over each team of conflicting robots. The joint problem

considered by a particular team is constrained to a sub-

set of the search space near to the collisions that caused

that team to be formed in the first place. Each robot

uses the beginning part of its original single robot path

(which does not conflict with any other robots) to navi-

gate to the conflict region. The robots within each sub-

team use the C-FOREST parallelization of an asymp-

totically optimal sampling-based motion planning algo-

rithm to solve their mutual motion planning problem

on their collective ad hoc distributed computer.

Mutual motion planning problem seeks to avoid robot-

robot collisions. When sampling-based motion planning

8 Michael Otte, Nikolaus Correll

Algorithm 1 Main control loop on robot rj

1: Initialize()
2: ListenerThread()
3: SenderThread()

4: Pj ← CFOREST({rj},Xj , xstartj , xgoalj)
5: loop
6: if NewConflictsDetected then
7: HoldPattern()
8: Reset()
9: data← waitForDataFromTeammates()

10: (SR, sstartR , sgoalR)←GetSubSpace(R,XR, data)

11: P̂R ← CFOREST(R,SR, sstartR , sgoalR)
12: if not NewConflictsDetected then
13: Pj ← PathCombine(Pj , P̂R, sstartR , sgoalR)
14: moveAlong(Pj)

algorithms are used to solve the mutual motion plan-

ning problem, then robot-robot collisions are treated as

obstacles in the configuration space.

If an established team conflicts with another robot

or team then they are merged into a larger team. After

a team solves its mutual motion problem, and coordi-

nates its movement through the conflict region, then

the team structure dissolves along with the ad hoc dis-

tributed computer. Each robot is then free to continue

along the remaining portion of its original single robot

path, which is safe with respect to the now dissolved

dynamic team, but may still conflict with other robots

(necessitating the formation of another dynamic team).

The main control loop that runs on robot r ap-

pears in Algorithm 1; pseudocode for CFOREST is

presented in Appendix A, while the details of lower level

subroutines including Initialize(), ListenerThread(),

SenderThread(), and Reset() are presented in Ap-

pendix C.

The main control loop starts by running an initial-

ization routine and launching separate threads respon-

sible for receiving and sending messages to other robots

(lines 1-3). An initial path Pr for only robot r is cal-

culated using the C-FOREST algorithm (line 4) before

the main control loop starts (line 5). The algorithm

continually checks if new conflicts are detected between

robot r’s current team and another robot or team (line

6); and if so, then all conflicting robots are combined

into a new and larger team (see listener thread) and

the new team solves its new multi-robot problem as a

distributed computer using the distributed C-FOREST

algorithm (lines 7-11).

Note that the team enters into a safe holding pat-

tern (line 7) before beginning planning (this can, e.g.,

be accomplished using the method of Hsu et al (2002)).

In addition to resetting motion planning data and get-

ting all new data from relevant robots (lines 8-9), the

team also selects a subset of the environment near the

conflict region(s) in which to solve the multi robot mo-

tion planning algorithm (lines 9); this includes robot r’s

entry and exit point (sstartR and sgoalR) into the region

in which the higher dimensional problem is defined. Al-

though we technically sacrifice asymptotic optimality of

the final (global) multipath by solving the team’s joint

problem in a subset of the environment, considering a

reduced environment has the advantage of significantly

reducing problem complexity. The reduced complexity

makes it easier to find solutions, and often leads to bet-

ter overall solutions being found in practice (additional

discussion regarding optimality appears in Section 4.2).

After a solution is found (and assuming no new

conflicts have be detected as the solution was being

computed), then robot r calculates its new path using

PathCombine(Pj , P̂R, s
start
R , sgoalR), which sandwiches2

robot r’s projection of the team’s multipath between

the old portions of its path to sstartR and from sgoalR (line

13). As long as conflicts are not detected, then robot r

moves along its most recent path (line 14) while com-

municating with the rest of its team so that the team

can adjust if any robot falls behind schedule. The sub-

routine moveAlong(Pj) on line 14 is responsible for

removing robot j from its dynamic team once it has

passed through the conflict area. In the most straight-

forward implementation, all robots necessarily reach

the end of the multipath at the same time due to the

fact that the team’s subgoal is the Cartesian product of

each member’s exit point. That said, a straightforward

modification allows each robot to leave the team as soon

as it reaches its own exit point, provided it does not

re-enter the conflict region, and its post-conflict region

motion schedule is adjusted to accommodate collision

checking with other robots.

Although robots sandwich their projection of the

dynamic team’s multipath into their single-robot paths

as soon as the multipath is found by team, the team is

not dissolved until robots reach the end of the conflict

region. Thus, new conflicts with different robots will

cause a dynamic team expansion of the original team,

which is necessary to prevent cycles. Any new, larger

dynamic team will replan in a subspace that results

as a function of all of the team-member’s single-robot

paths. Because the post-sandwiched single-robot paths

implicitly include the old team’s multipath coordina-

tion constraints, the new dynamic team’s subspace is

implicitly dependent on the old team’s multipath.

2Given that synchronization may be necessary to ensure
that all robots move through the conflict zone safely; we as-
sume that robots are able to hold position within their start-
tile projection until all team members are ready. For complex
hold patterns, this requires that the clearance term be chosen
such that it is possible to align the hold patterns of different
robots

Dynamic Teams of Robots as Ad Hoc Distributed Computers 9

Algorithm 2 GetSubSpace(R,XR,data)

1: SR ← “smallest hyperrectangle containing one robot
width around all conflict points”

2: while SR 6= XR do
3: SR ← increase SR by a factor of δ
4: SR ← SR ∩ XR

5: sstartR ← entry points of team into SR
6: sgoalR ← exit points of team from SR
7: if largeEnough(SR, |R|)and safe(sstartR , sgoalR) then

8: return (SR, sstartR , sgoalR)

9: return (XR, xstartR , xgoalR)

GetSubSpace(R,XR,data) is used to select SR,

the subspace in which this robot’s team R solves its

mutual motion planning problem, as well as the sub-

start sstartR and subgoal sgoalR locations that represent

the transition point into and out of the subspace for the

team, respectively. It is described in Algorithm 2, and

works in an iterative fashion. It begins by setting SR
to be the smallest axis-aligned hyperrectangle that con-

tains all collision points (that lead to the creation of the

current team) increased by one robot width in all direc-

tions (line 1). This is calculated using the information

stored in teamData, and then increasing the space’s ra-

dius by a user-defined inflation factor δ (line 3). We

ensure that SR does not expanded beyond the original

XR (line 4). sstartR and subgoal sgoalR are then calculated

for the new SR (lines 5 and 6). Note that if a robot’s

overall start or goal locations are inside SR, and the

paths from or to them never leave SR, then a robot’s

substart/subgoal is simply its overall start/goal, respec-

tively. Algorithm 2 either returns when a safe rectangle

is found (line 7-8) or when the search space has grown

to be the entire space (line 9).

The heuristic largeEnough(SR, |R|) is used to check

if we can quickly predict the existence of a solution

within SR (inside the if-statement, line 7). It should be

stressed that it does not itself find a solution, but pro-

vides a quick prediction about if a solution can be found

(this prediction is allowed to produce a false negative

but may not produce a false positive). It cannot predict

all of the cases in which a solution can be found (as this

would require solving the entire motion planning prob-

lem). The methods in Surynek (2009); Peasgood et al

(2006); Clark et al (2003) are all possible candidates

for largeEnough(SR, |R|). However, in our implemen-

tation (with cylindrical robots that can rotate in place)

we simply verify that a large enough rectangle exists

to solve the R+ 1 pebble motion problem with square

pebbles of width ρ+ ε (and that each robot is capa-

ble of entering/leaving that rectangle while treating the

start/goal locations’ hold patterns of other robots as

obstacles). This calculation can be done, for example,

with the help of an occupancy grid map (as is done in

our experiments on real robots), or by collision check-

ing the sub-area versus obstacles in the environment

(we use polygon collision checking in our simulations).

In Section 5 we formalize the requirements of the rect-

angle, and prove that, in spaces with this property, a

solution will be found with probability one.

The function safe(sstartR , sgoalR), which appears within

the if-statement on line 7, verifies that the substart and

subgoal locations do not force conflicts at the entry or

exit points of SR. If the space is large enough that a so-

lution can be found and there are no collisions at entry

and exit points, or we are unable to find a smaller sub-

set of XR that is suitable, then the algorithm returns

the particular space that should be used for planning

(lines 7-8).

4.1 Soundness and completeness

Modern single-query sampling-based motion planning

algorithms such as RRT, RRT*, and RRT-# are prob-

abilistically complete3 and sound4 when used to solve

the centralized multi-robot motion planning problem.

Without a communication guarantee it is impossi-

ble for any algorithm to safely coordinate (or form dy-

namic teams or use distributed computation). So, sim-

ilar to any distributed multi-robot method, if robots

cannot communicate quickly enough to maintain safety

then the resulting multi-robot algorithm is both un-

sound and incomplete. That said, if we are allowed to

assume robot communication is above a minimum finite

threshold necessary to maintain safety, then our method

inherits both the probabilistic completeness guarantees

and soundness of whatever underlying sampling-based

motion planning algorithm is called as a subroutine.

Assuming that the underlying sampling-based mo-

tion planning algorithm is probabilistically complete

and robot communication is above a minimum thresh-

old that maintains safety, then the method we present

is probabilistically complete. This property is the re-

sult of two things: (1) The C-FOREST distributed al-

gorithm trivially inherits the probabilistic completeness

of the underlying sampling-based motion planning algo-

rithm it parallelizes assuming any finite bounded level

of communication. (2) The heuristic we use for subspace

3A probabilistically complete algorithm is an algorithm
that will find and return a solution with probability one if
a solution exists, but may run forever if a solution does not
exist (in practice a timeout is usually used to indicate that a
solution could not be found within an allotted planning time).

4A sound algorithm is an algorithm that will always return
a correct solution when it returns a solution.

10 Michael Otte, Nikolaus Correll

selection guarantees that probabilistic completeness is

not sacrificed by using subspace selection.

Assuming the underlying algorithm is sound, robot

communication is above a minimum threshold that main-

tains safety, and a solution is returned (to all robots),

then the method we present is sound. Soundness is

guaranteed because the resulting multipath is safe with

respect to the constraints that were considered during

its generation. Assuming robot communication is above

a minimum threshold that maintains safety, then the

same solution is returned to all robots in time to avoid

collisions.

4.2 Optimality

The strongest optimality property that can be obtained

with a sampling-based motion planning algorithm is

asymptotic optimality5. Our use of subspace selection

sacrifices any theoretical guarantees of asymptotic op-

timality that exist for the underlying algorithm. In-

deed, the overall solution found by our algorithm is

almost surely not asymptotically optimal (unless max-

imum team size is one, in which case the solution is

indeed asymptotically optimal).

As a consolation, our method has the weaker prop-

erty that the sub-paths between conflict regions, and

the sub-multipaths within each dynamic team’s con-

flict region are asymptotically optimal. We note that

the concatenation of asymptotically optimal sub-paths

does not yield an asymptotically optimal solution be-

cause robots/teams are unlikely to enter a new dynamic

team’s subspace at points along the globally optimal

multipath.

Sub-path optimality is a stronger guarantee than

feasibility, but not as strong as optimality. In practice,

we expect the solutions found by our algorithm to be

closer to optimal than those found by a an algorithm

that only provides a feasibility guarantee6. Indeed, in

the experiments presented in Section 6, our method of-

ten produces better solutions, within a finite planning

time, than algorithms that are asymptotically optimal.

5Asymptotic optimality means that, in the limit as the
number of samples approaches infinity, then the algorithm
will find an optimal solution with probability one.

6Although, to be fair, we cannot rule out the possible ex-
istence of pathological cases for which quality might become
arbitrarily worse than a feasible algorithm; however, we ex-
pect such cases to be unlikely to occur in practice (if they
occur at all). And, on the other hand, it is easy to design
cases where feasible algorithms are expected to yield solu-
tions with path lengths that are arbitrarily worse than our
method: for example, simply place an arbitrarily large border
of free space around a continuous space position swapping
problem.

5 Analysis of Subspace Selection Heuristic

Finding SR ⊆ XR that permits a solution is, in the

worst case, at least as hard as planning through the

entire XR. In some cases XR may be so intricate that

the only way to test if a particular SR permits a solution

is to solve the motion planning problem in SR; more-

over, pathological XR can be designed such that any

SR ⊂ XR that permits a solution must be arbitrarily

close to XR. Thus, we settle for using a quick heuris-

tic test that will often but not always report when SR
permits a solution; namely, largeEnough(SR, |R|).

We shortly prove that if largeEnough(SR, |R|) re-

ports that SR permits a solution, then a sampling-based

motion planning algorithm will find that solution with

probability one.

Let Sw.s.
R denote the two-dimensional workspace pro-

jection of SR. We assume disc robots that can rotate in

place, have a width of ρ, require a small clearance term

of ε (to ensure a solution can be found with nonzero

probability), and have the ability to stop in place. Thus,

verifying that SR permits a solution is reduced to solv-

ing a pebble motion problem in Sw.s.
R . Similar (sufficient

condition) proofs exist for more general robots, and can

be derived by replacing ρ with the footprint of a safety

space required to slow to a halt, turn around, or oth-

erwise maintain movement required for safety (i.e., cir-

cling in place to maintain altitude in an aircraft). The

basic idea can also be applied in higher dimensional

workspaces.

Our analysis is considerably simplified by assuming

that the pebbles (robots) behave like square tiles at

starts, goals, and when considering robot-robot colli-

sions. With this assumption our heuristic simply checks

whether or not we can assert that all robots can access a

free space rectangle ΞH,W ⊂ Sw.s.
R that is large enough

to solve the R tile moving problem with square tiles of

width (ρ+ ε).

Let σstart
i be the (ρ+ ε) width square that contains

the projecting of robot i at its start location. Let σgoal
k

be the (ρ+ε) width square that contains the projecting

of robot i at its goal location. We assume that σstart
i

and σgoal
k are open sets of space. The tile-like start and

goals assumption requires that all robot sub-problem

start tiles are nonintersecting and that all robot sub-

problem goal tiles are nonintersecting (this is necessary

to guarantee that we cannot design a pathological start

or goal instance for which our heuristic declares is solv-

able but that is not solvable). This is overly cautious

in tight environments, and can cause the heuristic to

report false negatives. However, the resulting heuristic

still provides sufficiency guarantees that the problem

Dynamic Teams of Robots as Ad Hoc Distributed Computers 11

ρ

ρ+ ε

Fig. 3: Each robot is assumed to start and end in a

(ρ + ε) by (ρ + ε) square (left) such that no two start

tile projections (solid) intersect and no two goal tile

projections (dashed) intersect (right).

is solvable in SR, which is all that we require for our

purposes.

The heuristic largeEnough(SR, |R|) returns true if

a H by W rectangle ΞH,W exists such that the following

conditions hold:

1. ΞH,W is large enough:

– There exist w, h ∈ Z+ s.t. hw ≥ 2|R| if |R| is

even and hw ≥ 2|R|+ 1 if |R| is odd, and

W ≥ (ρ+ ε) max(3, w) andH ≥ (ρ+ ε) max(3, h)

2. A free space rectangle ΞH,W exists:

– ΞH,W ⊂ Sw.s.
R

– ΞH,W contains only free space

3. ΞH,W is accessible:

– For all i ∈ {1, . . . , |R|} there is a single robot

path to ΞH,W from sstarti that treats sstartk for

all k 6= i as obstacles.

– For all i ∈ {1, . . . , |R|} there is a single robot

path from ΞH,W to sgoali ∈ ΞH,W that treats

sgoalk for all k 6= i as obstacles.

4. Tile-like start and goals:

– No two tile projections intersect at the start;

σstart
i ∩ σstart

k = ∅ for all i 6= k.

– No two tile projections intersect at the goal;

σgoal
i ∩ σgoal

k = ∅ for all i 6= k for all i 6= k.

We will shortly prove that a free space rectangle satis-

fying condition (1) is sufficient to solve the tile-moving

problem. Validating condition (1) and (2) is accom-

plished by iteratively choosing w = 3, . . . d
√
|R|+ 1e,

and then calculating:

W = (ρ+ ε) max(3, w)

and

H ≥

{
(d2|R|/we)(ρ+ ε) if |R| is even

(d(2|R|+ 1)/we)(ρ+ ε) if |R| is odd

In the special case that all robots start in an axis-

aligned single-file line, we require additional space to

ensure that start and goal locations in the subspace can

be deconflicted (this is why the ‘3’ appears – it guaran-

tees a buffer of at least least one robot at the edge of

the subspace, which is necessary to deal with especially

bad sub-problem start or goal locations).

Next, we check if either freespace rectangles ΞH,W

or ΞW,H) exist in Sw.s.
R . Given a particular ΞH,W an oc-

cupancy grid map can be used to check condition (2),

and a simple straight line path or a simple grid-based

planner can be used to verify condition (3) (Note that

if start or goal locations exist in bottlenecks then the

heuristic may return a false negative due to the require-

ment to be able to reach ΞH,W ; we reiterate that we

tolerate false negatives but not false positives). Similar

methods could easily be developed to work in a tri-

angulation or polytope representation of the environ-

ment and use more sophisticated single-robot planners

to generate fewer false negatives.

Given our assumptions and conditions 1-4, we now

prove that an assertion by largeEnough(SR, |R|) is

sufficient to guarantee that the problem instance in SR
can be solved with probability one by a sampling-based

motion planning algorithm. The proof relies on three

intermediate results. First, (given our assumptions and

conditions 1-4) it is always possible to move the robots

into a grid pattern that is h robots by w robots and

located within ΞH,W . Next we show it is possible to

re-grid the robots into any other ordering in the h by w

grid without any robot leaving ΞH,W (i.e., that ΞH,W

is sufficient to solve any instance of the |R| tile moving

problem). Finally, we show that some robot ordering

exists over the same h by w grid such that it is possi-

ble to move robots from the grid pattern to their goal

locations.

We first consider the strict tile moving game and

then later relax these assumptions. The assumptions of

a pure tile moving game are as follows (see Figure 3):

– All robots are square tiles of width ρ+ ε.

– All tiles start and end in ΞH,W ; formally,

σstart
i ⊂ ΞH,W and all σgoal

i ⊂ ΞH,W .

We define a w by h grid embedded in ΞH,W (See

Figure 4). For convenience grid cells may either be iden-

tified by their two-dimensional coordinates (i, j) or by

a unique grid number iw + j. Let the i-th row of the

h by w grid be defined Ri. Let Σi be the set of all

robots with squares σstart
i such that σstart

i ∩Ri 6= ∅. We

recursively define the special row set Σ̂i as follows:

Σ̂0 = Σ0

Σ̂i = Σi \ Σ̂i−1

Note that Σ̂i contains all σstart
i that have their “bot-

tom” in Ri bot not necessarily their “top”.

12 Michael Otte, Nikolaus Correll

A
BCD

1
2
34

7

17

12

2

8

18

13

3

9

19

14

4

10

20

15

5

6

16

11

1

w(ρ+ ε)

h
(ρ

+
ε)

W

H (i) (ii) (iii)

(iv) (v) (vi)

0

1

2

3

i

0 1 2 3 4 j

Fig. 4: Left: w by h grid embedded in freespace rectan-

gle ΞH,W , grids can be labeled by position (i, j) or by

number iw + j + 1 (shown). Right: depiction of argu-

ment used in Lemma 1; given our definition of ΞH,W

(from which it follows that h,w ≥ 3 and hw ≥ |R|2 for

even |R| and hw ≥ |R|2 + 1 for odd |R|), it is always

possible to gather the robots in the lower left corner

(i-iv), and then re-position them in the |R| lowest num-

bered grid cells (iv-vi), e.g., moving the robots labeled

1-4 into cells labeled A-D, respectively).

Lemma 1 Assuming the tile model assumptions hold

and free space ΞH,W such that condition (1) is satis-

fied, then it is always possible to move robots (without

collisions) such that they are organized in grids num-

bered 1 through |R|.

Proof By construction we can move all robots directly

downward as far as they each can go until Σ̂i ⊂ Ri for

all Σ̂i (See Figure 4). Next we move all robots left as far

as they can each go and then down as far as they can all

go. This will position all robots at the bottom left such

that their are no holes in the robot mass. Finally, since

there is at least |R| free grids in the upper right, we

can move robot one at a time until they occupy grids 1

through |R|

The following corollary is obtained by reversing the

processes described above, and swapping start and goal

locations.

Corollary 1 Assuming the tile model assumptions hold

and free space ΞH,W such that condition (1) is satisfied,

there always exists some labeled gridding of robots in

grids numbered 1 through |R| such that it is possible to

move the robots (without collisions) to the labeled goal

locations.

Lemma 1 places the robots into arbitrary locations

in the h by w grid, while Corollary 1 requires a partic-

ular arrangement of the robots within the h by w grid.

The next two lemmas show that it is always possible to

reorder robots to achieve any particular order we desire.

odd or even

e
v
e
n

odd

o
d
d

Fig. 5: For any w and h allowed by condition 1, it is

possible to construct a cycle that visits each of the |R|
lowest numbered grid cells. Note that we only depict

rows containing the |R| lowest numbered cell. Also note

the left case can be transposed to yield the case for odd

height and even width. Rows outlined in blue can be

repeated as often as required (including its sub-path)

to obtain a cycle over the required number of rows.

Similarly, the columns outlined in red can be repeated

as often as require to obtain a cycle over w columns.

Nine different examples are shown for the even row case

(center). Grid cells numbered ≤ |R| appear gray, while

the upper right grid cell in the odd-odd case is always

> |R| and appears white. Cells that are both gray and

white may or may not have numbers in {1, . . . , |R|}
depending on the particular |R|, h, and w that are used.

Lemma 2 Assuming the tile model assumptions hold

and free space ΞH,W such that condition (1) is satis-

fied, and that |R| robots have been placed into the lowest

numbered grids (1 to |R|) in ΞH,W , a one-dimensional

cycle exists through ΞH,W such that when robots fol-

low the cycle each robot eventually visits each grid with

number less than |R|.

Proof The proof is by construction. There are two cases,

one each for when |R| is even and odd, respectively. The

cases are illustrated in Figure 5, respectively. Both cases

amount to moving an empty space in the reverse direc-

tion through the cycle which causes the team to move

in the forward direction.

Lemma 3 Assuming the tile model assumptions hold

and free space ΞH,W such that condition (1) is satisfied,

and that |R| robots with unique labels (e.g., IDs 1 to

|R|) have been placed into the 1 to |R| numbered grids

of an h by w robot grid pattern in ΞH,W , it is possible to

move robots into any permutation of that labeling over

the same |R| numbered grids.

Proof Without loss of generality we assume that robots

start randomly permuted around the cycle described in

the Lemma 2 and we want to reorder them according

to increasing ID around that cycle. The proof is by in-

duction. (Base case) we choose robot 1 as the start of

the ordered cycle—in which case, it takes no more than

Dynamic Teams of Robots as Ad Hoc Distributed Computers 13

4
3 615

2

5 61
3 4
2

5
1 346

2

1 346
2 5

2 4
3 615

2,1,6,4,3,5

1,6,4,2,3,5

4
5 612

3

612
5 4
3

5
2 461

3

2 461
3 5

3 4
5 612

3,2,1,6,4,5

2,1,6,4,3,5

6
25 13

4

2 13
5 6
4

5
13 62

4

13 62
4 5

4 6
25 13

4,3,2,1,6,5

3,2,1,6,4,5

6
1234

5

6123
4
5

6
1234

5

1234
65

65
1234

5,4,3,2,1,6

4,3,2,1,6,5

16
2345

6,5,4,3,2,1

5,4,3,2,1,6

2 346
1 5

1,6,4,2,3,5

Fig. 6: Using repeated cycling and an additional grid

for storage, it is possible to reorder the robots into any

desired permutation around the cycle (example of the

induction used in Lemma 3). In this example robots

start in the order 1, 6, 4, 2, 3, 5 around the cycle and we

place them into the order 5, 6, 5, 4, 3, 2, 1.

a single cycling of the team to place one robot in the

correct location, i.e., robot 1. (Inductive Step) we as-

sume that robots 1, . . . , k have been organized in the

correct order around the cycle, and we wish to place

robot k + 1 behind robot k (an example of this is il-

lustrated in Figure 6). By Lemma 2 we know we can

cycle the team until robot k + 1 is located at position

(dh/2e, 0). If R robots are in the the lowest |R| num-

bered grids, then by construction grid cell (dh/2e+1, 0)

exists and will be empty. Thus, we can move robot k+1

into grid (dh/2e+ 1, 0) which creates a free position at

(dh/2e, 0). Next we partially cycle the team until the

new free position is re-positioned behind robot k, and

then cycle all robots (except robot k + 1) and the gap

until the gap is located at (dh/2e, 0). Finally we move

robot k + 1 into the gap.

Theorem 1 Assuming the tile model assumptions hold

and free space ΞH,W such that condition (1) is satisfied,

and given |R| robots at (labeled) start locations sstarti ⊂
ΞH,W and (labeled) goal locations sstarti ⊂ ΞH,W , then

it is always possible to move all robots from start to

goal.

Proof The proof is by construction. Using Lemma 1 and

2 it is possible to move robots from (labeled) starts in

Sw.s.
R to unlabeled positions in the lowest |R| grids of

ΞH,W ., call the resulting permutation p1. Similarly, us-

ing Corollary 3 we know there exists some permutation

of robots p2 within the lowest |R| grids of ΞH,W such

that all robots can be moved to (labeled) goal locations

in Sw.s.
R . Finally using Lemma 3 we know it is possible

to reorder robots from p1 into p2 without leaving ΞH,W .

The above Theorem assumes that robots are tiles

and that all σstart
i ⊂ ΞH,W and σgoal

i ⊂ ΞH,W to begin

with. These results can be relaxed to disc teams (as

long as the start and goal locations still obey condition

4) and to teams with robots that do not start or end in

ΞH,W (as long as the pebble projection of each robot

i is capable of reaching ΞH,W through Sw.s.
R). These

extensions are made explicit in the next two lemmas.

Lemma 4 If condition 4 holds then Theorem 1 can be

relaxed such that the first tile assumption is dropped and

robots are instead discs of radius ρ+ ε.

Proof As long as start and goal locations obey the tile

model (condition 4 holds), then reducing the footprint

of robots from tiles to discs cannot prevent any solution

from being found (since we can always move robots as

if they were surrounded by a tile and still solve the

problem).

Lemma 5 Assuming ΞH,W such that conditions (1),

(2), (3), (4) are satisfied and all robots start in ΞH,W

and have projected goals in Sw.s.
R , then each robot i is

capable of reaching its goal.

Proof By construction when all robots start in ΞH,W

we can move all robots to the lowest numbered cells

using Lemma 1 and Lemma 4, then then place them,

one at a time, into the highest even-numbered grids to

create a checkerboard pattern. In such a checkerboard

pattern, the grid cells containing robots alternate with

grid cells containing only free space. Thus, some robot

is able to move through any opening that is at least

ρ + ε large, since any particular robot on the bound-

ary can move up to ρ+ ε before colliding with another

robot. Robots can be arranged in the grid in the re-

quired order by Lemma 3, such that the robot closest

to an exit is the one that needs to use it first (by con-

struction, other robots can navigate directly to the exit

after the closest robot to it has left ΞH,W). Thus we

can move all robots that have goals entirely outside of

ΞH,W first, then place the remaining robots where they

go (either entirely in ΞH,W , or intersecting the bound-

ary of ΞH,W).

Reversing the process gives the following corollary.

Corollary 2 Assuming ΞH,W such that conditions (1),

(2), (3), and (4) are satisfied, and that all robots end in

ΞH,W , each robot i is capable of reaching ΞH,W through

Sw.s.
R from its projected start.

Finally we prove the following theorem regarding

our Heuristic.

14 Michael Otte, Nikolaus Correll

Theorem 2 If largeEnough(SR, |R|) returns true then

a sampling-based motion planning algorithm will find a

solution in SR with probability one, in the limit, as the

number of samples increases.

Proof Using Corollary 2 it is always possible to move

robots from their start locations in SR into ΞH,W , and

using Lemma 5 it is also always possible to move them

from ΞH,W to SR. Thus a solution exists. The safety

factor of ε > 0 ensures that the sampling-based mo-

tion planning algorithm that we use does not need to

perfectly sample any particular point to find a feasi-

ble solution. And thus, as the number of samples ap-

proaches infinity, the probability that we find a solution

approaches one.

6 Experiments and Simulations

Experiments on real robots appear in Sections 6.1-6.2,

and are performed using multiple Prairiedog robotic

platforms (Figure 7-Left) that run the ROS operating

system, and localize using the Hagisonic Stargazer, an

infrared beacon-based localization system. All robots

are equipped with an occupancy grid map of the envi-

ronment that is used for static obstacle collision check-

ing. Robots exchange data using IEEE 802.11g wire-

less in ad hoc mode. The desired speed of all robots is

set to 0.2 meters per second. Motion planning is per-

formed onboard, and multi-robot problems are solved

on ad hoc distributed computers formed across the dy-

namic teams. The C-FOREST distributed paralleliza-

tion framework (Otte and Correll, 2013b) is used on

top of the asymptotically optimal Shortest Path Ran-

dom Tree algorithm (presented in the Appendix of Otte

(2011)). Solution lengths are measured as the sum of all

individual path lengths.

Experiments in simulations appear in Section 6.2,

and were coded using the Julia programming language

and run on a Dell computer with an Intel i7 proces-

sor and 64 GB of memory. Simulations compare C-

FOREST parallelization to OR-parallelizations and no

parallelization (in no parallelization a single robot com-

putes the solution). Each of the parallelization (and lack

of parallelization) methods are tested in conjunction

with the RRT, RRT*, and RRT-# sampling-based mo-

tion planning algorithms. All parallelization-algorithm

combinations use dynamic teams and are evaluated both

with and without subspace selection and across differ-

ent levels of communication quality.

10 mAndrews Hall

Common Room

Fig. 7: Left: Prairiedog robotic platform used in exper-

iments. Right: Occupancy grid used for static obstacle

detection in the Andrews Hall and Common Room en-

vironments at the University of Colorado.

0 10 20 30 40 50

0

10

20

Fig. 8: Top: Actual robot paths vs. time (thick colored

lines), and their projections on the free space of An-

drews Hall (thin colored lines and gray, respectively).

Time (measured along the z-axis) 0 corresponds to the

first team formation. Bottom: projections on the free

space of Andrews Hall with start and goal locations

(‘o’s and ‘x’s, respectively).

Table 1: Large Andrews Hall experiment (with conflict

region selection) statistics, 10 runs with 4 robots

mean std. dev.
In-team communication quality 63.18% 27.48%
Actual distance traveled (meters) 161.8 12.6

6.1 Large Andrews Hall experiment with subspace

selection

This experiment is designed to test our conjecture from

Otte and Correll (2014) that using subspace selection

with a dynamic team algorithm can reduce computa-

Dynamic Teams of Robots as Ad Hoc Distributed Computers 15

Table 2: Six-robot experiment (with dynamic teams)

statistics, 10 runs with 6 robots

mean std. dev.
In-team communication quality 63.81% 13.72%
Actual distance traveled (meters) 37.30 8.60

Table 3: Six-robot experiment (without dynamic teams)

statistics, 10 runs with 6 robots

mean std. dev.
In-team communication quality 66.59% 9.21%
Actual distance traveled (meters) 64.62 18.35
if an experiment was successful

tional burden versus using dynamic teams alone. That

is, to test the hypothesis that planning in SR = Si,...,k ⊆ XR

instead of XR will improve performance in practice.

Four robots are placed as they would enter the com-

mon room/hallway in the center of the building and told

to go to the corners of the opposite wing. This results

in a bottle-neck condition that favors the creation of a

four-robot team. Each team is allowed to plan for twice

the time it takes to find an initial solution. 10 runs are

performed, and all robots successfully reach their goals

in every run. Figure 8 depicts robot locations versus

time for a typical run. The mean and standard devia-

tion of observed statistics over all 10 runs are displayed

in Table 1.

In Otte and Correll (2014) we ran another experi-

ment without subspace selection but with dynamic teams

that provides an interesting contrast to the current ex-

periment. The experiment in Otte and Correll (2014) is

similar to the one described above in that the same en-

vironment was used (the only difference was that robots

started further away from each other in the corners of

the building). In the experiment in Otte and Correll

(2014) all robots failed to reach the goal in all five runs,

after forming a single team that was unable to solve its

problem in 10 minutes (average communication qual-

ity between any two members of the same team was

60.69% with a standard deviation of 22.64%, ruling out

communication failure as the reason for failure (Otte

and Correll, 2014)).

6.2 Subspace selection with and without dynamic

teams

In this experiment we use subspace selection and eval-

uate how using or not using dynamic teams affects

performance. Two groups of three robots start at the

two bottle-neck positions located at either end of the

common room in Andrews Hall (Figure 7-Right). The

robots are told to exchange places within each group.

This placement is used to encourage the formation of

two teams, such that each team has three robots. Each

team is allowed to plan for twice the time it takes to

find its initial solution.

In the first set of ten experiments the robots are

programmed to use both dynamic teams and subspace

selection. In the second set of ten experiments robots

form a single team out of all robots in communication

range, which then uses subspace selection to reduce the

hypervolume of the six-robot configuration space.

All robots successfully reach their goals in every run

when using both dynamic teams and subspace selection.

Figure 9-Left depicts robot locations versus time for a

typical run. The mean and standard deviation of ob-

served statistics over all ten runs are shown in Table 2.

In contrast, when using subspace selection without

dynamic teams, five of ten runs failed due to a five

minute time-out (if an initial solution has not been

found within five minutes of planning time). Figure 9-

Right depicts robot locations versus time for a typi-

cal successful run. The mean and standard deviation

of observed statistics over all ten runs are displayed in

Table 3, where communication quality is over all ten

runs, and distance traveled is over the three experi-

ments where all robots reached the goal.

6.3 Simulations with various methods, obstacle

clutter, and communication quality

We run repeated trials of the proposed method in con-

junction with RRT, RRT* and RRT-# in simulation,

across a variety of scenarios with different obstacle clut-
ter and different communication qualities. Each method

combination is run both with and without subspace se-

lection. The use of simulation enables us to control com-

munication quality, which is modeled using a Bernoulli

distribution, and to run a large number of trials to gen-

erate statistics.

Robots start near the outside of a 50 meter by 50

meter environment at equal angles and must reach the

opposite side while avoiding static obstacles and other

robots. Random maps are generated containing random

polygonal obstacles inside the 40 meter by 40 meter cen-

ter part of the environment. A particular map is used

once for each combination of parallelization technique,

subspace selection (used or not used), underlying plan-

ning algorithm, and communication quality. The com-

munication qualities evaluated include p ∈ {1.0, 0.5, 0.1, 0.05},
where p is the probability a message is successfully sent

according to the Bernoulli model.

We define a 255-second timeout for each sub-problem.

However, this is implemented as follows: dynamic teams

16 Michael Otte, Nikolaus Correll

30 40

10

5

25 35

15

30 40

10

5

25 35

15

Fig. 9: Top Left: a typical solution from the six-robot experiment with subspace selection and dynamic teams.

Top Right: A typical solution from the six-robot experiment without dynamic teams but still using conflict region

selection. Actual robot paths versus time (thick colored lines), and their projections on the free space of the

common room environment (thin colored lines and gray, respectively). Two teams of three robots each form on

either side of the common room. The floor plan is included to aid visualization. Note the different scales used

along the time (z) axis for left versus right. Bottom: projections on the free space of Andrews Hall with start and

goal locations (‘o’s and ‘x’s, respectively).

restart from scratch if they have not found a solution

in 2restarts seconds for restarts = 1, 2, . . . , 7. This idea

comes from Wedge and Branicky (2008), and is used to

mitigate effects of poor initial sampling. If an asymptot-

ically optimal algorithm is used (RRT* and RRT-#),

then the team continues to improve its solution as long

as time remains during its current restart phase. When

a feasible algorithm is used (RRT) the team stops plan-

ning as soon as the first solution is found on each robot

(or at the end of the current restart if at least one robot

has found a solution).

Figure 10 shows the mean summed path length (the

sum of the distances traveled by all robots in the team)

over all trials for the various methods. The mean value

of the maximum planning time (experienced by any

robot in the team) over all trials appears in figure Fig-

ure 11. All results shown use dynamic teams (we also

ran experiments without dynamic teams, but none of

them finished within the allotted planning time).

7 Discussion

Our experiments demonstrate that both subspace selec-

tion and dynamic teams can reduce problem complex-

ity, thus making multi-robot motion planning problems

easier to solve in practice. Indeed, our first experiment

shows that using subspace selection can make the dif-

ference between being able to solve a problem within

a reasonable amount of time or not — even when dy-

namic teams are already used to reduce problem com-

plexity and distributed computing is used to leverage

the available computational power.

Our simulations show that subspace selection im-

proves performance across a variety of different par-

allelization methods (C-FOREST, OR-Parallelization,

and single robot planning) and when used in conjunc-

tion with various sampling-based motion planning al-

gorithms (RRT, RRT*, and RRT-#).

On the other hand, our experiments also show that

subspace selection should be used to complement dy-

namic teams but not as a replacement for dynamic

Dynamic Teams of Robots as Ad Hoc Distributed Computers 17

Summed path lengths of 10 robots with 10 random obstacles

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRTRRT

Comms Probability p

su
m

o
f

p
a
th

le
n

g
th

s

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT*RRT*

Comms Probability p

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT#RRT-#

Comms Probability p

All methods use dynamic teams

Without sub-aea selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Summed path lengths of 10 robots with 20 random obstacles

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRTRRT

Comms Probability p

su
m

o
f

p
a
th

le
n

g
th

s

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT*RRT*

Comms Probability p

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT#

Comms Probability p

RRT-#

All methods use dynamic teams

Without sub-area selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Summed path lengths of 10 robots with 50 random obstacles

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRTRRT

Comms Probability p

su
m

o
f

p
a
th

le
n

g
th

s

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT*RRT*

Comms Probability p

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

m
e
a
n

s
u
m

l
e
n
g
t
h
s

p

RRT#

Comms Probability p

RRT-#

All methods use dynamic teams

Without sub-area selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Fig. 10: The mean summed path length of all robots, averaged over 15 trials. For each trial a map is generated

containing random polygonal obstacles; this map is used once for each method combination. Top to Bottom:

increasing numbers of obstacles. Left to Right: different sampling-based motion planning algorithms. Colors: dif-

ferent parallelization methods. Solid and dashed lines represent the use of subspace selection or not, respectively.

All results shown use dynamic teams (we also ran experiments without dynamic teams, but none of them finished

within the allotted planning time).

18 Michael Otte, Nikolaus Correll

Planning time of 10 robots with 10 random obstacles

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRTRRT

Comms Probability p

p
la

n
n

in
g

ti
m

e

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT*RRT*

Comms Probability p

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT#RRT-#

Comms Probability p

All methods use dynamic teams

Without sub-area selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Planning time of 10 robots with 20 random obstacles

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRTRRT

Comms Probability p

p
la

n
n

in
g

ti
m

e

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT*RRT*

Comms Probability p

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT#

Comms Probability p

RRT-#

All methods use dynamic teams

Without sub-area selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Planning time of 10 robots with 50 random obstacles

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRTRRT

Comms Probability p

p
la

n
n

in
g

ti
m

e

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT*RRT*

Comms Probability p

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

t
o
t
a
l

m
a
x

t
i
m
e

p

RRT#

Comms Probability p

RRT-#

All methods use dynamic teams

Without sub-area selection

Single CPU

OR-parallel

C-FOREST

With sub-area selection

Single CPU

OR-parallel

C-FOREST

Fig. 11: The maximum planning time used by any robot in the team (summed over all path planning phases),

averaged over 15 trials. For each trial a map is generated containing random polygonal obstacles; this map is

used once for each method combination. Top to Bottom: increasing numbers of obstacles. Left to Right: differ-

ent sampling-based motion planning algorithms. Colors: different parallelization methods. Solid and dashed lines

represent the use of subspace selection or not, respectively. All results shown use dynamic teams (we also ran

experiments without dynamic teams, but none of them finished within the allotted planning time).

Dynamic Teams of Robots as Ad Hoc Distributed Computers 19

teams. In other words, subspace selection is not a “sil-

ver bullet.” This is a very intuitive result given that the

complexity of the multi-robot motion planning prob-

lem is O(‖SR‖|Rmax|) and subspace selection reduces

SR while dynamic teams reduce |Rmax|.
At a high level, our work provides more evidence

that teams of robots can pool their computational re-

sources to create ad hoc distributed computers, and

that the resulting ad hoc distributed computers can

be used to help solve the team’s mutual motion plan-

ning problem. The observed communication quality in

our experiments with real robots was 65%. In simula-

tions we tested communication rates as low as 5% and

found that C-FOREST and OR-Parallel implementa-

tions both functioned well. These observations support

our belief that any-com algorithms are well suited to

run on a robot team’s ad hoc distributed computer,

and reinforce our earlier results from Otte (2011); Otte

and Correll (2013a, 2014).

In Experiment 2 we observe that the multipath found

by the six-robot team had individual robots wander

much further away from the center of the conflict re-

gion than the combined solutions found by two teams

of three robots each. This is likely due to the fact that,

when more robots (and thus dimensions) exist in the

configuration space, planning algorithms required more

time to compute a solution that has a particular level of

efficiency for all robots. This suggests that subspace se-

lection may also provide a secondary means of reducing

overall problem complexity when used with dynamic

teams. Namely, by constraining replanning to small re-

gions around conflicts, the resulting multipath solutions

tend to wander less around the environment; this reduc-

tion of wandering reduces the snowballing effect that

occurs when robots spread out to avoid collisions and

then inadvertently cause new out-of-team conflicts that

increase dynamic team size and problem complexity.

We note that Experiment 2 was not designed to test

this particular phenomenon, and therefore this should

be considered an unproven conjecture.

It is worth mentioning that the use of dynamic teams

and subspace selection will not reduce the complexity

of worst-case problems, e.g., in which all robots form a

single team and it is impossible to plan in any subspace

smaller than the full product space over each robot’s

full configuration space. Finally, the heuristic subspace

selection method that we use, which leverages a result

from pebble motion, requires the existence of a convex

region of space large enough to solve the pebble motion

problem. Therefore, the heuristic will not be useful in

environments that lack adequately convex subsets of

free space. This may occur, for example, in highly clut-

tered environments.

8 Summary and Conclusions

Previous work by ourselves and others has shown the

computational benefits of breaking a multi-robot mo-

tion planning problem into sub-problems based on dy-

namic teams, such that higher dimensional problems

involving more robots must only be solved when neces-

sary to avoid collisions. The current paper complements

and extends this body of previous work by showing

how heuristic subspace selection based on pebble mo-

tion provides a different and complementary mechanism

to reduce problem complexity.

The subspace selection heuristic quickly checks if a

subset of the environment contains a subset of obstacle-

free space large enough to solve a tile moving game,

where tile size is defined as a function of robot radius

and maneuvering constraints. If the existence of a tile

game solution can be proved, then a sampling-based

motion planning algorithm will solve the multi-robot

problem in the same subset of space with probability

one. The heuristic does not solve the tile moving game,

it just checks if enough free space exists such that the

game can be solved. However, this allows us to used

a much smaller configuration space when solving the

multi-robot motion planning problem with a sampling-

based motion planning algorithm.

We run two sets of experiments with actual robots

in which conflicting robots form dynamic teams, and

all robots in a team work together to solve their com-

munal motion planning problem. The dynamic teams

pool their computational resources into an ad hoc dis-

tributed computer that runs the C-FOREST distributed

branch and bound framework for sampling-based mo-

tion planning. This provides additional evidence that
an ad hoc computer can be formed at runtime by a

robotic team using unreliable wireless communication,

and also that any-com algorithms are well suited to run

on such an architecture.

We find that subspace selection improves perfor-

mance when used with a variety of parallelization tech-

niques and sampling-based motion planning algorithms.

Moreover, subspace selection is often necessary to solve

a problem within a reasonable amount of time. Sub-

space selection is complimentary to, and not a replace-

ment for, dynamic teams and distributed computation.

References

Al-Wahedi K (2000) A hybrid local-global motion plan-

ner for multi-agent coordination. Masters thesis,

Case Western Reserve University

Allred J, Hasan AB, Panichsakul S, Pisano W, Gray

P, Huang J, Han R, Lawrence D, Mohseni K (2007)

20 Michael Otte, Nikolaus Correll

Sensorflock: an airborne wireless sensor network of

micro-air vehicles. In: Proceedings of the 5th Inter-

national Conference on Embedded Networked Sensor

Systems, pp 117–129

Amstutz P, Correll N, Martinoli A (2009) Distributed

boundary coverage with a team of networked minia-

ture robots using a robust market-based algorithm.

Annals of Mathematics and Artifcial Intelligence

Special Issue on Coverage, Exploration, and Search

52(2-4):307–333

Arrichiello F, Das J, Heidarsson H, Pereira A, Chi-

averini S, Sukhatme GS (2009) Multi-robot collab-

oration with range-limited communication: Experi-

ments with two underactuated ASVs. In: Interna-

tional Conference on Field and Service Robots

Auletta V, Monti A, Parente M, Persiano P (1999) A

linear-time algorithm for the feasibility of pebble mo-

tion on trees. Algorithmica 23(3):223–245

Best G, Cliff O, Patten T, Mettu R, Fitch R (2016)

Decentralised monte carlo tree search for active per-

ception. In: International Workshop on the Algorith-

mic Foundations of Robotics (WAFR), San Fran-

cisco, USA

Clark CM, Rock SM, Latombe JC (2003) Motion plan-

ning for multiple mobile robots using dynamic net-

works. In: Robotics and Automation, 2003. Proceed-

ings. ICRA’03. IEEE International Conference on,

IEEE, vol 3, pp 4222–4227

de Wilde B, Ter Mors AW, Witteveen C (2014) Push

and rotate: a complete multi-agent pathfinding al-

gorithm. Journal of Artificial Intelligence Research

51:443–492

van Den Berg J, Snoeyink J, Lin MC, Manocha D

(2009) Centralized path planning for multiple robots:

Optimal decoupling into sequential plans. In: RSS

Desaraju VR, How JP (2012) Decentralized path plan-

ning for multi-agent teams with complex constraints.

Autonomous Robots 32(4):385–403

Dixon C, Frew EW (2007) Maintaining optimal commu-

nication chains in robotic sensor networks using mo-

bility control. In: International Conference on Robot

Communication and Coordination

Elston J, Frew E, Lawrence D, Gray P, Argrow B (2009)

Net-centric communication and control for a hetero-

geneous unmanned aircraft system. Journal of Intel-

ligent and Robotic Systems 56(1-2):199–232

Ferguson D, Stentz A (2006) Anytime rrts. In: Intelli-

gent Robots and Systems, 2006 IEEE/RSJ Interna-

tional Conference on, IEEE, pp 5369–5375

Ford KM, Allen J, Suri N, Hayes PJ, Morris R (2010)

Pim: A novel architecture for coordinating behavior

of distributed systems. AI Magazine 31(2):9

Gammell JD, Srinivasa SS, Barfoot TD (2014) In-

formed rrt*: Optimal sampling-based path planning

focused via direct sampling of an admissible ellip-

soidal heuristic. In: Intelligent Robots and Systems

(IROS 2014), 2014 IEEE/RSJ International Confer-

ence on, IEEE, pp 2997–3004

Goldreich O (2011) Finding the shortest move-sequence

in the graph-generalized 15-puzzle is np-hard. In:

Studies in Complexity and Cryptography, Springer-

Verlag, pp 1–5

Holland O, Woods J, De Nardi R, Clarck A (2005)

Beyond swarm intelligence: the ultraswarm. IEEE

Swarm Intelligence Symposium

Hollinger G, Yerramalli S, Singh S, Mitra U, Sukhatme

G (2011) Distributed coordination and data fusion

for underwater search. In: IEEE International Con-

ference on Robotics and Automation, pp 349–355

Hsieh MA, Chaimowicz L, Cowley A, Grocholsky B,

Keller J, Kumar V, Taylor CJ, Endo Y, Arkin R,

Jung B, Wolf DF, Sukhatme GS, MacKenzie D

(2007) Adaptive teams of autonomous aerial and

ground robots for situational awareness. Journal of

Field Robotics 24(11):991–1014

Hsu D, Kindel R, Latombe JC, Rock S (2002) Ran-

domized kinodynamic motion planning with moving

obstacles. The International Journal of Robotics Re-

search 21(3):233–255

Johnson M, Intlekofer Jr K, Jung H, Bradshaw JM,

Allen J, Suri N, Carvalho M (2008) Coordinated op-

erations in mixed teams of humans and robots. In:

Proceedings of the First IEEE Conference on Dis-

tributed Human-Machine Systems

Johnson WW, Story WE, et al (1879) Notes on the 15

puzzle. American Journal of Mathematics 2(4):397–

404

Khoo A, Horswill I (2002) An efficient coordination ar-

chitecture for autonomous robot teams. In: Robotics

and Automation, 2002. Proceedings. ICRA ’02. IEEE

International Conference on, vol 1, pp 287 – 292 vol.1

Kornhauser D, Miller G, Spirakis P (1984) Coordinat-

ing pebble motion on graphs, the diameter of per-

mutation groups, and applications. In: 25th Annual

Symposium on Foundations of Computer Science,

1984., pp 241–250, DOI 10.1109/SFCS.1984.715921

Krontiris A, Luna R, Bekris KE (2013) From feasibility

tests to path planners for multi-agent pathfinding. In:

Sixth Annual Symposium on Combinatorial Search

Loyd S, Gardner M (1959) Mathematical Puzzles, vol 1.

Courier Corporation

Nardi RD, Holland O, Woods J, Clark A (2006) Swar-

mav: A swarm of miniature aerial vehicles. Technical

Report

Dynamic Teams of Robots as Ad Hoc Distributed Computers 21

Otte M (2011) Any-Com multi-robot path planning.

PhD thesis, University of Colorado at Boulder

Otte M (2016) Collective cognition & sensing in robotic

swarms via an emergent group mind. In: Interna-

tional Symposium on Experimental Robotics (ISER),

Tokyo, Japan

Otte M, Correll N (2013a) Any-Com Multi-

robot Path-Planning: Maximizing Collabora-

tion for Variable Bandwidth, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp 161–173.

DOI 10.1007/978-3-642-32723-0 12, URL http:

//dx.doi.org/10.1007/978-3-642-32723-0_12

Otte M, Correll N (2013b) C-FOREST: Parallel

shortest-path planning with super linear speedup.

IEEE Transactions on Robotics 29:798–806

Otte M, Correll N (2014) Any-Com Multi-robot Path-

Planning with Dynamic Teams: Multi-robot Coordi-

nation under Communication Constraints, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp 743–757.

DOI 10.1007/978-3-642-28572-1 51, URL http://

dx.doi.org/10.1007/978-3-642-28572-1_51

Peasgood M, McPhee J, Clark C (2006) Complete

and scalable multi-robot planning in tunnel environ-

ments. IFAC Proceedings Volumes 39(20):26–31

Ratner D, Warmuth M (1986) Finding a shortest so-

lution for the n n extension of the 15-puzzle is in-

tractable. In: AAAI, pp 168–172

Rutishauser S, Correll N, Martinoli A (2009) Col-

laborative coverage using a swarm of networked

miniature robots. Robotics and Autonomous Systems

57(5):517–525

Scerri P, Owens S, Yu B, Sycara K (2007) A decen-

tralized approach to space deconfliction. In: Informa-

tion Fusion, 2007 10th International Conference on,

IEEE, pp 1–8

Sharon G, Stern R, Felner A, Sturtevant NR (2012)

Meta-agent conflict-based search for optimal multi-

agent path finding. In: SOCS

Sharon G, Stern R, Felner A, Sturtevant NR

(2015) Conflict-based search for optimal multi-agent

pathfinding. Artificial Intelligence 219:40–66

Solovey K, Halperin D (2014) k-color multi-robot mo-

tion planning. The International Journal of Robotics

Research 33(1):82–97

Standley T, Korf R (2011) Complete algorithms for co-

operative pathfinding problems. In: IJCAI, pp 668–

673

Suri N, Cabri G (2014) Adaptive, Dynamic, and Re-

silient Systems. Mobile Services and Systems, Tay-

lor & Francis, URL https://books.google.com/

books?id=EBzcBQAAQBAJ

Suri N, Rebeschini M, Breedy M, Carvalho M, Ar-

guedas M (2006) Resource and service discovery in

wireless ad-hoc networks with agile computing. In:

Military Communications Conference, 2006. MIL-

COM 2006. IEEE, IEEE, pp 1–7

Suri N, Marcon M, Quitadamo R, Rebeschini M, Ar-

guedas M, Stabellini S, Tortonesi M, Stefanelli C

(2008) An adaptive and efficient peer-to-peer service-

oriented architecture for manet environments with

agile computing. In: Network Operations and Man-

agement Symposium Workshops, 2008, IEEE, pp

364–371

Surynek P (2009) An application of pebble motion on

graphs to abstract multi-robot path planning. In:

21st IEEE International Conference on Tools with

Artificial Intelligence, IEEE, pp 151–158

Surynek P (2014) Solving abstract cooperative path-

finding in densely populated environments. Compu-

tational Intelligence 30(2):402–450

Sutton DJ, Klein P, Otte M, Correll N (2010) Object

interaction language (oil): An intent-based language

for programming self-organized sensor/actuator net-

works. In: IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS)

Voyles R, Povilus S, Mangharam R, Li K (2010) Re-

conode: A reconfigurable node for heterogeneous

multi-robot search and rescue. In: IEEE International

Workshop on Safety, Security and Rescue Robotics

Voyles RM, Bae J, Larson AC, Ayad MA (2009)

Wireless video sensor networks for sparse, resource-

constrained, multi-robot teams. Intelligent Service

Robotics 2(4)

Wagner G, Choset H (2015) Subdimensional expansion

for multirobot path planning. Artificial Intelligence

219:1–24

Wagner G, Kang M, Choset H (2012) Probabilistic path

planning for multiple robots with subdimensional ex-

pansion. In: Robotics and Automation (ICRA), 2012

IEEE International Conference on, IEEE, pp 2886–

2892

Wedge NA, Branicky MS (2008) On heavy-tailed run-

times and restarts in rapidly-exploring random trees.

In: AAAI Conference on Artificial Intelligence

Wilson RM (1974) Graph puzzles, homotopy, and the

alternating group. Journal of Combinatorial Theory,

Series B 16(1):86–96

Yu J, Rus D (2015) Pebble motion on graphs with ro-

tations: Efficient feasibility tests and planning algo-

rithms. In: Algorithmic Foundations of Robotics XI,

Springer, pp 729–746

22 Michael Otte, Nikolaus Correll

Algorithm 3 CFOREST(R,SR, sstartR , sgoalR)

1: bestLen←∞
2: while stopping criteria not met do
3: sR ← SamplePoint(SR ∩G(bestLen))

4: if found better path P̂R then

5: bestLen← ‖P̂R‖
6: broadcast(P̂R)

7: if P̂R ← receive better path from other robot then
8: for sR ∈ P̂R s.t. sR not in tree do
9: insert sR in tree and do any tree maintenance

// e.g., according to RRT-#, RRT*, etc.

10: return P̂R

A Description of C-FOREST distributed

branch and bound

In this section we describe the C-FOREST algorithm. C-
FOREST is a distributed branch and bound technique for
parallelizing sampling-based motion planning algorithms across
multiple CPUs. C-FOREST is designed for use with asymp-
totically optimal sampling-based motion planning algorithms
like RRT-# and RRT*.

C-FOREST works by having each CPU build its own ran-
dom tree. Whenever a more optimal path is discovered by the
tree on any CPU, then that path is broadcast to all CPUs
so that it can be incorporated into the trees being built on
other CPUs.

C-FOREST works for two reasons. (1) It enables “lucky”
random exploration (that discovers better homotopy classes
or basins of attraction) to be shared across all trees during
the planning process so that all trees benefit from the good
fortune of any tree. (2) It allows us to ignore portions of the
space that cannot possibly lead to better solutions.

(2) is often accomplished with the help of a heuristic. For
example, if the length of the geodesic from start to a new
point plus the length of the geodesic from the new point to
the goal is longer than the best path — then the new point
need not be considered because it cannot be part of a path
that is shorter than the best one already found. Given the
length of the best known path, it is possible to sample directly
from the portion of space that yields points shorter than the
best solution. The latter heuristic was first used in Any-Time
RRT (Ferguson and Stentz, 2006), and was previously used in
the C-FOREST distributed branch and bound RRT* in our
previous work (Otte and Correll, 2013b; Otte, 2011); more
recently, it was used in conjunction with RRT* for the single-
robot case in the Bit* algorithm (Gammell et al, 2014).

It is important to note that C-FOREST only provides
benefits after the first solution is found (by any CPU). Thus,
while C-FOREST can be used with feasible planning algo-
rithms like RRT, it behaves like OR-parallelization for feasi-
ble planning.

For ease of presentation, in this section we assume that
the robots in the dynamic team R are labeled r1, . . . , r|R|
such that R = {r1, . . . , r|R|}. Each robot r1 grows a unique
random tree through the team’s combined configuration space
SR from sstartR to sgoalR .

The quantity G(bestLen) represents the subset of space in
which geodesic(sstartR , sR)+geodesic(sR, sstartR) < bestLen,
where geodesic(A,B) returns the length of the geodesic from
A to B.

B Messages used in low level subroutines

Robots broadcast messages to each other to communicate
their intentions, to solve their centralized motion planning
problems using C-FOREST distributed computation, and to
coordinate their progress along the agreed upon multipaths.
Let the overall message be denoted M . In our algorithm
presentation we use the C/C++ language convention that
sub-fields of the message data structure are denoted using
the ‘.’ token. Messages from robot ri contain the following
sub-fields, (similar quantities are also tracked locally on each
robot and for brevity we omit repeating their definitions, but
they appear without the ‘M.’ prefix in the presentation of our
algorithms):

– M.epoch is the current planning epoch of ri.
– M.data contains data about each of the j robots that
ri knows about (either directly or indirectly via other
robots).

– M.path contains Pi the path ri is using to navigate (that

is, the subset between its current location and xgoali)—
including its time parameterization.

– M.behindSchedule is the amount of time that the sending
robot’s team is behind schedule (with respect to the time
parameterization of Pi).

– M.data[k] stores data about rj , the k-th robot ri knows
about.
– M.data[k].id stores j
– M.data[k].start stores xstartj .

– M.data[k].goal stores xgoalj .
– M.R contains a list of all robots in the current team.
– M.teamData contains additional data about each of the

robots in ri’s current team.
– M.teamData[k] stores data about the k-th robot in
ri’s current team. Note that each robot places itself
into position k = 0 when populating message data.

– M.teamData[k].id the k-th robot’s id j
– M.teamData[k].start stores sstartj .

– M.teamData[k].goal stores sgoalj .

– M.teamData[k].epoch stores the k-th robot’s epoch.

– M.bestSolution is the best solution P̂R (found so far)
currently known to ri for the sub-problem currently being
solved.

– M.bestLen is the length of the best solution (found so
far), ‖P∗R‖.

– M.bestID is the ID of the robot that generated the best
solution (found so far).

– M.agreeSet is the subset of the current team that believes
P̂R is the best solution (found so far).

– M.finalSet is the subset of the current team that has sub-
mitted a final solution (is done planning for the current
sub-problem).

– M.movingSet is the subset of the current team that has
started moving.

C Description of lower level subroutines

The initialization routine Initialize() appears in Algo-
rithm 4. Each robot starts in its own team and initializes its
team’s multipath to contain its starting location so that if
other robot’s paths conflict with this starting location, they
will detect that a team combination should occur.

The reset routine Reset() is described in Algorithm 5
and run before a new motion planning sub-problem is solved;

Dynamic Teams of Robots as Ad Hoc Distributed Computers 23

Algorithm 4 Initialize()

1: R = {rj}
2: Pj = {xstartj }
3: epoch = 0
4: data[0].id← j
5: data[0].start← xstartj

6: data[0].goal← xgoalj

7: Reset()

Algorithm 5 Reset()

1: NewConflictsDetected← false
2: bestSolution← ∅
3: bestLen←∞
4: bestID← j
5: agreeSet = ∅
6: finalSet = ∅
7: movingSet = ∅
8: sgoalR = ∅
9: timeBehindSchedule← 0

Algorithm 6 waitForDataFromTeammates()

1: while ∃ rj ∈ R s.t. NeedData(rj , ε, data) do
2: sleep(1/ω)

Algorithm 7 ListenThread()

1: loop
2: M ← recieveMessage()
3: data← combineData(data,M.data)
4: if mergeAllNewConflicts(M,R, teamData) then
5: NewConflictsDetected← true
6: else if senderInTeam(M) then
7: if M.moving and not moving then
8: processMoveMessage(M)
9: else if runningCFOREST() then

10: processCFORESTMessage(M)

11: if M.bestLen = ‖P̂R‖ and M.bestID = bestID
then

12: agreeSet← agreeSet ∪M.agreeSet
13: if not runningCFOREST() then
14: finalSet← finalSet ∪M.finalSet

it is responsible for re-initializing all C-FOREST related data
(lines 1-4) as well as all data that is used to coordinate move-
ment with a team (lines 5-9).

waitForDataFromTeammates() appears in algorithm
6 and causes the calling process to sleep until this robot has
received data from all members of its current team.

BroadcastThread() is responsible for sending messages
to other robots. It does not appear in pseudocode but, sim-
ply packages all data related to movement and planning into a
message, and then broadcasts that message on an open chan-
nel (to which all robots listen). The broadcast thread is set
to run no faster than ω hz for user-defined ω so that the com-
munications channel is not saturated. If, in practice, a more
sophisticated ad hoc communication protocol is used, then
this can be replaced appropriately.

ListenThread() is responsible for listening for incoming
messages from other robots and appears in Algorithm 7. Each
time a new message is received (line 2) the data is combined
with the local data on the robot to reflect the most up-to-

Algorithm 8 mergeAllNewConflicts(M,R, teamData)

1: oldEpoch
2: if senderInThisTeam(M) then
3: if M.epoch > epoch then
4: epoch = M.epoch
5: else if conflict(M.path, Pr, P̂R) or (M.R ∩ R 6= ∅

and M.epoch > epoch) then
6: epoch = 1 + max(epoch,M.epoch)
7: if epoch 6= oldEpoch then
8: for k = 0 to |M.R| − 1 do
9: if M.teamData[k].id 6∈ R then

10: R← R ∪ {M.teamData[k].id}
11: teamData[end + 1]←M.teamData[k]
12: return true
13: return false

data epoch and path information for nearby robots in gen-
eral (line 3). The subroutine mergeAllNewConflicts that
appears in the if-statement on Line 4 is responsible for detect-
ing when a team merge operation must take place in response
to new message data (and is described in Algorithm 8). The
Boolean flag NewConflictsDetected is set to true if this hap-
pens (line 5). If the sending robot is already in the receiving
robot’s team (check on line 6), then message passing is used
to synchronize the team’s start of movement (lines 7-8 and
13-14), or to compute and improve the C-FOREST solution
(lines 9-12). Note that agreeSet is maintained as the set of
robots that agree on the best solution found so far in the C-
FOREST algorithm, and finalSet is similarly maintained as
the set of robots that agree on the final solution. These sets
are used to ensure the team reaches consensus on a solution
before moving along any solution.

mergeAllNewConflicts(M,R, teamData) appears in Al-
gorithm 8 and is responsible for detecting when a robot’s team
must be merged with other robots and teams. The epoch
count of a team is always increased to the maximum epoch
of any of its robots (line 2-4) to ensure that all robots in a
team are computing on the most up-to-date problem faced
by that team. Two conditions (both on line 5) can cause a
new problem to need to be solved (in which case the epoch
number is incremented). The first is if a robot not currently
in this robot’s team has a conflicting path; the second is if
the sending robot advertises that its own team includes a
robot from the receiving robot’s team and it has a higher
epoch number (we assume that agents are honest, and so the
sending robot must have detected that a robot in the receiv-
ing robot’s team is conflicting). In the latter case we must
increment the epoch to account for the unlikely event that
multiple teams are merging at the same time; doing this en-
sures that the new problem has an epoch number larger than
any problem that may have previously been solved by any
of the new team’s members. If the epoch number has been
increased, then all relevant new robots are merged into the
receiving robot’s team (lines 7-11) and the algorithm returns
true. Otherwise the algorithm returns false.

The subroutine moveAlong(Pr) is responsible for con-
trolling robot r’s movement along Pr such that team move-
ment along their shared multipath is coordinated. It appears
in Algorithm 9. We note that various coordination mecha-
nisms could be used, the one presented here is simple to im-
plement but may be too naive for many problems (e.g., such
as those involving fixed-wing aircraft). This version works well
for ground vehicles moving at low speeds. All robots broad-
cast how far they are behind schedule, and each member of

24 Michael Otte, Nikolaus Correll

Algorithm 9 moveAlong(Pr)

1: while not NeedToReset do
2: if RobotsAgree()then
3: Br = time this robot is behind schedule along Pr

4: if Br < behindSchedule then
5: stop moving along path
6: else if Br > behindSchedule then
7: behindSchedule = Br

8: continue moving along path
9: else

10: continue moving along path
11: if RobotAt(sgoalr) then
12: R = {r}

Algorithm 10 RobotsAgree()

1: if moving or (finalSet = R) or
(bestID = r and agreeSet = R) then

2: moving← true
3: return true
4: return false

the team waits, when necessary, to match the progress of the
robot that is the most behind schedule.

When a team has finished computing a solution to the
multi-robot planning problem then RobotsAgree() shown
in Algorithm 10, is used to reach consensus on the particu-
lar solution that the team uses (since some robots may not
yet have received the best solution found by any member of
the team). This routine helps with the synchronization of the
beginning of movement, which can be initiated by any robot
that discovers all team members agree on the final solution
(line 1) or by a robot that discovered what it thinks is the
best solution—as long as all robots agreed it was the best
solution at some previous point. We assume that all robots
are honest and seek to use the group optimal solution. How-
ever, in rare situations this alternative mechanism for start-
ing movement may cause the team to use a slightly outdated
solution; although, it will not cause conflicts/collisions due
to the fact that this robot could not possibly have agreed
that some other (better) solution was the final solution if it
believes its own (worse) solution is still the best. In prac-
tice this decreases consensus time by one team-wise message
propagation by allowing this relaxed form of consensus to be
computed in parallel to the motion planning solution (this
is particularly helpful in low-communication environments).
Note that if any robot discovers that one of its teammates has
started moving, then it also starts moving according to the
same solution (even if it previously did not believe it was the
best). It is better to agree on a lower quality solution than
for two different subsets of the team to move along conflicting
solutions.

processMoveMessage(M) in Algorithm 11 is respon-
sible for updating the robot’s data to reflect the movement
agreements of its current team. On lines 1-3 the receiving root
checks to make sure that the sending robot believes they are
in the same team (line 2) and that they agree on the current
epoch (line 3).

Algorithm 11 processMoveMessage(M)

1: for k = 0 to |M.teamData| − 1 do
2: if M.teamData[k].id = r then
3: if M.teamData[0].epoch = epoch then
4: bestSolution←M.bestSolution
5: bestLen←M.bestLen
6: bestID←M.bestID
7: agreeSet←M.agreeSet ∪ {r}
8: finalSet←M.finalSet ∪ {r}
9: moving← true

10: return

