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Abstract

We present a sampling-based, asymptotically optimal
feedback planning method for the shortest path problem
among obstacles in Rd. Our method combines an incre-
mental sampling-based Delaunay triangulation with the
newly introduced Repairing Fast Marching Method for
computing a converging sequence of control policies.
The convergence rate and asymptotic computational
complexity of the algorithm are proven theoretically.
In addition, the proposed method is compared with the
state-of-the-art asymptotically optimal path planners in
numerical simulation of a realistic planning problem.
Finally, we present a straightforward extension of our
method that handles dynamic environments where ob-
stacles can appear, disappear, or move.

Introduction
The optimal navigation in environments with obstacles en-
ables robots to perform tasks efficiently and in timely man-
ner. Efficiency of many autonomous systems is critical for
their successful deployment. For example, the profit mar-
gin of an autonomous transportation system is improved if
the total distance traveled by each constituting vehicle is re-
duced. Increasing autonomy of such systems raises the de-
mand for optimal robot motion planning algorithms.

The majority of previous optimal planning algorithms
compute the lowest cost geometric path between robot’s ini-
tial position and the goal. Typically, these path-centric al-
gorithms use a Rapidly-exploring Random Graph (RRG)
structure that approximates a set of all feasible path be-
tween the initial robot position and the goal in incremen-
tal fashion (Karaman and Frazzoli 2011). The optimal path
is then computed using graph search algorithms on RRG.
However, navigating along geometric paths is a difficult task
for a robot due to random disturbances, low-fidelity dynam-
ical models, and control signal saturation. Thus, separate
path-following controllers are usually implemented, which
inevitably introduce suboptimal motions and increase the
complexity of robotic systems in general.

In this presentation, we propose computing a feedback
control policy, which can be applied directly for robot navi-
gation without restricting its motions onto one-dimensional
graphs. The proposed policy-centric algorithm is build on
fundamentally different discretization principles: 1) con-

0.7 s 1.5 s 5 s

 

 

0

50

100

150

200

250

 

 

0

50

100

150

200

250

 

 

0

50

100

150

200

250

Figure 1: The cost-to-go function (color) and the resulting
path (white) computed by ACIDIC algorithm for a robot
(lower left) that desires to reach the goal (upper right) while
avoiding obstacles (black).

structing an incremental volumetric cell decomposition
(which we call a mesh) on the free space, Xfree, and
2) computing an optimal cost-to-go function approxima-
tion on this mesh using the novel Repairing Fast March-
ing Method (ReFMM), a modification of a popular numer-
ical Hamilton-Jacobi-Bellman (HJB) solver (Sethian 1999)
that avoids infinite cost-propagation loops on unstructured
meshes. The proposed incremental mesh parallels Proba-
bilistic RoadMaps (PRM) (Kavraki et al. 1996) in that it
captures the topology of Xfree and has the same asymp-
totic computational complexity as its optimal implementa-
tion, PRM∗ (Karaman and Frazzoli 2011). Unlike the PRM
and PRM∗, this construction enables computing a stabilizing
controller that navigates a robot through the volume of dis-
cretization cells instead of constraining its motions to edges
of an 1D graph; see Figure 1.

Previously, numerical HJB solvers were deemed infeasi-
ble for large scale optimal planning problems mostly due to
using fixed Cartesian meshes. Contrary to this popular be-
lief, we establish that the proposed algorithm has the same
asymptotic behavior as RRT∗, that is O(log(N)) time com-
plexity per iteration and O((log(N)/N)1/d) convergence
rate with respect to the node number, N , and the dimen-
sion number, d. Moreover, numerical simulations show al-
most identical convergence towards the optimal path of our
algorithm and one of the fastest graph-based planning algo-
rithm, RRT# (Arslan and Tsiotras 2013). With complexity
and convergence results being equal, the benefit of using our
algorithm is in the computed policy that can be used to con-



trol robot motions directly and avoid using path-following
middleware.

Asymptotically Optimal Feedback Planning
We now present the Asymptotically-optimal Control over
Incremental Delaunay sImplicial Complexes (ACIDIC) al-
gorithm for optimal feedback planning. The execution trace
of our algorithm is similar to most sampling-based path-
centric planners:

1. Sample vertex xnew from the configuration space, X;
2. Refine the Delaunay triangulation to include xnew;
3. Update the cost-to-go values and the associated control

policy in the simplicial approximation of Xfree.
At a conceptual level, the ACIDIC method “etches” Xfree

from X while simultaneously refining a feedback control us-
ing a numerical HJB solver. In the limit of infinitely many
sampled vertices, all points of Xfree become part of the tri-
angulation and the optimal feedback control is computed.
We now discuss every step of the algorithm in details.

Sampling Methods
Virtually any sampling strategy that has been developed
for path-centric planners is suitable for our policy-centric
method as well. These strategies include convergence ac-
celerating techniques such as branch and bound methods,
goal biasing, and so on. In this work, we assume samples
are taken uniform at random and leave the discussion of ad-
vanced sampling techniques for future.

Incremental Delaunay Triangulation
For every newly inserted point, the incremental Delaunay
triangulation algorithm replaces cells that violate empty cir-
cumsphere property with new Delaunay cells. This update
is analogous to local rewiring in the RRG algorithm. Us-
ing theoretical results on Poisson Delaunay triangulations in
Rd (Miles 1974), we establish that, on average, O(1) sim-
plices are updated at each step.

After the DT is updated, a black box collision-detection
module is used to find free-to-traverse simplices in the cur-
rent triangulation. We implement the conservative collision-
detection based on empty circumsphere, that is, the simplex
is considered collision-free if its circumsphere is in Xfree.

Repairing Fast Marching Method (ReFMM)
Our modifications to the FMM are aimed at preventing infi-
nite update loops and costly updates in the entire Xfree. Bor-
rowing ideas from replanning path-centric strategies, such
as RRTX (Otte and Frazzoli 2014), the ReFMM algorithm
interrupts wavefront propagation when relative cost-to-go
changes are smaller than a given parameter ε. We establish
that ReFMM sacrifices the accuracy up to ε relative error
and takes, on average, O(log(N)) amortized time per step
to compute.

A peculiar side effect of our ReFMM implementation is a
straightforward extension to an optimal feedback replanning
algorithm, which allows fast feedback repairs when obsta-
cles appear, disappear, or move.
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Figure 2: Averaged over 50 trials relative path error (left) and
the node number (right) against running time for ACIDIC
(“D”) with ε = 0% and ε = 1%, RRT∗ (black dot-dash),
and RRT# (black solid) in a 2D environment with obstacles.

Numerical Simulations and Results
In the numerical simulations, we investigated the conver-
gence of ACIDIC and compared it with that of RRT∗ and
RRT#. In Figure 2, we plot the convergence and the num-
ber of nodes used by each algorithm with respect to running
time. We conclude that ACIDIC with ε = 1% and RRT#

converge at the same rate and both significantly outperform
RRT∗ algorithm (note the log-log plot). Moreover, ACIDIC
uses fewer vertices to compute the same quality solution as
RRT#, which is beneficial for high-cost collision detection
modules.

It is difficult to illustrate using figures replanning capa-
bilities of our algorithm. Thus, we present short movies at
http://tinyurl.com/qjnazvr.
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