
Online Learning of Multiple Perceptual Models
for Navigation in Unknown Terrain

Greg Grudic, Jane Mulligan, Michael Otte, and Adam Bates

University of Colorado at Boulder, Boulder CO, USA
Jane.Mulligan@Colorado.edu

Summary. To navigate efficiently in new terrain an autonomous vehicle should be
able to observe and learn perceptual models for identifying traversable surfaces and
obstacles, to allow steering and planning in the near and far field. As the robot passes
through the environment however, the appearance of ground plane and obstacles
may vary, for example in open fields versus tree cover or paved versus gravel or
dirt tracks. In this paper we describe a working robot navigation system based
primarily on colour imaging, which learns sets of models online as it moves through
the environment choosing whether to apply current models, discard inappropriate
models or acquire new ones. These models operate on complex natural images and
because they are acquired and used as the robot navigates, learning and evaluation
must be possible in real time.

1 Introduction

The system described in this paper operates on an autonomous wheeled ve-
hicle designed for the DARPA Learning Applied to Ground Robots (LAGR)
program (Fig. 1). The goal of the program is to apply Machine Learning
techniques to autonomous navigation in unknown, unstructured terrains [4].

Fig. 1. DARPA LAGR platform.



2 Online Learning of Multiple Perceptual Models

The LAGR platform is equipped with Stereo camera systems, but camera
resolutions and geometry constrain the resolution and discrimination of stereo
depth data making it useful to about 10m. As a result considerable effort by
program participants has been devoted to using colour and texture for classifi-
cation of “traversable terrain” and obstacles in the far field. Frequently a stan-
dard Learning approach such as Neural Nets, SVM or Decision Trees [2, 3, 1]
is applied to build a single model for the terrain at a particular test site. This
approach has several drawbacks. First the models are large and difficult to
adapt online when terrain appearance changes: a single model cannot capture
the diversity of terrain necessary for far field navigation. The models require
examples of traversable and non-traversable terrain, where often one may only
be able to confidently identify traversable regions. Finally, models are blindly
applied across the image, even in regions sufficiently dissimilar to the training
set to make their results meaningless. The models offer no means to identify
where their classifications can be applied with high confidence. In contrast we
construct separate density-based models for traversable and non-traversable
terrain. As a result of their density structure they respond only to terrain that
is similar to the training data from which they were constructed.

Our approach builds a set of models as it traverses a new environment.
At each frame the current set of models is applied to the image, and if none
explains the data a new model is constructed and added to the set. This allows
the robot to pass across varied surfaces avoiding obstacles which differ from
one area to the next, as when moving from a rocky open field to a path with
tree cover.

The idea of using multiple models to improve adaptive controllers has been
studied by Narendra et al. [5], who propose control strategies for dynamic
environments exploiting multiple models, switching, and tuning. The main
questions when maintaining a set of models for a changing environment are:
how to determine when the current models are no longer effective and thus
when to construct new models and for large numbers of models choosing which
to evaluate at a particular instant.

2 System Overview

The LAGR platform has two “eye” computers devoted to Stereo and image
processing. A third computer handles planning and control functions. The
main issues for our work are how to construct the image costmaps which
classify near and far field regions as traversable and non-traversable, and how
these are used to plan appropriate behaviour.

2.1 Combining Cost Maps

The current color vision system utilizes two cost masks, obstacle and ground
plane, to create a cost update for the planner. A mask is the same size as the



Title Suppressed Due to Excessive Length 3

images produced by the robot’s cameras and represents the probability of that
pixel depicting an obstacle or the ground plane. The reason for using two cost
masks is centered on the meaning of non-classified regions in an image. When
classifying regions of ground plane using a single class classifier we can only
be sure that areas that are classified as in the class are in the ground plane.
This doesn’t mean that the non classified regions are not in the ground plane.
A second mask that classifies obstacle regions is needed. This creates a check
for the non-classified regions in each mask. If a point in the ground plane
mask has a low probability of being in the ground plane then the decision as
to whether that pixel is an obstacle is left to the obstacle classifier. This is
also true for the obstacle mask. Therefore the assumption that non-classified
pixels are obstacles is only made when the ground plane classification is low
and the obstacle classification is high.

The two cost masks must be combined in a meaningful way. We take the
difference of the obstacle mask O and the groundplane mask G, of the two
masks are taken a new mask O−G is created and scaled from -1 to 1. When
the two cost masks disagree, i.e. ground plane mask equals 1 and obstacle
mask equals 1 then a 0 is returned. These values are then left to stereo vision
to determine. When the cost masks agree, i.e. ground plane mask equals 1 and
the obstacle mask equals 0 then a -1 is return. This means that when sent
to the planner the cost in that location will be reduced. When the planner is
sent a positive value the cost in that location is increased.

Once the two cost masks are obtained and their difference is found a trans-
formation from image coordinates to robot coordinates must be made. The
transformed difference will be sent to the planner. Since the camera properties
are known, i.e. focal length and center, and an estimate of the ground plane
has been calculated by the stereo vision system, a simple coordinate transform
computes pixels XY coordinates in the robot frame of reference. Once each
pixel’s transformed coordinates are found they are binned into 20 × 20 cm
bins. The average of each bin is found and normalized by the total number of
pixels transformed, thus bins close to the robot are weighted higher than bins
further from the robot. This new cost map update is then sent to the planner.

2.2 The Planner

The planner responsible for accumulating data provided by the cameras orga-
nizing it, and then using the data to compute a feasible route to a predeter-
mined goal. Usually, the goal is a GPS coordinate, and the route is chosen to
minimize some cost function, such as distance, risk, etc. The implementation
of the CU robot planner is built on work by Daniel Lee at the University of
Pennsylvania. This particular planner is essentially a state machine, where the
behavior of the robot in each state St is dictated by the events that occurred
in the previous state St−1, as well as a global state G. Information from G is
usually related to outside sources (bumper hits, human input, messages from



4 Online Learning of Multiple Perceptual Models

the eyes, etc.), while information from M pertains more to tasks that the plan-
ner has scheduled for itself (calculation of a new path, movement of a certain
distance, etc.). G also assumes responsibility for placing cost information from
the eyes into a perpetual global cost map.

The cost map is a 2D birds eye view of the area that the robot has pre-
viously sensed and/or can currently perceive. In practice, the map is stored
in a 2-dimensional array that maintains the relative spatial locations of cost
values, with each piece of the map being l long on each side. The informa-
tion that is placed onto the map arrives in two forms: stereo depth data, and
data obtained by running image attributes through machine learning models.
Depending on the navigation task defined at runtime (attempting to avoid
water or go through tall grass), this information can be weighed differently.
It can also be combined with the information already in the global map in a
variety of ways, including: replacement, incrementation, weighted averaging,
or some hybrid. Regardless of source or combinational scheme, the costs in
the cost map always fall on a spectrum of belief about the navigability of their
associated regions in the map. High cost means that an area is less navigable
than low cost.

Most of the planner’s time is spent in StatePlan, the state responsible
for finding a path from the current location to the goal. StatePlan searches
for a path using A∗ search with a cost function defined at runtime. For the
purposes of A∗, a path is composed of a set of adjacent pieces of map. For
most robot navigation problems it is desirable that the cost function reflect
some combination of navigability and distance. A principled way to optimize
over these two variables is to represent low navigability as a force that the
robot must overcome; and then minimize the amount of work that the robot
must do in order to reach the goal. The function to minimize is given by:

Navigable Work = C1D1 + C2D2 + ... + CgoalDgoal

Where Ci and Di represent the cost and length of path segment i, respectively.
Once a path to the goal has been found, the planner interacts with the low

level motors and servos to navigate the robot along the path until there is a
change in state, or a predetermined amount of time has passed. In the latter
case, the planner reenters StatePlane, and the process repeats itself.

3 The Learning Framework

3.1 Fast Density Models

The approach taken is to build two types of density models - one for identifying
traversable terrain and the second for non-traversable terrain. The traversable
terrain density models are constructed by sampling image regions that are
associated with traversable terrain, and similarly for non-traversable terrain
density models.



Title Suppressed Due to Excessive Length 5

A number of powerful techniques have been proposed in the Machine
Learning and Statistics communities for density estimation [6]. However, al-
though these techniques can be effective in high dimensional spaces (such as
those addressed in this paper), invariably these techniques are too computa-
tionally intensive to be applied to real-time robot navigation applications. In
this paper, we present an efficient framework for density estimation that is
suitable for real-time terrain classification. Our framework builds many small,
fast density models, which are combined to produce a final density model for
the entire image1.

Assume a set of N examples, each of dimension d, extracted from an image
region that is known to be traversable. We symbolize these as {x1, ...,xN},
where each xi ∈ <d for all i ∈ {1, ..., N} is a column vector representing a
set of features extracted from an image. Next, the NULL space and the Basis
space (i.e. the Principle Components ordered according to relevance) of this
data is computed using Singular Value Decomposition. We symbolize the Null
space and Basis space matrices as Ntr and Btr respectively (the underscore tr
here indicates that a traversable model is being constructed). Note that Ntr

has d rows and m columns, Btr has d rows and k columns, where k + m = d
(not that k and d are determined in a standard way based on the floating point
precision of the CPU). The NULL space is used to identify when a new sensor
readings do NOT fall within the scope of the model (i.e. if any new sensor
reading falls in the null space of the model, the model outputs 0). Therefore,
given some new feature set x, the model outputs 0 if ‖N ′

trx‖ < ε, where ε is
determined by the floating point of the CPU.

Next the remaining data is projected in the Basis space Btr, giving by
bi = B

′
trxi, for all i = 1, ..., N , where each bi ∈ <k. This data is and divided

into two approximately equal halves - one set is the training set {bt
1, ...,b

t
Nt
},

and the other is the validation set {bv
1, ...,b

v
Nv
}, where t refers to training

data, v refers to the validation data, Nt refers to the number in the training
set, and Nv refers to the number in the validation set (note that Nv+Nt = N).
A linear function is then defined gtr (x) = p

′
x, where p is the first column of

the Basis space Btr, corresponding to the largest eigenvalue of the data PCA
space, and thus the coordinate which contains the greatest data range. Next
gtr (x) is converted to a density model using a one dimensional histogram
model called htr(gtr (x)). This histogram density model is constructed by
choosing bin size that maximize the negative log likelihood of the validation
set {bv

1, ...,b
v
Nv
} (in the first dimension). By maximizing the negative log

likelihood on the validation data, we ensure that the resulting density model
is most representative of the training data. A typical histogram density model
is depicted in Figure 2(a). The remaining k − 1 dimensions are used to find
the minimum and maximum values that {bt

1, ...,b
t
Nt
}, and {bv

1, ...,b
v
Nv
} have

along these coordinates - any new features falling outside these ranges result
1 Two such final models are produced, one for traversable terrain and the other for

non-traversable.



6 Online Learning of Multiple Perceptual Models

in the model outputting 0. Finally, if training data is available from the non-
traversable class, it is used to adjust the density model htr(gtr (x)) such that
the traversable training data is always more probable than the non-traversable
data in each bin of the histogram. This ensures that the models are as selective
as possible in predicting traversable regions. This algorithm constitutes an
efficient and effective framework for bounded density estimation for robotics
applications.

The exact same procedure is used to construct density models for non-
traversable terrain, giving gntr (x) and hntr(gntr).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
Histogram Density Model

g(x)

h(
g)

: D
en

si
ty

(a) Histogram Density Model

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scaled Histogram Density Model

g(x)

hsc
al

ed
(g

)

(b) Scaled Histogram Density
Model for Image Segmentation

Fig. 2. Producing Density Models For Image Classification.

3.2 Converting a Density Model to a Segmented Image

Every model hntr(gntr) is used to segment out images of into traversable
terrain, and, similarly, every model htr(gtr) is use segment out images into
traversable terrain. This is done by scaling the density models to range be-
tween 0 and 1 as in Figure 2(b), which is obtained by taking the density
model in Figure 2(a) and dividing by its maximum value. Once this is done,
every segment of the image can be classified as shown in Figure 3. Figure 3(a)
shows the original image, Figure 3(b) shows the resulting segmentation af-
ter passing the image through the traversable terrain scaled histogram model
htr(gtr), and Figure 3(c) shows the resulting segmentation after passing the
image through the non-traversable terrain scaled histogram model hntr(gntr).
A key property of these scaled density models is that, in every region where
the image is dark, the density models have no opinion on whether the region is
traversable or non-traversable. This implies that the model is able to predict
when image regions or too dissimilar from the data used to construct it, and
therefor no predictions can be made using it. As discussed below, this property



Title Suppressed Due to Excessive Length 7

gives a formal framework for deciding when new models must be added, which
models are most appropriate for a given image, and for combining multiple
models.

Original Image

50 100 150 200 250 300

50

100

150

200

(a) Original Image

Traversable Terrain Segmentation

50 100 150 200 250 300

50

100

150

200

(b) Traversable
Segmentation

Non−traversable Terrain Segmentation

50 100 150 200 250 300

50

100

150

200

(c) Non-
traversable Seg-
mentation

Fig. 3. Using the Scaled Density Models to segment traversable and non-traversable
image regions. Image brightness is proportional to confidence in segmentation. The
data used to construct the segmentation models was obtained using stereo in the
near range.

3.3 Learning Multiple Models

In the proposed framework, we construct a set of traversable terrain mod-
els {h1

tr(g
1
tr), ..., h

Ntr

tr )(gNtr

tr )}, as well as a set of non-traversable models
{h1

ntr(g
1
ntr), ..., h

Nntr

ntr (gNntr

ntr )}. Each model represents a different type of ter-
rain that the robot encounters as it navigates, and all are constructed in real
time. The decision on how many models are need is made automatically-
whenever the current set of models do not explain the observations made by
stereo, new models are added. Thus, if the current set of traversable models
do not label a traversable portion of the image as being traversable, a new
traversable model is constructed. Similarly, if a region in the image is identified
as non-traversable, and the current non-traversable do no label this region as
such, then a new non-traversable model is constructed to account for this new
terrain type. Thus, as the robot traverses over a variety of different terrains,
more models are needed, resulting in potentially thousands of models.

3.4 Choosing Model Subsets

Each density model is representative of a particular terrain type, and as the
type of terrain changes over time, every model may not be appropriate for
every image. In particular, if a model outputs zero everywhere in an image,
then it was constructed from a terrain type that does not exist in the image,



8 Online Learning of Multiple Perceptual Models

and therefore should not be used. Similarly if a traversable model has a non-
zero response in an image region that is in fact NOT traversable, then it
should not be used on the current image. An identical argument applies to non-
traversable models. Thus the models that are applied to any image are sampled
from models that are consistent with near field observation in the image. Even
after this selection process, there still may be many hundreds of models that
are consistent with an image. In order to ensure real-time operation, not all
consistent models can be applied to every image. As a result, the consistent
models are ranked according to the magnitude of average response over a small
random regions of the image. The models with the highest average response
are most consistent with the image, while the models with the lowest are least
consistent. Thus the first N highest ranked models, where N is dictated by
real time considerations, are applied to the image.

3.5 Traversable and Non-Traversable Terrain Images From
Density Models

Once the subset of traversable models is chosen for application to the image,
then creating the final traversable image segmentation is done by taking a
maximum over all models, over every region of the image. A similar operation
is done for generating the non-traversable image segmentation using the non-
traversable model. The justification for this max operation steams from the
fact that the models that are applied to an image are all consistent with its
near field observations. When there is disagreement between the traversable
and non-traversable segmented images, then the robot errs on the side of
exploration and labels the inconsistent parts as traversable, leaving stereo to
correct this possible miss labeling when the robot gets close enough to the
region in question. This type of inconsistency is rare because of the whey the
models are chosen, but can none the less occur.

4 Experimental Results

The current set of density models are constructed using 7 by 7 windows in a
320 by 240 RGB normalized image-future models will use the more powerful
feature described previously in the paper. Thus, the dimension of each density
model constructed is 7× 7× 3 = 147. This system has been applied to a wide
variety of real tests under the (DARPA LAGR program) in unstructured
outdoor environments. The density models where able to segment difficult
terrain in the far field (well beyond stereo range) as demonstrated in Figure 4,
where the color difference between the non traversable vegetation and the
ground is difficult to distinguish. In all the environments tested to date, never
more that 47 traversable terrain models, and 43 non-traversable terrain models
were required to model the terrain. This demonstrates the flexibility of the
individual models. In addition, at each frame up to 20 models where applied



Title Suppressed Due to Excessive Length 9

(chosen according to the procedure defined Section 3.4) at a frame rate of
about 5 frames a second. The current implementation of this system is written
in MATLAB, and we anticipate significant speedups in frame rates when these
models are implemented in C. It is also worthy to note that such systems that
seek to classy terrain beyond stereo range have consistently outperformed
robots that only use stereo. The system described here is no exception to this,
and, as described in the introduction, has the benefit of fast online learning
and quick adaptation to new environments.

Original Image

50 100 150 200 250 300

50

100

150

200

(a) Original Image

Traversable Terrain Segmentation

50 100 150 200 250 300

50

100

150

200

(b) Traversable
Segmentation

Non−traversable Terrain Segmentation

50 100 150 200 250 300

50

100

150

200

(c) Non-
traversable Seg-
mentation

Fig. 4. Using the Scaled Density Models to segment traversable and non-traversable
image regions. Image brightness is proportional to confidence in segmentation. The
data used to construct the segmentation models was obtained using stereo in the
near range.

5 Conclusion

For autonomous robots traversing unknown terrain, Stereo depth data alone is
too “short sighted”. Considerable effort has been devoted to learning models of
the appearance of traversable terrain to extend near field Stereo observations
of ground plane and obstacles to the far field.

In this paper we describe a successful robot system which learns multiple
models of obstacle and ground plane online as the terrain varies over the
robot’s trajectory. We describe an efficient way of choosing the best subset
of models for each image, out of a set of models, possibly learned over the
robot’s lifetime.

The models constructed are density-based and thus respond only to inputs
which are sufficiently similar to the data from which they were built. This
allows the system to identify novel terrain when its models stop responding,
thus triggering the construction of new models. Both model construction, and
selection and evaluation are real-time online operations.



10 Online Learning of Multiple Perceptual Models

Future efforts include finding optimal image features for terrain classifica-
tion and allowing each model to identify a preferred feature set for the terrain
it encodes.

References

1. Jim Albus, Roger Bostelman, Tommy Chang, Tsai Hong, Will Shackleford, and
Michael Shneier. Learning in a hierarchical control system: 4d/rcs in the darpa
lagr program. Journal of Field Robotics, 23(11-12), 2006.

2. M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain classifica-
tion with predictive unsupervised learning. In Proceedings of Robotics: Science
and Systems, Cambridge, USA, June 2006.

3. Andrew Howard, Michael Turmon, Larry Matthies, Benyang Tang, Anelia An-
gelova, and Eric Mjolsness. Towards learned traversability for robot navigation:
From underfoot to the far field. Journal of Field Robotics, 23(11-12), 2006.

4. L. D. Jackel, Eric Krotkov, Michael Perschbacher, Jim Pippine, and Chad Sul-
livan. The darpa lagr program: Goals, challenges, methodologies, and initial
results. Journal of Field Robotics, 23(11-12), 2006.

5. Kumpati S. Narendra, Jeyendran Balakrishnan, and M. Kemal Ciliz. Adaptation
and learning using multiple models, switching, and tuning. IEEE Control Systems
Magazine, pages 37–51, June 1995.

6. Pascal Vincent and Yoshua Bengio. Manifold parzen windows. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 825–832. MIT Press, Cambridge, MA, 2003.


