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Abstract— Effective communication is crucial for deploying
robots in mission-specific tasks, but inadequate or unreliable
communication can greatly reduce mission efficacy, for example
in search and rescue missions where communication-denied
conditions may occur. In such missions, robots are deployed
to locate targets, such as human survivors, but they might get
trapped at hazardous locations, such as in a trapping pit or
by debris. Thus, the information the robot collected is lost
owing to the lack of communication. In our prior work, we
developed the notion of a path-based sensor. A path-based
sensor detects whether or not an event has occurred along a
particular path, but it does not provide the exact location of the
event. Such path-based sensor observations are well-suited to
communication-denied environments, and various studies have
explored methods to improve information gathering in such
settings. In some missions it is typical for target elements
to be in close proximity to hazardous factors that hinder
the information-gathering process. In this study, we examine
a similar scenario and conduct experiments to determine if
additional knowledge about the correlation between hazards
and targets improves the efficiency of information gathering.
To incorporate this knowledge, we utilize a Bayesian network
representation of domain knowledge and develop an algorithm
based on this representation. Our empirical investigation reveals
that such additional information on correlation is beneficial
only in environments with moderate hazard lethality, suggesting
that while knowledge of correlation helps, further research and
development is necessary for optimal outcomes.

I. INTRODUCTION

In recent years there has been increasing interest in the
development of efficient and robust algorithms for informa-
tion gathering in hazardous and communication-denied en-
vironments. These environments pose significant challenges
to agents as they face risks from hazards while also having
limited or no communication capabilities with a centralized
server. In this context, path-based sensor observations have
emerged as a common and useful means for gathering
information about the environment. However, these sensors
detect whether an event has occurred along a particular path,
without providing the exact location of the event.

Recent work by Srivastava et al. [1] has shown that
Bayesian network-based approaches have promising results
in information-theoretic planning and belief updates using
path-based sensor observations. Building on this work, this
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Fig. 1. Estimation of hazardous locations and target elements using path-
based sensor observations by sequential deployment of agents when inter-
agent communication is prohibited. The red line depicts a path an agent
attempted to traverse, but was destroyed somewhere along the path and
never reached the goal position, while the black line shows the path along
which the agent survived. In deployments 1 and 2, the agents never reached
the goal; as a result, there is a greater likelihood of hazard in the overlapping
zones. In contrast, an agent survived the third deployment; consequently, the
overlapping zone has a lower probability of hazard. The agent is capable
of detecting the precise location of target elements with a certain degree
of confidence. Consequently, the greened area is more likely to contain a
target with a higher probability.

paper focuses on improving the efficiency and robustness
of information gathering in communication-denied environ-
ments with hazardous target elements by leveraging the
additional knowledge of correlation between them, referred
to as κ-correlation.

We present a new algorithm called κ-BNITP that uses a
specialized Bayesian network to leverage the domain knowl-
edge of hazard-target connectivity. Our numerical experi-
ments show that κ-BNITP outperforms existing approaches,
namely RELAXED-ITP [2] and RELAXED-BNITP [1], in
terms of information entropy reduction at moderate hazard
lethality levels. However, we note that the algorithm’s per-
formance is reduced at higher and lower hazard lethality
levels due to: i) the unreliable information obtained through
path-based sensors; and ii) the Bayesian network approach’s
reliance on the accuracy of domain knowledge.

Overall, the incorporation of additional domain knowledge
such as κ-correlation can improve the efficacy of information
gathering in communication-denied environments. Future
research is needed to develop more accurate models and
approaches to estimate the environment.
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II. RELATED WORK

Efficient algorithms for information gathering in hazardous
and communication-denied environments have gained signif-
icant interest in recent years. Path-based sensor observations
are commonly used in such scenarios, and various studies
have been conducted to explore information gathering us-
ing path-based sensors [1]–[4]. Bayesian frameworks have
shown promise in information-theoretic planning and target
estimation in robotics [5].

Information theory [6] provides the foundation for
information-theoretic planners, and a connection between
Bayesian inference and information theory has been es-
tablished [7]. Methods that combine Bayesian frameworks
and information theory to solve inverse modeling problems
have been surveyed [8]. Mutual information, a measure of
relative information derived from information theory, has
been widely used in robotics [9]–[11]. Julian et al. [12]
derived the gradient of mutual information and demonstrated
that information entropy would approach zero under a multi-
agent gradient ascent control strategy. However, their work
assumes explicit observations of hazards, while we consider
implicit observations from path-based sensors.

Probabilistic graphical models have been proposed as a
way to represent conditional dependencies among involved
random variables [13], [14]. A probabilistic graphical model-
based method is used for target tracking in [15], [16], while
in [1], a Bayesian network approach is used to estimate the
origin of path-based sensor realizations. However, the study
conducted in [1] did not consider the inherent correlation
between hazards and targets in the environment. In this paper,
we propose a novel method that incorporates this correlation,
which we define as κ-correlation. We also present an empir-
ical study of the efficacy of our proposed method.

III. PROBLEM FORMULATION

Consider a search space S∈R2 consisting of a×b discrete
cells, wherein each cell may be empty, contain hazardous
elements (denoted by Z) that can potentially lead to the
destruction of the agent, contain elements of interest known
as targets (denoted by X), or contain both hazards and targets.
The presence of hazards in a cell is denoted by Z = 1
and absence by Z = 0, while the presence of a target is
denoted by X = 1 and absence by X = 0. For each discrete
cell, we assume that there exists a correlation κ between
hazards Z and targets X , which is defined as the likelihood
of the existence of a target given there is a hazard i.e.,
κ = P(X = 1|Z = 1).

A team of M agents is deployed sequentially in the
search space. An agent can visit up to l cells during a
deployment such that the deployment starts and ends at a
fixed cell, called the base station d, forming the path ζm =
〈d,c1,c2, . . . ,cl−2,d〉. If the agent m is destroyed anywhere
along the path ζm then the path-based sensor is triggered
(Θ = 1), and if the agent m survives the path ζm then we
consider that the path-based sensor is not triggered (Θ =
0). The path-based sensor is subject to false-positive and
false-negative triggering, where false-positive corresponds to

Fig. 2. Bayesian Network representation of domain knowledge showing
conditional dependencies in a given cell. Hazard Z is the reason behind
an agent’s destruction ∆, while the sensor reading Y is dependent on the
presence of target X . The Bayesian Network also incorporates κ-correlation,
meaning that the presence of a target is dependent on the presence of hazards
by some likelihood.

faulty or malfunctioning robots that get destroyed regardless
of the presence of a hazard, and false-negative corresponds to
robots surviving a cell despite having a hazard. The presence
of a target is recorded by a noisy sensor that may also report
a false positive or a false negative observation of the target.
Unlike the path-based sensor, the target sensor reports the
exact location of the target observation (Y = 1) along the
path, if a robot survives it.

Problem 1. Given a team of M agents sequentially deployed
in a communication-denied environment, the task of an
agent m is to find a path ζ ∗m that maximizes the expected
information gained about targets X and hazards Z,

ζ
∗
m = arg max

ζ

{I(Xt ;Yt+1, . . . ,Yt+l |Θζ ,κ)+ I(Zt ;Θζ |κ)}. (1)

IV. INCORPORATING κ -CORRELATION WITH BAYESIAN
NETWORKS IN PATH-BASED SENSORS

In this section, we introduce a Bayesian network ap-
proach to incorporate the additional domain knowledge of κ-
correlation to study its effect on information gathering. In our
prior works, we extensively study the problem of maximizing
information gathering using path-based sensors [1]–[4]. In
[2]–[4], an analogy of multi-universe is used to infer from
path-based sensor observations. If an agent traverses a path
with l discrete cells then l separate universes are considered
where in each universe the path-based sensor trips at a
particular cell from the set of l mutually exclusive cells,
and then the final belief map is computed by integrating the
resulting l belief maps weighted by their relative probability
of occurring. In contrast, [1] propose a methodology that
uses a Bayesian network to incorporate the multi-universe
idea of [2]–[4] into a single joint distribution.

A Bayesian network is a probabilistic graphical model that
represents a set of random variables and their conditional
dependencies using a directed acyclic graph. In a Bayesian



Fig. 3. Bayesian Network representation of domain knowledge showing
conditional dependencies in a given path ζm. Hazard Z is the reason behind
an agent’s destruction ∆ with incorporated κ-correlation. The path-based
sensor triggering Θ along the path ζm is dependent on the destruction
random variables ∆d , . . . ,∆l−2 .

network, each node in the graph represents a random vari-
able, and each edge represents a conditional dependency
between the connected nodes. For a given discrete cell,
the domain knowledge can be represented as the Bayesian
network shown in Fig. 2. In this study, the use of a Bayesian
network provides the flexibility to incorporate κ-correlation
by connecting an edge between the hazard node and target
node, as in Fig. 2. The joint distribution of this Bayesian
network is,

P(Z = z,X = x,∆= δ ,Y = y)=P(z)P(x|z)P(δ |z)P(y|x). (2)

Consider the environment described in Section III. If an
agent traverses a path ζd = 〈d,C1, . . .Cl−2,d〉 and never
reaches its designated goal cell Cl . The problem can be
modeled in a Bayesian network, as shown in Fig. 3. Note
that, in Fig. 3 the random variable of target sensor reading
Y is excluded in the Bayesian network as it is irrelevant in
the event of path-based sensor triggering. The resulting joint
distribution is equal to the sum of the product for all possible
distributions,

P(Z,X ,∆,Θ)= ∑
z,x,δ ,θ∈{0,1}

l

∏
i=1

P(Zi = z,Xi = x,∆i = δ ,Θ= θ),

(3)
where the joint distribution for the ith cell is,

P(Zi,Xi,∆i,Θ) =

P(Θ = θ |∆∆∆ζ = δδδ )P(∆i = δ |Zi = z)P(Xi = x|Zi = z)P(Zi = z),
(4)

where P(Θ = θ |∆∆∆ζ = δδδ ) is the likelihood of a path-based
sensor trigger Θ = θ along the path ζ , P(∆i = δ |Zi = z) is
the likelihood of destruction ∆i given the existence of hazard
Z = z, P(Xi = x|Zi = z) is the κ-correlation or the likelihood
of the existence of target X given hazard Z, and P(Zi = z),
is the prior belief of the hazard Zi at cell Ci of path ζ . The
term P(Θ = θ |∆∆∆ζ = δδδ ) is defined manually to incorporate
the sequential dependency of a path ζm and estimates the
likelihood of tripping the path-based sensor given a specific
permutation of l plausible causes as

P(Θ = 1|∆∆∆ = δδδ ) =

{
∏

j
i=1P(∆i = δi), if ∑

l
i=1 δi ≤ 1

0, if ∑
l
i=1 δi > 1,

(5)

where j is the index of the cell C j at which ∆ j = 1. Therefore,
this likelihood function takes into account the survival of the
agent through the preceding j−1 cells.

Note that, the Bayesian network representation in Fig. 3
and the likelihood function definition in (5) assumes that
the path ζm does not include repeated cells. In other words,
ζm = 〈d,c1,c2, . . . ,cl−2,d〉 is the same as the ordered
set {d,c1,c2, . . . ,cl−2,d}. However, we allow an agent to
traverse a path with repeated cells by altering the likelihood
function (5) to include each possible instance of a repeated
cell based on the path ζm.

The calculation of the posterior belief map in the given
environment is dependent on whether or not the path-
based sensor was triggered, as this condition influences
the Bayesian network and, consequently, the mathematical
framework used for calculation.

A. Case 1: Path-based sensor is not triggered

When the path-based sensor is not triggered, the Bayesian
network framework does not incorporate the random vari-
able Θ as it is deemed irrelevant, and the computation of
the posterior belief map is performed independently for each
discrete cell along the agent’s path. In this scenario, the
Bayesian network shown in Fig. 2 is utilized for computation.

For a cell i in path ζm, the posterior belief of hazard Zi in
that cell given sensor observation Yi = y is given by

P(Zi = 1|Yi = y,∆i = 0) ∝

∑
x∈{0,1}

[P(Xi = x|Zi = 1)P(∆i = 0|Zi = 1)

×P(Yi = y|Xi = x)P(Zi = 1)]. (6)

Similarly, the posterior belief of target Xi is

P(Xi = 1|Yi = y,∆i = 0) ∝

∑
z∈{0,1}

[P(Xi = 1|Zi = z)P(∆i = 0|Zi = z)

×P(Yi = y|Xi = 1)P(Zi = z)]. (7)

The κ-correlation is also calculated and updated for each cell
based on observations. The update rule follows

P(Xi = 1|Zi = 1,Yi = y,∆i = 0) ∝

P(Xi = 1|Zi = 1)P(∆i = 0|Zi = 1)P(Yi = y|Xi = 1)P(Zi = 1).
(8)

The posterior probabilities are normalized in the standard
Bayesian manner.

B. Case 2: Path-based sensor is triggered

When the path-based sensor is triggered, it is unknown
where the agent may have been destroyed. Therefore, the
random variable Θ is relevant and the Bayesian network
shown in Fig. 3 is used for calculations. The calculation



Algorithm 1 κ -BNITP

Inputs: prior hazard belief map Z(0), prior target belief map
X (0), prior κ-correlation belief map κ(0), search space S,
number of agents M
Output: posterior hazard belief map Z(m), posterior target
belief map X (m), posterior κ-correlation belief map κ(m)

1: for m = 1, . . . ,M do
2: B(m−1) = (Z(m−1),X (m−1),κ(m−1))

. Store Prior Belief Maps as a tuple in B(m−1)

3: ζm←calculateBNPath(Z(m−1),X (m−1),κ(m−1),S)
4: observe Θ and Y (m) after agent traverses path ζm
5: if Θ = 0 then
6: Z(m) =Z-noPBS(Y (m),B(m−1),ζm,Θ) (6)
7: X (m) =X-noPBS(Y (m),B(m−1),ζm,Θ) (7)
8: κ(m) = κ-noPBS(Y (m),B(m−1),ζm,Θ) (8)
9: else

10: Z(m) =Z-PBS(B(m−1),ζm,Θ) (9)
11: X (m) =X-PBS(B(m−1),ζm,Θ) (10)
12: κ(m) = κ-PBS(B(m−1),ζm,Θ) (11)

of the posterior belief map is similar to [1] but with the
additional consideration of κ-correlation. The update rules
based on the joint distribution shown in equation (3). The
posterior belief of hazard Zi in cell i is given by

P(Zi = 1|Θ = 1) ∝

∑
x∈{0,1},δδδ∈ΩΩΩ

[P(Θ = 1|∆∆∆ζ = δδδ )P(∆i = δ |Zi = 1)

×P(Xi = x|Zi = 1)P(Zi = 1)], (9)

the posterior belief of target Xi in cell i is given by

P(Xi = 1|Θ = 1) ∝

∑
z∈{0,1},δδδ∈ΩΩΩ

[P(Θ = 1|∆∆∆ζ = δδδ )P(∆i = δ |Zi = z)

×P(Xi = 1|Zi = z)P(Zi = z)], (10)

and the κ-correlation for cell i is calculated as

P(Xi = 1|Zi = 1,Θ = 1) ∝

∑
x∈{0,1},δδδ∈ΩΩΩ

[P(Θ = 1|∆∆∆ζ = δδδ )P(∆i = δ |Zi = 1)

×P(Xi = 1|Zi = 1)P(Zi = 1)]. (11)

In equation (9), (10), and (11) ΩΩΩ refers to the space of
possible permutation of ∆∆∆ζζζ .

V. ALGORITHMS

In this section, to address Problem 1 we pro-
pose a κ-correlation incorporating Bayesian network-based
information-theoretic planner (BNITP), called κ -BNITP.
The proposed algorithm is similar to [1, Algorithm 1] but
incorporates κ-correlation as described in Section IV. Algo-
rithm 1 describes the implementation details of the proposed
κ -BNITP. This algorithm is structurally similar to [1, Algo-
rithm 1]. In Algorithm 1, the incorporation of the additional

domain knowledge of the correlation between hazards and
targets (κ-correlation) is highlighted in blue. The algorithm
begins by computing an informed path for the agent based
on the current Bayesian network representation of the en-
vironment, using the subroutine CalculateBNPath (line
1), as described in [1, Algorithm 2]. The output of the
path-based sensor Θ is then observed, and if Θ = 0, the
sensor readings are stored in Y (m). The posterior belief map
is then computed using the corresponding function based
on equations (6), (7), and (8)(line 6–8). In cases where
the path-based sensor is triggered, i.e., Θ = 1, the sensor
readings Y (m) are not available, and the posterior belief
map is computed using the corresponding function based
on equations (9), (10), and (11)(line 10–12). It must be
noted that the subroutine calculateBNPath presented in
Algorithm 1 extends the function calculateBNPath [1,
Algorithm 2] by incorporating the κ-correlation.

VI. EXPERIMENTS AND RESULTS

This section presents the numerical experiments carried
out to assess the efficacy of the proposed algorithm. Specif-
ically, we compare κ -BNITP with [2] and [1] in a spatial
environment that includes hazards Z and targets X . We begin
by describing the experimental environment, followed by a
discussion of the outcomes of the experiments.

Experimental Setup: We conduct a series of 25 Monte
Carlo numerical experiments to evaluate the efficacy and
robustness of the proposed κ -BNITP algorithm. The ex-
periments are carried out in a discrete spatial environment
with dimensions of a× b = 9× 9 cells. Each cell in the
environment could either be empty, contain hazardous el-
ements Z, which could lead to the destruction of the agent,
contain targets X, or contain both hazards and targets. The
agents are deployed sequentially, and their movement in
the environment is restricted to 9-grid connectivity, allowing
each agent to select the next step either by transitioning to
any of its 8-neighboring cells or by remaining in the same
cell. To investigate how the hazard lethality, which refers to
the likelihood of an agent’s destruction if it reaches a cell C
that is occupied by a hazard (ZC = 1), affects the information
gathering process, we consider environments with hazard
lethality of 1%, 10%, 30%, 50%, 60%, and 90%. Each agent
has a malfunction probability of 5% when taking a step,
corresponding to the false-positive per step of a path-based
sensor triggering. The likelihood of an agent surviving a cell
C with a hazard (ZC = 1) is 5%, corresponding to the false-
negative per step of a path-based sensor. The target sensor
was assumed to truly detect targets in a cell 95% of the time
and has a 5% false-positive rate of detection of targets.

Results and Discussion: We conduct a comparative
study of our proposed κ -BNITP algorithm with exist-
ing approaches, namely RELAXED-ITP [2, Algoirthm 1]
and RELAXED-BNITP [1, Algoirthm 1]. We deploy a fleet
of M = 100 agents sequentially and monitored the progress
of Shannon information entropy (a measure of uncertainty)
through each deployment, as shown in Fig.4. Our results
demonstrate that κ -BNITP outperforms RELAXED-BNITP,



Fig. 4. Comparison of information entropy (in nats) for κ -BNITP, RELAXED-ITP, and RELAXED-BNITP methods in environments with different
adversary lethalities.

and RELAXED-ITP only at a moderate lethality of 50%
and 60%. We observed that when the adversary lethality is
higher, the algorithm underperforms and falsely reports the
presence of targets in cells with only hazards. This bias can
be attributed to the unreliable information obtained through
the path-based sensors and the Bayesian network approach
that relies on the accuracy of domain knowledge. As the
path-based sensor observations are vague and incomplete,
our attempt to infer the true state based on these observations
is limited, leading to biases in lethality levels both lower
and higher than 60%. Our results demonstrate that incorpo-
rating additional domain knowledge of κ-correlation helps
improve the efficacy of information gathering. However,
further research is needed to develop an accurate method
that accurately estimates the belief map of the environment.

VII. CONCLUSION

In this paper, we extend [1] and present a new algorithm
called κ -BNITP for efficient and robust information gather-
ing in a communication-denied environment with hazardous
and target elements. The algorithm leverages the additional
knowledge of the correlation between hazards and targets,
referred to as κ-correlation, to improve the information gath-
ering of target and hazardous elements. Our numerical ex-
periments demonstrated the superiority of the proposed algo-

rithm compared to existing approaches, namely RELAXED-
ITP and RELAXED-BNITP, in terms of information entropy
reduction at moderate hazard lethality levels. However, the
algorithm underperforms at higher and lower hazard lethality
levels due to the unreliable information obtained through
path-based sensors and the Bayesian network approach that
relies on the accuracy of domain knowledge. Overall, our re-
sults suggest that incorporating additional domain knowledge
such as κ-correlation can improve the efficacy of information
gathering, and future research is needed to develop more
accurate models and approaches to estimate the environment.
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