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Abstract— An important aspect of dynamic urban coverage
is how building collision avoidance is incorporated into the
overall coverage mission. We consider a multi-agent urban
dynamic coverage problem in which a team of flying agents
uses downward facing cameras to observe the street-level
environment outside of buildings. Cameras are assumed to
be ineffective above a maximum altitude (lower than building
height), such that agents must move around or over buildings
to complete their mission. The main objective of this paper is to
compare three different building avoidance strategies that are
compatible with dynamic ergodic methods. To provide context
for these results, we also compare our results to three other
common coverage methods including: boustrophedon coverage
(lawn-mower sweep), Voronoi region based coverage, and a
naive grid method. All algorithms are evaluated in simulation
with respect to four performance metrics (percent coverage,
revisit count, revisit time, and the integral of area viewed over
time), across team sizes ranging from 1 to 25 agents, and in five
types of urban environments of varying density and height. We
find that the relative performance of algorithms changes based
on the ratio of team size to search area, as well the height and
density characteristics of the urban environment.

Index Terms— Multi-Agent, Coverage, Lawn-mower, Er-
godic, Boustrophedon, Voronoi, Urban Environment

I. INTRODUCTION

Multi-agent dynamic coverage in urban environments is
used for missions such as: collecting scientific data, surface
monitoring, and patrolling an area for intruders. Ergodic
coverage is used for environmental monitoring and patrol
scenarios in which we wish to obfuscate the revisit time to
any particular point, for example, from an adversary. Build-
ings in urban environments present navigational challenges to
performing ground-level ergodic coverage with small UAVs.

In this paper we consider a multi-agent ergodic coverage
problem in which a team of identical UAV agents is tasked
with visually monitoring an urban environment. In particular,
outdoor street-level terrain. Each agent is equipped with
a downward facing camera. Increasing camera elevation
increases the size of the sensor’s ground-level footprint—
increasing the area that can be monitored by a single agent
but also causing a loss of image fidelity (as larger patches of
ground-level terrain map to a single pixel). We are interested
in the case where cameras are only useful up to a maximum
elevation that is lower than the urban environment’s building
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Fig. 1. Multi-Agent Coverage Algorithms Evaluated: three ergodic
methods (top) and comparison algorithms (bottom). Top, middle, and bottom
panels of each algorithms show agent movement at the start, middle, and
end of a mission, respectively. Trajectories that fly over buildings are red. In
the Voronoi and Rectangular methods, the regions are colored based on their
corresponding robot. Ergodic methods are useful for adversarial scenarios
because they obfuscate the revisit time to any particular point.

height. In other words, cases where agents must navigate
over or around buildings during the mission.

The main contribution of this paper is the experimental
comparison of six coverage methods in various urban
environments (see Figure 1). We evaluate three multi-agent
ergodic coverage methods that differ in their approach to
obstacle avoidance, as well as lawn-mower sweep, Voronoi-
based coverage, and a naive grid-based method. All six
methods are experimentally evaluated in simulation. We
analyze performance using four proposed metrics, across
team sizes ranging from 1 to 25 agents, over five types of
urban environments of varying density and height. We find
that the relative performance of algorithms changes based on
the ratio of team size to search area, as well the height and



density characteristics of the urban environment.
The rest of this paper is organized as follows: Section II

reviews related work. Preliminaries, appear in Section III.
The algorithms evaluated are described in Section IV. Ex-
periments are presented in section V, and a discussion of
results appears in Section V-B.

II. RELATED WORK

We assume a broad definition of the term ‘coverage,’ and
use it to indicate the set of problems including coverage,
surveillance, and environmental monitoring. In dynamic cov-
erage, agent(s) move continuously throughout the environ-
ment so that every point in the environment is intermittently
observed [1]–[5]. In contrast, in static coverage agent(s)
move to a set of advantageous locations, and then remain
at the same locations for the duration of the mission [6]–[9].

Ergodic coverage is applicable to adversarial coverage
problems, such as patrol [4], and uses control laws to balance
search efficiency and unpredictability (since, in an adversar-
ial scenario, the practice of revisiting points on a set schedule
can be exploited by the adversary). Previous work on ergodic
coverage has considered search and target localization related
problems [10]–[14] but not problems involving ground-level
coverage tasks in 3D urban environments.

Ergodic sweep control laws are often designed as a
function of a target coverage distribution and the current
coverage distribution. Biasing coverage to obstacle-free [4]
reduces obstacle collisions, but does not eliminate collisions.
A method for explicit obstacle avoidance within ergodic cov-
erage is presented in [5], which combines ergodic coverage
control laws with phisiocomemetic vector fields to “repel”
agents away from obstacles. Three of the six algorithms that
we compare are ergodic coverage variants that, respectively:
(1) ignore obstacles during coverage planning and then fly
up and over them, (2) bias search away from obstacles and
then fly up and over them if necessary, (3) avoid obstacles
by flying around them without a change in elevation.

Lawnmower sweep (or boustrophedon coverage) uses a
simple back and forth motion. Assuming a sweep sensor has
positive radius, this can be used to cover any obstacle-free
convex environment of finite area [1]. Polygonal obstacles
can be addressed by partitioning the free space into a
finite number of convex regions, and sweeping each region
separately [2]. In [3] a multi-agent team is divided into two
groups of agents, one performing exploration and the other
coverage. Most lawnmower sweep implementations assume
a 2D environment such that regions surrounded by obstacles
are topologically separated from the rest of the environment.

Other methods of generating a coverage trajectory include:
Zelinski’s algorithm, which orders the sweep based on the
levels sets of a wave-front expansion [15], and ideas moti-
vated by space filling curves [16].

Static coverage algorithms partition the search space into
regions such that there is a mapping from robots to regions,
and each robot can view its region from a stationary position.

Centralized methods [6], [7], [17] compute the search
space division on a single agent or server, and then send the

solution to all agents at runtime or a priori. A cellular decom-
position of the environment followed by the calculation of a
multi-robot spanning forest is used by [7], and each robot is
assigned one tree in the forest. A segmentation technique
is used in [17], where each robot is assigned a unique
segment. Work in [18] partitions the environment using the
weighted K-Means clustering algorithm. Centralization has
the disadvantage of introducing single points of failure.

In contrast, decentralized and/or distributed process do not
have a single point-of-failure. In many strategies robots start
at their initial locations and then tend toward a multi-robot
configuration with desirable coverage properties over time.
Iterative Voronoi-based approaches achieve such a distributed
control strategy [19]–[31]. One advantage of such methods
is that each agent need only communicate with its Voronoi
neighbors. The basic Voronoi method is one of the six
methods we compare in this paper.

Information gathering [32], [33] is closely related to cover-
age, the main difference being that the amount of information
that can be gathered at a particular location is non-uniform
and changes as a function of each sensor measurement.

In target search [34]–[37] the goal is to locate one or more
stationary or moving targets. Target search problem variants
that share similarities with the coverage problem include
probability based [38], [39], information based [40]–[42],
and game theoretic formulations [43].

Exploration is similar to coverage in that both problems
are concerned with visiting all points in the environment [44].
However, coverage problems often require repeated visits
to each location, while exploration is completed once each
location has been visited once.

In previous work [45] we present a collision avoidance
algorithm for a swarm of UAVs performing an urban cov-
erage task. The method in [45] focuses on agent-to-agent
and agent-to-obstacle local collision avoidance. The method
in [45] can be used as a post-processing step for all of the
algorithms considered in the current paper.

III. NOMENCLATURE AND PROBLEM STATEMENT

A team of n robots is the set R = {r1, . . . , rn}, where
ri denotes the i-th robot. The 3D workspace is χ3 and
contains the mutually disjoint obstacle space χ3

obs ⊂ χ3

and the free space χ3
free ⊂ χ3, i.e., χ3

obs ∩ χ3
free = ∅ and

χ3
obs ∪ χ3

free = χ3. We assume the ground plane of the
workspace can be approximated by 2D Euclidean space R2.
Let the projections of χ3 and χ3

obs directly down onto R2 be
denoted χ and χobs, respectively. The free space at ground
level is defined χfree = χ \ χobs such that χobs ∩ χfree = ∅
and χobs ∪ χfree = χ. We assume an urban environment
such that χ3

obs contains buildings. The area of desired cover-
age is defined as all ground-level terrain (and not the sides
or tops of buildings), and denoted χsearch ≡ χfree.

Each robot ri is assumed to be a point, and follow a
trajectory in χ3

free while using a downward facing camera
sensors to observe χfree. We assume a continuous time
model starting at t = 0. The interval of time from the begin-
ning of the mission until t = tmax is [0, tmax]. Trajectory ρi



denotes the geometric set of points along the curve in χ3
free

that is traced out by robot ri over time, such that ρi ⊂ χ3
free.

The multipath ψ is the set of all robots’ trajectories. Geomet-
rically ψ =

⋃n
i=1{ri}. The space containing all multipaths is

Ψ =
⋃
{ψ}.

We assume robots have identical downward facing camera
sensors such that when ri flies at altitude h the projection of
ri’s field-of-view down onto χsearch is a disc Bh of radius
f(h). We assume sensor will be used at the highest altitude
h̃ for which it remains a reliable sensor (increasing altitude
increases Bh, which is advantageous, but may degrade
sensor reliability, which is disadvantageous). We drop the
subscript when the sensor is used at the optimal altitude,
B = Bh̃. Agents may increase their altitude h > h̃ to fly
over obstacles, but cannot observe χfree while at altitude
h > h̃. Let ρ̃i ⊂ ρi be the subset of ρi containing all points
at which robot ri’s camera sensor is functional, i.e., for which
ri is at altitude h = h̃. Similarily, let ψ̃ =

⋃n
i=1{ρ̃i}. The

area swept by the team is then:

χswept =
(
ψ̃ ⊕B

)
∩ χsearch (1)

where ‘⊕’ denotes the Minkowski sum1. The intersec-
tion with χsearch is included in Equation 1 so that
χswept ⊂ χsearch by construction.

Let Ψ̃ =
⋃
{ψ̃} be the space containing all ψ̃. Let 1see be

an indicator function that returns 1 or 0 based on whether or
not, at time t, a point x ∈ χsearch is observed by at least one
robot in the team. 1see : χsearch × [0, tmax]× Ψ̃→ {1, 0}.
and so 1see(x, t, ψ̃) 7→ 1 ⇐⇒ x ∈ ψ̃(t)⊕B and
1see(x, t, ψ̃) 7→ 0 ⇐⇒ x 6∈ ψ̃(t)⊕B.

Given a particular ψ̃, the function gψ̃,tmax
is a map

from the search space χsearch to the time-duration domain,
gψ̃,tmax

: χsearch → [0, tmax] that measures the cumulative
time that point x ∈ χsearch is observed by at least one
robot, gψ̃,tmax

(x) =
∫ tmax

0
1see(x, t, ψ̃) dt, where the integral

is Lebesgue. Dynamic coverage algorithms can be character-
ized by a requirement that points in χsearch be visited infinity
often as tmax →∞. Given continuous vehicles trajectories,
this is limtmax→∞ gψ̃,tmax

(x) =∞ for all x ∈ χsearch.
The dynamic coverage problem is formally defined below.

Problem 1, The dynamic multi-robot urban coverage prob-
lem: Given a team of n robots R = {r1, . . . , rn}, an urban
environment χ3 with obstacle space and free space such that
χ3
obs ∩ χ3

free = ∅ and χ3
obs ∪ χ3

free = χ3, and with ground-
level search space χsearch = χfree, determine a multipath
ψ = {r1, . . . , rn} such that χswept =

(
ψ̃ ⊕B

)
∩ χsearch

and where, for all x ∈ χsearch, limtmax→∞ gψ̃,tmax
(x) =∞.

IV. ALGORITHMS

The three ergodic methods we evaluate are described in
Section IV-A. The algorithms we use for comparison appear
in Sections IV-B, IV-C, and IV-D, respectively.

1The Minkowski sum of two geometric objects is found by dilating
(increasing the size) of one object by that of the other. It is formally defined
as the set containing all points described by position vectors a+ b where a
is a position vector describing a point in the first object and b is a position
vector describing a point in the second object.

A. Multi-Agent Urban Ergodic Coverage

In ergodic coverage the agent/team follows trajectories
such that the relative time spent in each non-zero measure
region of the environment can be prescribed by a user. The
desired properties only hold almost surely in the limit as
time approaches infinity. Thus, practical performance can be
expected to improve with mission duration.

Ergodic coverage is most easily described—and
implemented—as an evolutionary process that generates a
trajectory. The subroutine singleErgodic(fχ), described
in Algorithm 1, computes the ergodic trajectory for a single
agent, assuming a user defined coverage distribution fχ(x)
over χ. The ‘◦’ symbol denotes trajectory concatenation.

The subroutine nextStep(fχ,Mk, Ck) (on line 4 of Al-
gorithm 1) implements the first order control laws of ergodic
coverage [4] for a single agent without explicit obstacle
avoidance. This is calculated Bj(t) =

∑
R ΛkSk∇fk(xj(t))

which is further normalized and constrained by velocity
umax uj(t) = −umax Bj(t)

‖Bj(t)‖2 , Where Λk is constant and
Sk(t) is difference between the current distribution and target
distribution, given by Sk(t) := Ck(t) −Mk(t). ∇fk(xj(t))
is gradient of the Fourier basis function which is given by

∇fk(xj(t)) =
1

hk

[
−k1 sin(k1x1) cos(k2x2)
−k2 cos(k1x1) sin(k2x2)

]
and the Fourier basis function is given by fk(x) =
1
hk

cos(k1x1) cos(k2x2). The Fourier coefficient Ck(t) is
calculated Ck(t) =

∑N
j=1

∫ t
0
fk(xj(τ))dτ and Fourier co-

efficient of target distribution is Mk(t) := Ntµk, where
k1 = K1π

L1
, k2 = K2π

L2
, and µk = 〈µ, fk〉, where 〈·, ·〉 is an

inner product. hk =
(∫ L1

0

∫ L2

0
cos2(k1x1) cos2(k2x2)

)1/2
.

The subroutine singleErgAvoidObs(χ, χobs), described
in Algorithm 2, computes an ergodic trajectory for
a single agent that explicitly avoids obstacles by us-
ing an obstacle repulsive feedback law which has de-
rived by [5] (line 5), and calculated as follow: This
feedback law implementing obstacle avoidance would
be governed by V ∗j (t) := −αVj(t) + (1− α)F oj (rj) where
Vj(t) := − Bj(t)

‖Bj(t)‖2 and F oj (rj) is a repulsive vector field
which is defined as,

F oj (rj) =

{
F |λ=1(rj − ro) if PT (rj − ro) ≥ 0

F |λ=0(rj − ro) if PT (rj − ro) < 0

where function F (r) = λ(PT r)r−p(rT r) as defined in [46].
Here λ ∈ R specifies shape of the vector field, r = rj − ro
which is distance between robot and obstacle, and P ∈ R2.
According to [5], this method will only works for a defined
shaped object.

In this paper, we extend this idea of defined shaped
obstacle avoidance to accommodate polygonal obstacles. A
particular obstacle Oarb is defined by a combination of
N shaped obstacles: Oarb =

⋃N
i=1{oi} for some positive

integer N . The feedback law of a single obstacle to multiple



Algorithm 1 singleErgodic(fχ)

1: Mk, Ck ← initErgParams(fχ)
2: ρ ← ∅
3: for t = 1, . . . tmax do
4: ρ[0,t] ← ρ[0,t−1] ◦ nextStep(fχ,Mk, Ck)
5: Ck ← updateCurrentDists(Ck, ρ[t])

Algorithm 2 singleErgAvoidObs(fχfree
, χobs)

1: Mk, Ck ← initErgParams(fχfree
)

2: ρ[0,t] ← ∅
3: for t = 1, . . . tmax do
4: ρ[t−1,t] ← nextStep(fχfree

,Mk, Ck)
5: ρ[0,t] ← calcVectorField(ρ[t−1,t], χobs)
6: Ck ← updateCurrentDists(Ck, ρ[t])

Algorithm 3 Multi-Agent Ergodic
1: for i← 1 . . . n do
2: ρi ← singleErgodic(fχV acant

)
3: ρ̃i ← flyOverBldgs(ρi, χ

3
free, χ

3
obs)

4: ψ̃ ← (ρ̃1, . . . , ρ̃n)

Algorithm 4 Biased Multi-Agent Ergodic
1: for i← 1 . . . n do
2: ρi ← singleErgodic(fχfree

)
3: ρ̃i ← flyOverBldgs(ρi, χ

3
free, χ

3
obs)

4: ψ̃ ← (ρ̃1, . . . , ρ̃n)

Algorithm 5
Obstacle Avoiding Multi-Agent Ergodic

1: for i← 1 . . . n do
2: ρi ← singleErgAvoidObs(fχfree

, χobs)

3: ψ̃ ← ψ ← (ρ1, . . . , ρn)

Algorithm 6 Multi-Agent Lawnmower
1: ρ ← Boustrophedon(χvacant)
2: ρ̃ ← flyOverBldgs(ρ, χ3

free, χ
3
obs)

3: `← ‖ρ̃1‖
4: for i← 1 . . . n do
5: ρ̃i ← rotateCycle(ρ̃, in`)

6: ψ̃ ← (ρ̃1, . . . , ρ̃n)

Algorithm 7 Multi-Agent Voronoi Cover
1: x0 ← projectOnto(R,χ)
2: {ρ0, . . . , ρn} ← {x0,1, . . . , x0,n} ← x0

3: for t← 1, . . . , tmax do
4: {C1, . . . , Cn} ← voronoiPart(xt−1, χ)
5: for i← 1, . . . , n do
6: xt,i ← centroid(Ci)
7: ρi = ρi ◦ xt,i
8: xt ← {xt,1, . . . , xt,n}
9: for i← 1, . . . , n do

10: ρ̃i ← flyOverBldgs(ρi, χ
3
free, χ

3
obs)

11: ψ̃ ← (ρ̃0, . . . , ρ̃n)

Algorithm 8 Multi-Agent Grid Cover
1: x0 ← projectOnto(R,χ)
2: {ρ0, . . . , ρn} ← {x0,1, . . . , x0,n} ← x0

3: {C1, . . . , Cn} ← gridPartition(x0, χ)
4: for i← 1, . . . , n do
5: x1,i ← centroid(Ci)
6: ρi = ρi ◦ x1,i
7: ρ̃i ← flyOverBldgs(ρi, χ

3
free, χ

3
obs)

8: ψ̃ ← (ρ̃0, . . . , ρ̃n)

obstacles is then given by

V ∗j (t) :=

(
N∏
i=1

αoi

)
Vj(t) +

N∑
i=1

(1− αoi)F oij (rj)

The obstacle avoidance control law is then normalized and
constrained by velocity umax as uj(t) = −umax Vj(t)

‖Vj(t)‖2 .
The parameter α ∈ [0, 1] is a bump factor taking value 1
if the robot is far from the obstacle and reducing to 0 when
approaching an obstacle (in the vector field). While we have
chosen to use a linear α in this paper, it is also possible to
define α in other ways [5].

Let the probability distribution functions fχV acant
(x) and

fχfree
(x) respectively define uniform random distribution

over the entire space (ignoring obstacles) and over the free
space (biasing movement away from obstacles).

fχV acant
(x) =

{
1
‖χ‖ if x ∈ χ
0 if x 6∈ χ

fχfree
(x) =

{
1

‖χfree‖ if x ∈ χfree
0 if x 6∈ χfree

We compare three versions of multi-agent ergodic sweep
for that differ based on how urban obstacles are handled:

1) Multi-Agent Urban Ergodic Sweep is a simple re-
pairing strategy that calculates a trajectory assuming no
obstacles exists (Algorithm 3). This method modifies
its solution to avoid obstacles in χ3 using the sub-
routine flyOverBldgs(ρ, χ3

free, χ
3
obs) on line 3. The

effect of this subroutine is to generate a building avoid-
ing trajectory ρ̃ by replace each obstacle intersecting
segment of the original trajectory ρ with a different
segment along which the agent increase its elevation
above the building, flies over it, and then descends back
to the optimal sweep elevation.

2) Multi-Agent Urban Biased Ergodic Sweep is similar,
except that we define the area of desired uniform
coverage to be χfree instead of χvacant (Algorithm 4,
line 2). This biases ρi away from obstacles, but does
not eliminate the need to occasionally fly up and over
a buildings. ρ̃i is created from ρi by having agent i fly
over buildings when necessary (Algorithm 4, line 3).

3) Multi-Agent Obstacle Avoiding Urban Ergodic
Sweep forces each ρi to avoid obstacles using the
vector field algorithm (Algorithm 5). In other words,
by using singleErgAvoidObs(fχfree

, χobs) to pre-
vent ρi from intersecting χobs. In our experiments,
all agents fly at the optimal sweep elevation such that
isolated internal courtyards are not visited.

B. Multi-Agent Urban Lawnmower Coverage

Single agent lawnmower sweep in a 2-dimensional envi-
ronment is known as boustrophedon coverage. Our multi-
agent implementation is presented in Algorithm 6, and uses
the single agent boustrophedon algorithm as a subroutine.
We start by finding a single agent boustrophedon coverage
cycle of an obstacle free environment χvacant, where χvacant
has the same footprint as χ (line 1). ρ̃i is created from ρi
by having agent i rise in elevation to fly over a building
and descend back to the sweep altitude afterward (line 2).
Given a single agent cycle ρ̃1 of length `, the cycles of the
other agents are calculated by rotating the starting positions
i
n of the length around the cycle for agent i (lines 3-5). The
obstacle avoiding multi-path of the team is given by the n-
tupal containing the single agent trajectories (line 6).

C. Voronoi Urban Coverage Algorithm

Given a set of n generating points (we use the set
x = {x1, . . . , xn} of robot projections onto χ) a Voronoi
space partitioning of χ creates mutually disjoint open cells
by assigning each point x ∈ χ to a cell Ci associated



TABLE I
ALGORITHMS

Name of Algorithm
1 Lawnmower
2 Ergodic
3 Biased Ergodic
4 Obstacle Avoiding Ergodic
5 Voronoi
6 Rectangular

TABLE II
EVALUATION METRICS

Name of Metric
1 Coverage Area (percentage of total area)
2 Number of Visits
3 Mean Duration Between Visits to Each Points
4 Mean Time Spent Near Each Point

TABLE III
URBAN ENVIRONMENTS IN EXPERIMENTS

Height Density Dimensions Buildings
1 Tall High 50.96 × 39.33 × 29.50 27
2 Tall Low 56.25 × 53.03 × 14.25 16
3 Short High 64.26 × 53.80 × 12.50 79
4 Short Low 96.67 × 62.92 × 7.2 23
5 Mixed Mixed 147 × 59 ×44.6 28

Fig. 2. Right: 3D simulation model of
the “mixed” urban environment.
Left: Trajectory plot of single agent
following ergodic sweep in high sparse
simulated urban environment.

with the closest generating point (Algorithm 7, line 4).
Ci = {x | ‖x− xi‖ < ‖x− xj 6=i‖}. The Voronoi partition-
ing of χ, i.e., instead of all of R2, is found by placing
reflected versions of points across each boundary of χ, and
truncating the resulting extended Voronoi diagram to the
footprint of χ. When χ is a rectangle this requires 5n points.

Voronoi coverage methods work by having each robot
move a small distance toward the centroid of its current
voroni cell, recalcuate new voronoii cells (Algorithm 7, lines
4-7), and then repeat (lines 3-8). Over time, this causes robots
to greedily space themselves away from their neighbors.

D. Grid-Based Urban Coverage Algorithm

We also implement a naive grid-based algorithm for static
coverage. This method uses rectangles, instead of Voronoi
regions, to divide the space among agents (Algorithm 8).
This rectangular division of the space can be calculated a
priori. At runtime each agent moves to the center of its
assigned rectangular region.

V. EXPERIMENTS

In this section we compare the six multi-agent coverage
methods (see Tables I and II) across a variety of environ-
ments (see Table III), for teams of size 1 to 25 agents.
Environments differ based on building height, building den-
sity, and footprint size. Each combination of Environment,
Algorithm, and team size is repeated over three random trials.
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Fig. 3. Performance of different size teams after 15000 time steps (left)
and performance for 10 agents over time (right) in environments with tall
buildings and high building density (top 4 rows) or low building density
(bottom 4 rows) density. In tall environments it is better to fly around
buildings than over them. Greater building density amplifies performance
differences between methods.

Experiments are run in the Ubuntu Linux operating system
using Robot Operating System (ROS), Gazebo, and the PX4.
UAVs measure 1 X 1 X 0.3 meters.

A. Performance Metrics

We empirically evaluate performance with respect to four
proposed metrics, by randomly sampling a large number of
points in the environment and tracking statistics in a disc
surrounding each point. Statistical results for a particular trial
are obtained by integrating over these points.

1) Percent Coverage: The percentage of the map (point
regions) that has been swept at least once.

2) Visits Count. The total number of visits a point’s
region has been visited.

3) Revisit Time. The time duration between successive
visits to a point’s region.

4) Time spent. The cumulative time that any agent is
within a point’s region. We unpause the counter when
any agent enters point’s region and pause the counter
when the agent leaves that region.
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Fig. 4. Performance of different size teams after 15,000 time steps (left)
and performance for 10 agents over time (right) in environments with short
buildings and high building density (top 4 rows) or low building density
(bottom 4 rows) density. Biased ergodic sweep outperforms the other ergodic
methods in short environments.

Agent starting locations are chosen randomly for all
methods except for Lawnmower Sweep. For Lawnmower
Sweep, the initial coordinates of the agents are randomly
chosen along the lawnmower trajectory (this causes the
lawnmower algorithm to have a slight start-up advantageover
other methods because it eliminates the startup phase in
which agent travel to their equally spaced positions along
the cycle). Experimental results appear in Figures 2-5. We
discuss our main observations next.

B. Results

The key findings of our experiments are:
• In tall environments, flying around buildings is better

than flying over them.
• In short environments, the best performing ergodic

method is to bias movement toward the free space,
while not explicitly avoiding obstacles—i.e., flying over
buildings is allowed in the rare cases the ergodic path
moves through the obstacles space.

• Building height effects become more pronounced as
team size increases.
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Fig. 5. Performance of different size teams (left) and performance over
time (right) in environments with mixed density and mixed buildings.

• Increasing building density amplifies the differences
between the different methods.

• For the dynamic methods, mean revisit times appear to
scale inversely proportional to agent number.

C. The Performance Of Ergodic vs. Non-Ergodic Methods

The Lawnmower sweep, Voronoii, and Grid methods
provide context to understand the performance differences
between the various ergodic methods we compare, namely:
• Lawnmower sweep algorithm uses systematic but pre-

dictable motion, and provide an upper bound on the
amount of area that can be covered.

• Voronoii and Grid methods are designed to solve static
problems and provide a reasonable lower bound on what
is achievable without movement.

• The ergodic methods revisit a particular point less often,
on average, than lawnmower sweep, but more often than
the Voronoi or grid methods.

• Ergodic methods are preferable to lawn-mower sweep
in adversarial scenarios.

VI. SUMMARY AND CONCLUSION

In this paper, we empirically evaluate multi-agent ergodic
algorithms for dynamic coverage in urban environments. We
compare three ergodic methods that differ in their strategy of
handling of building obstacle avoidance. In contrast to prior
investigations on purely 2D areas or within a 3D volume, we
consider a different scenario in which agents move in 3D but
the coverage region is defined as the 2D ground plane.

We find that the performance of coverage algorithms in
urban environments is affected by the strategy used to avoid
building collisions. In environments with tall buildings it
is better to fly around the buildings than over them. In
environments with short buildings it is better to bias ergodic
motion away from obstacles and then greedily fly over
buildings when necessary. We also find that mean revisit
times appear to scale inversely proportional to agent number.
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