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Path-Based Sensors: Paths as Sensors, Bayesian
Updates, and Shannon Information Gathering

Michael Otte, Member, IEEE, and Donald Sofge, Senior Member, IEEE

Abstract—Consider a sensor that reports whether or not an
event has occurred somewhere along a path, but that has no
conception of where along the path that event has occurred. We
name this type of sensor a path-based sensor, and describe the
recursive Bayesian update that can be used to calculate posterior
beliefs about the presence of a sensor triggering phenomenon
given a path-based sensor observation. We show how the Bayesian
update can be leveraged to calculate the expected Shannon
information that will be gained along a particular path. We
formalize two iterative information gathering problems that
results from this scenario, and present path-planning algorithms
to solve them. These include: (1) gathering information about
the path-based sensor triggering phenomena, and (2) assuming
the path-based sensor triggering event is “robot destruction,”
simultaneously gather information about (i) hazards using a path-
based sensor and (ii) information about another environmental
phenomenon using a standard sensor, such as the locations
of search and rescue targets with a camera. We evaluate our
methods using Monte Carlo simulations, and observe that they
outperform other techniques with respect to the new problems
we consider.

Note to Practitioners: Abstract—This work is motivated by
the problem of searching for robot destroying hazards that are
otherwise invisible to the robots. That is, we can observe whether
or not a robot survives a path, but if a robot is destroyed then we
have no idea where along the path its destruction has occurred.
A mathematically equivalent problem happens in any scenario
in which an agent is equipped with an event sensor that can only
be set/triggered once, but that requires post processing to figure
out if the sensor has been triggered or not. For example, post
processing is needed if the determination of whether or not a
biological specimen was obtained requires a manual laboratory
inspection. We also consider an extension of the hazard detection
problem in which we simultaneously collect information about
search-and-rescue victims using a “victim sensor” like a camera.
In this problem hazards indirectly affect information gathered
about victims because new information about victims is lost
whenever a robot is destroyed. We provide algorithms to solve
these types of problems, and that work even in cases with noise
such that false positives and false negatives are possible. This
work is useful in any application where observations take the
form of a cumulative “yes” or “no” along a path.

Primary and Secondary Keywords Index Terms—Primary
Topics: Path Planning, Unmanned Autonomous Vehicles, Robots,
Mutual information, Information Entropy, Recursive Estimation.
Secondary Topic Keywords: Information Gathering, Paths as
Sensors, Target Search, Hazard Detection.

I. INTRODUCTION

The use of autonomous robots for scientific, commercial,
and government tasks has become increasingly common in
the last few years. This is due to increasing availability,
better reliability, and lower costs of autonomous platforms
and a variety of useful onboard sensors. A broad category
of autonomous robot missions involves gathering information
about the world. Oceanographers take temperature and salinity
readings, biologists retrieve plant and insect specimens, public
utility agencies inspect infrastructure, and governments patrol
geopolitical boundaries. The use of an autonomous agent for
these tasks requires the agent to move to a position, or set of
positions, to make observations and/or collect samples.

Previous missions have tended to fall into one of two
categories. Category one: the use of onboard sensors like
cameras, thermometers, and chemical sensors enables the
agent to gather hundreds, thousands, or millions of readings
during a mission. Category two: physical sample/specimen
collection is performed, and the physical nature of samples,
such as size, weight, sampling procedure, restricts the number
of samples that can be retrieved per trip. In both of these cases
it is possible to estimate when and where each piece of data
is collected during a robot’s mission.

In this paper we investigate a very different idea. We are
interested in the scenario where we cannot know when/where
along a path a critical piece of data is collected, but we do
know the path along which the agent traveled. This scenario
occurs when a robot is equipped with an event sensor that can
only be set/triggered once, but that requires post processing to
discern whether or not that sensor has made been triggered.

Given (A) an event sensor that can only be triggered once
and (B) the path along which the sensor has traveled, we can
make an observation (C) “the sensor was triggered along the
path (or it was not)”. Thus, (A) and (B) combine to form
another type of sensor that is shaped like the path and provides
the observation (C). We call this type of sensor a “path-based
sensor.”

In this paper we assume that the path-based sensor produces
a binary sensor observation—did an event happen along the
path? “yes” or “no”. We assume a noisy path-based sensor
such that both false positives and false negatives may occur.

As with any sensor, path-based sensor readings provide data
that can be use to refine our belief about the location of the
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Fig. 1: A path-based sensor returns true or false depending on if an event occurs somewhere along the path or not, respectively. This figure
shows two iterative information gathering problems that leverage the path-based sensor idea. Left: a sequence of paths is used to refine
beliefs about whether or not locations contain event causing (sensor triggering) phenomena. Right: Search for hazards and targets in an
environment without communication. The path-based sensor is used to refine the location of hazards, based on robots successfully returning
from a path or disappearing along it, during a mission in which a typical camera sensor is used to simultaneously sense targets.

triggering phenomena. Although a path of any shape can be
used for a path-based sensor, we can also design the path to
maximize the expected amount of information that will be
gained about the locations of the triggering phenomena.

To aid our discussion, we now outline three examples of
path-based sensors that will be used throughout this paper.
Ex 1. We desire to find locations at which insects are hatching.
An insect sampling robot carries a passive collection device
such as a butterfly net through the environment. After the robot
returns from each pass through the field, a biologist inspects
the net to see if a particular species of insect has been obtained.
Paths from which the robot returns with a positive sample are
more likely to have visited map regions containing a nest.
Ex 2. Invisible hazards exist in an environment in which wire-
less communication is prohibited. Communication of direct
positive hazard observations are impossible—the only way a
robot can positively “observe” a hazard is to be destroyed
by it. Indirect information about hazards can be inferred by
remembering which path an agent plans to take, and then
observing whether or not the agent survives a journey along
that path. Agents are less likely to return from paths containing
hazards than paths that are hazard free. Note that in this case
the path-based sensor observation is “the agent survived the
path (or did not)”. See Figure 1-Left.

Ex 1 and Ex 2 have identical mathematical formulations
despite the fact that Ex 1 involves non-lethal data collection
and Ex 2 involves the destruction of the agent itself. This
variety helps to showcase the generality of the path-based
sensor idea. In either case, an important assumption is that
the sensor is active along the entire path. This means that we
assume the net cannot be selectively deployed, and that debris
from destroyed robots cannot be observed later, e.g., obscured
by the environment or removed by an adversary.

A different class of problems involves simultaneously: (i)
determining the locations of lethal hazards using a path
based sensor while also (ii) using a more typical sensor to
gather information about a separate non-lethal environmental
phenomenon. Ex 3 illustrates such a scenario.
Ex 3. Autonomous agents are used to help search for human
survivors (“targets”) in a hazardous environment in which
wireless communication is prohibited. As agents gather in-
formation about survivors’ whereabouts, the agent must visit

special “uplink sites,” like bases or friendly naval vessels, to
upload any information that is collected. Target information
gathered by an agent is lost if that agent is destroyed before
reaching an uplink site.

In Ex 3 the objective is to gather a weighted sum of
information about both hazards and targets (survivors). See
Figure 1-Right. Any calculation of the expected information
that will be gathered along a path involves an integral over
two mutually exclusive cases: either (1) the robot survives or
(2) the robot does not survive. Hazards affect the information
gathering task in two completely different ways. First, as in
Ex 2, either the destruction (or not) of the agent itself can
provide information about the hazard locations. Second, the
probability the robot is destroyed along a particular path affects
the amount of information we expect to gather about targets
along that path.

Our work is grounded in Bayesian probability and the ideas
of Shannon information theory. Given the ability to plan a
robot’s path, it is possible to maximize the mutual information
[1], [2] between path-based sensor readings and our existing
beliefs. In practice, this means that we seek to maximize the
expected information gain, defined as the expected reduction in
the Shannon entropy of our beliefs given a path-based sensor
reading integrated over the distribution of possible events.

The contributions of our paper include:
• An iterative (recursive) Bayesian framework for path-

based sensor readings. This can be used to refine beliefs
about whether or not phenomena (hazards, hatches, etc.)
exist at various locations in the environment given the
output of a path-based sensor.

• We show how to calculate the expected Shannon infor-
mation gain that will result from sending an agent along
a particular path for both the Ex 1,2 and Ex 3 problems.

• We present a number of algorithms to solve problems
Ex 1 and Ex 2, and Ex 3.

• We perform experiments in simulation comparing our
methods to other ideas from the literature. While these
previous ideas are not designed for use with path-based
sensors, they are the most reasonable existing ideas that
can be applied to this problem.

Our general mathematical formulations are valid in both
continuous and discrete models of the environment. However,
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for practical reasons of implementation, the algorithms that we
present and the experiments that we run use a discrete belief
map cellular decomposition of the environment. The world is
modeled as a collection of non-overlapping cells, and we track
our belief that each cell contains a hazard (and/or target), and
paths are designed to maximize the expected information that
is gained over all cells that a path traverses.

This paper is concerned with scenarios in which information
is gathered by one robot at a time. While multiple robots may
be used to enable subsequent paths to depart from or end at
different locations in the environment, we assume the paths
are traversed one at a time. The algorithms that we present for
calculating the next robot’s path fall into two categories: (1)
optimal algorithms, which we find to be inefficient due to the
general sub-modularity of the information gathering problem,
and (2) efficient algorithms that are not optimal but that are
shown to perform comparably to the optimal algorithms in our
experiments.

Our formulations follow Bayesian and Shannon formula-
tions. Our only departure from a “purely” Bayesian/Shannon
formulation is that a user may opt to assign a different relative
weight to each type of information that is collected, e.g.,
reflecting the fact that the user may desire more or less
Shannon information about hazards than targets.

The rest of this paper is organized as follows: Related
Work appears in Section II. Nomenclature is introduced in
Section III. The recursive Bayesian update for the path-based
sensor and the information theoretic calculations are described
in Section IV. Path-based sensor information gathering prob-
lems are formally defined in Section V. Algorithms to solve
the path-based sensor information gathering problems are
described in Section VI. Runtime analysis is in Section VII.
In Section VIII we run a number of experiments and discuss
the results. Our conclusions are presented in Section IX. An
appendix contains a simple example of a scenario in which
the efficient algorithms that we present produce a sub-optimal
solution, mid-level optimizations that we use to make the
algorithms run quickly, a relaxed version of our method that
runs in polynomial time, and additional experiment figures.

II. RELATED WORK

The main difference between our work and all previous
work is that we consider problems involving the question: “did
an event occur somewhere along the robot’s path?” Different
bodies of related work are discussed in Sections II-A through
II-H. The most closely related work is discussed first and our
own previous work is discussed last. Large surveys of target
search can be found in [3] and [4].

A. Closely Related Work

The approach presented in [5] uses recursive Bayesian filters
to update estimates of both target and hazard locations. The
location dependent probability of agent destruction is used to
calculate the mutual information that can be gained about
targets. Unlike the problem we consider, [5] assumes that
agent failure locations are directly observable.

B. Related Work on Information Gathering

The first formal derivation of the gradient of mutual infor-
mation appears in [6], which also proves that a multi-agent
control policy of gradient ascent will gather all information,
in the limit, as time goes to infinity. A multi-agent problem
in which robots have full knowledge of positions and sensor
data is posed, and a more tractable 1-step look ahead method,
“information surfing,” is used to solve problems involving
intermittent communication between robots.

1-step look-ahead information surfing is also used in [7] for
multi-agent target-localization, extended in [8] by implemen-
tation on a quad rotor test-bed, and extended in [9] to 3-step
receding horizon approach use with rovers. Our work differs
from [6]–[9] in that we consider a problem variant in which
hazards can destroy agents.

Receding horizon control for gathering information about
randomly moving targets is presented in [10], [11]. A multi-
agent control framework to track moving targets is used in
[10], while communication limitations to a receiver tower
while tracking a single target is considered in [11]. Our work
differs in that we consider path-based sensors, agent loss, and
environments without communication.

An overview of grid-based environmental representations
for information gathering appears in [12]. Approaches can be
divided based on what form of data is stored in the grid.
For example, a grid-based probability density function of a
particular target’s location is stored in [13], while the proba-
bility that each cell in a grid contains a particular phenomenon
(target, environment class, etc.) is tracked in [14]–[16]. Our
work differs from [13]–[16] in that we consider path-based
sensors, and situations that may involve robot failure.

C. Other Related Work Involving Bayesian Search

A variety of Bayesian approaches have been used for target
search and tracking. One approach is to track each target
individually, for example using a Kalman filter. Each robot
stores a vector of the targets that it has discovered so far
in [17]. An alternative approach is to track the probabilities
that map grid cells containing a target [18]. The resulting
data structure is called a probabilistic map. Such grid-based
approaches usually store a probabilistic belief at each cell, and
then update these beliefs using Bayesian inference.

At least two different types of probabilistic maps exist: in
Type 1 the grid stores different parts of a numerical probability
density function of a single target’s location [10], [19]–[27]; in
Type 2 each grid tracks the probability that a target is located
within the space that the grid represents [8], [9], [28]–[32].

We use Type 2 probabilistic maps because we find them
convenient for locating multiple stationary targets/hazards. In
problems involving both targets and hazards, we use one map
for targets and another for hazards. Our work is the first to
consider an iterative Bayesian update for a path-based sensor.

D. Planning for Submodular Objectives

Information gathering involves optimizing a submodu-
lar function. A general submodularity relaxation, called α-
submodularity, which permits bounded results assuming a
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suitable heuristic exists is presented in [33]. Submodularity
has also been studied in the context of multi-robot search
problems; a “discount function” over a finite time horizon
that is defined as a decreasing function of the probability that
other vehicles also decide to search a map cell is used in [34].
A finite time horizon search method to determine the multi-
path for a robot team assuming other vehicles are treated as
stochastic elements is used in [30], [35], [36]. Similar ideas are
used to solve the related problem of visiting points of interest
while avoiding threats [37].

E. Quasi-Probabilistic Methods

A number of methods combine Bayesian and/or frequentist
ideas with non-probabilistic techniques to calculate “probabil-
ity” values using methods that are not formally probabilistic
or statistical in nature [38]–[41]. Proxies for probability values
are also used to provide a notion of the relative uncertainty
that exists with respect to different parts of the environment
[42]–[50].

F. Non-Information-Theoretic and Non-Bayesian Search

Given a perfect sensor, a uniform prior over the location
of the target(s), and unlimited fuel, a popular solution is
to perform a lawn-mower sweep [51]. This idea has been
extended to space-filling curves [52]. The robustness of multi-
agent lawn-mower sweep to agent loss is investigated in
[53], and replanning in response to missed observations is
considered in [54]. Our work differs because we assume noisy
sensors, start with a prior belief, and consider fuel constraints.

G. Related Work that Considers Hazards

A number of previous works have considered the risk of
agent loss within a greater search (or target tracking) task.
Vehicle loss risk is part of the cost or objective function
in [36], [55]–[58] and hazards are treated as obstacles in
[53], [59]. Our work differ from [36], [55], [56], [58] in that
we seek to determine the locations of hazards using a path-
based sensor, and from [53], [57], [59] in that we seek to
maximize the information that is collected regarding our belief
of hazard existence, and we do not have access to direct hazard
observations.

H. Differences oo Our Previous Work

An initial version of this paper was presented at the Work-
shop on the Algorithmic Foundations of Robotics (WAFR) in
2019 [60]. Additional material in this journal version includes:
• A formal presentation of an algorithm that calculates the

optimal path. This is different from the main algorithm
that has already been presented in [60].
• A relaxation of the method from [60] is presented (see

appendix). This new variation has a polynomial worst
case runtime, while the method from [60] is, in the worst
case, exponential in the number of repeated visits to the
most visited cell.

• A formal analysis of the worst case runtime of our
original method from [60], its new relaxation, and the
optimal method.

• Additional experiments comparing the efficiency and
performance of all three algorithms to each other and
to other ideas. One experiment shows that the opti-
mal solution cannot reasonably scale beyond short path
lengths. Another experiment shows how false positive and
false negative rates affect performance. A toy example
shows how fifteen paths each contribute to changes in
the entropy and beliefs about the environment.

• We have included the low-level implementation details of
the dynamic programming subroutine used to efficiently
calculate the information integral used in the optimal
solution as well as the original solution proposed in [60].
Although not strictly necessary to reproduce the basic
idea from [60], the dynamic programming solution is
necessary to implement the idea efficiently.

• The paths calculated by our method [60] work well
but are not guaranteed to be optimal. An example of a
suboptimal solution is included in the appendix.

• This related work section contains a more comprehensive
survey than that in [60].

In other prior work [61] we investigate how the existences
of symmetries in the search space can be exploited to increase
the efficiency of informed path planning algorithms, assuming
a standard sensor and target search problem. We consider
a target search game in [62] where two teams compete to
locate a target using sweep sensors and evaluate the effects of
communication on the probability of winning this game.

III. NOMENCLATURE

The search space is denoted S and is assumed to be a subset
of two dimensional Euclidean space S ⊂ R2. The vector s ∈ S
describes a point in S. We are provided a set W of k fixed
uplink sites, W = {w1, . . . , wk} ⊂ S where agents can upload
the data they collect and download data collected by other
agents to/from a remote database. We shall sometimes denote
uplink points as ‘start’ and ‘goal.’

A. Quantities Relevant To Path-Based Sensors

A path ζ is a mapping from the interval [0, 1] to
the state space S. We will assume that paths are piece-
wise continuous curves that start and end at uplink sites.
Formally, ζ : [0, 1]→ S such that ζ(0) = sstart = wa and
ζ(1) = sgoal = wb for wa, wb ∈W . We allow both wa = wb
and wa 6= wb. With an abuse of notation to improve the overall
clarity of our presentation, we overload the symbol ζ to
additionally represent the set of points contained in the path
that it defines, i.e., we can also say ζ ⊂ S.

We use Z to denote the state of the environment with
respect to the phenomenon we are gathering information about
using a path-based sensor. Formally, Z is a discrete time
random variable that takes values on alphabet Z . Let Q be
an observation at a location in the environment; e.g, a robot
failure in the case we are gathering information about hazards
or the collection of a successful insect specimen collection if
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we are looking for a nest. Q takes values on alphabet Q. Even
though we cannot observe the specific location in S where
these events occurs, we know that they happen somewhere
along the path. Assuming the environment is large and fuel is
limited, robots that follow a particular path encounter a strict
subset of the environment in a particular order. Defining Q is
useful because it helps us to reason about where along a path
an event has occurred.

In our algorithms and experiments we assume the environ-
ment is discretized such that paths are broken into a finite
number of edges between nodes. For the purpose of inferring
where an event took place, the traversal of path segments from
node to node is modeled by a global discrete time counter that
uses the variable τ = 1, 2, 3 . . ..

The path-based sensor may produce false positives pFalsePos
and/or false negatives pFalseNeg. To accurately model the
effect that path length has on false positives, it is convenient
to define pFalsePos and pFalseNeg per time step, so that the
probability of a false positive or false negative is considered
separately along each path segment. Assuming that the event
has occurred during a particular time step, then the probability
of observing a true positive during that time step is given by
the complementary probability 1− pFalseNeg. We assume that
false positives and false negatives occur with a known proba-
bilities pmalfunc and pkill per time step, respectively, such that
0 ≤ pmalfunc < 1 and pFalsePos ≡ pmalfunc and 0 < pkill ≤ 1,
and pFalseNeg ≡ 1− pkill.

In the hazard detection example (Ex 2) false positives occur
when the agent malfunctions for reasons unrelated to hazards.
False negatives occur when a hazard does not destroy an agent
that has entered its cell. We assume that if a hazard fails to
destroy an agent, then the hazard remains unobserved.

Given the possibility of false positives and false negatives,
the output observation of the path-based sensor is itself a
random event that depends on both the path taken, and the
presence or absence of the event triggering phenomenon (e.g.,
insect nests) in the environment. Let θζ,1 and θζ,0 denote the
complementary events that the path-based sensor is triggered
somewhere along ζ or is not triggered anywhere along ζ,
respectively. We use 1 and 0 in the subscript to denote
“trigger” and “not trigger”, respectively. Let Θζ be the random
variable associated with survival of a path ζ. In general, the
probability of these events is defined by a functional that
accounts for motion along the path, and the presence of the
environmental phenomenon. P (Θζ = θζ,0|Z) = f(ζ, Z) and
P (Θζ = θζ,1|Z) = 1− P (Θζ = θζ,0|Z). The particular form
of f depends on the way that the environment is modeled.

As an example, we now restate the previous paragraph
using values relevant to our running example of hazard search
(Ex 2). θζ,alive ≡ θζ,0 and θζ,dead ≡ θζ,1 denote the comple-
mentary events that the robot survives the path ζ or does
not, respectively. Θζ is the random variable associated with
survival of a path ζ. Thus, P (Θζ = θζ,alive|Z) = f(ζ, Z) and
P (Θζ = θζ,dead|Z) = 1− P (Θζ = θζ,alive|Z).

B. Quantities Relevant to Typical Sensors
In addition to collecting information about a particular

phenomenon using a path-based sensor, we may wish to si-

multaneously gather additional information about a secondary
phenomenon using a standard sensor. In the case where the
primary phenomenon is environmental hazard presence and
the robot cannot communicate from the field, the formulation
requires consideration of the fact that the probability of robot
destruction P (Θζ = θζ,dead|Z) directly affects the expected
information that will be gathered about the secondary phe-
nomenon.

Let X denote the state of the environment with respect to
the secondary phenomenon, e.g., target presence. In general,
X is a discrete time random variable that takes values on
alphabet X . In the stationary target scenario we consider,
X is constant over time. Y is a sensor observation (also a
random variable) of a portion of the environment, and takes
values on an alphabet Y . We assume that environmental sensor
measurements occur at discrete times and are indexed by
the variable t = 1, 2, 3 . . .. Target sensor measurements may
happen independently of path segment traversals such that
τ 6= t, in general. For example, if we use a different cellular
decomposition of the same environment to reason about targets
and hazards, respectively. The methods that we present are
able to track τ and t independently; however, for simplicity we
assume τ = t in our algorithmic presentation and experiments.

The robot is assumed to take sensor measurements about a
secondary phenomenon using a standard sensor as it travels
along the path. We consider the discrete case where one
observation is made at each node in the path. Given this
assumption, and assuming that t measurements have already
been taken before an agent starts moving along its path, then
the successful completion of a path provides an ordered finite
set of sensor observations {yt+1, . . . , yt+`}, where yk is taken
at position sk ∈ ζ and t+1 ≤ k ≤ t+`, where ` is the number
of sensor readings taken along the path ζ.

C. Additional Notation Used In the Algorithmic Presentation

The environment is modeled as discrete map M of
non-overlapping cells Mi ⊂M, where 1 ≤ i ≤ m and
Mi ∩Mj = ∅ for i 6= j (see Figure 2). Target and hazard ef-
fects are assumed to be local to the map cells containing those
targets and hazards, respectively. These assumptions are useful
in practice because they reduce computational complexity. To
simplify our presentation the same map M =

⋃
i∈[1,m]Mi is

used to reason about both targets and hazards. Because target
and hazard effects are local to each cell, our beliefs about
targets and hazards are stored in arrays X and Z, where X[i]
and Z[i] are our current beliefs that map cell Mi contains
a target1 and a hazard, respectively. Connectivity information
is stored in a graph GS = (VS, ES). Each map cell Mi has

1In the most general (and intractable) discrete formulation of the ideas
presented in Sections III-V target existence across all cells in the map is
represented by a single random variable X that takes one of the 2m different
possible values x, depending on which cells contain targets and which do not.
The set of all 2m possibilities forms the alphabet X . However, if each target
only affects target sensor readings in its own cell, as we consider in this paper,
then the resulting independence between cells allows us to consider each of
the m dimensions of X separately. In other words, we can consider X as a
joint event over a collection of independent random variables X1, . . . , Xm
because P (X = x) =

∏m
i=1 P (Xi = xi). We store our current estimate of

P (Xi = xi) in X[i].
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Map M

M1 M2 M3 M4

M5 M6 M7 M8

M9 M10 M11 M12

Space Graph GS

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

(v1, v2) (v3, v4)

(v5, v9)

M and GS

Space-Time Graph GS×T
(only selected nodes and edges are shown)

v̂1,` v̂2,` v̂3,` v̂4,`
v̂5,`

v̂9,`

v̂9,1 v̂10,1 v̂11,1 v̂12,1

t=
`

t=
`−

1

t=
`−

2

t=
`−

3

...

t=
3

t=
2

t=
1

Path from t = 1 to 2 onto M

Path from t = 1 to ` onto M

Fig. 2: Selected quantities used in the map M, spatial graph
GS = (VS, ES), and space-time graph GS×T = (VS×T×H, ES×T)
that appear in our model of the environment. Each map cell Mi

has a corresponding node vi ∈ VS, and an edge (vi, vj) ∈ ES

indicates it is possible to move directly between map cells Mi and
Mj . Self transitions (vi, vi) ∈ ES are allowed, but can be removed
in cases where agents must remain in motion. Edges in ES×T
move forward in time, and exist according to the following rule:
(vi, vj) ∈ ES =⇒ (v̂i,t−1, v̂j,t) ∈ ES×T for all t ∈ [1, `]. Nodes
corresponding to four map cells are shown in four different colors,
respectively.

a corresponding node vi ∈ VS, and an edge (vi, vj) ∈ ES

indicates it is possible to move directly between map cells Mi

and Mj . Self transitions (vi, vi) ∈ ES are allowed, but can be
removed in cases where agents must remain in motion.

Mutual information is sub-modular—there are diminishing
returns for visiting the same cell again and again. Therefore,
we plan in GS×T = (VS×T×H, ES×T) the space-time extension
of GS, to track cell visit counts along a path. Agents have
enough fuel for ` moves, so GS×T is created by placing a
“clone” VS,t ≡ VS at each of the 0 ≤ t ≤ `+ 1 time steps that
must be considered, i.e., VS×T×H = VS,0 ∪ . . . ∪ VS,`. Edges
in ES×T move forward in time, and exist according to the
following rule: (vi, vj) ∈ ES =⇒ (v̂i,t−1, v̂j,t) ∈ ES×T for
all t ∈ [1, `]. A valid path ζvalid is a sequence of edges that
starts at some uplink site wstart = v̂j,0 at time t = 0 and
moves from node to node along edges in space-time until
reaching a (goal) uplink site wgoal = v̂j,` at time t = `.

If β is a belief that one of two complementary
events has occurred, its entropy is calculated:
H(β) = −(β log(β) + (1− β) log(1− β)). Given our
assumption of cell independence, the total entropy regarding
targets is H(X) =

∑m
i=1H(X[i]) and total entropy regarding

hazards is H(Z) =
∑m
i=1H(Z[i]). Let paliveζ ≡ P (θζ,alive)

and pdeadζ ≡ P (θζ,dead).
We use the shorthand 01:k to denote a one dimensional

vector of length k in which every value is 0. For example
01:3 = [0, 0, 0].

The quantity ζv̂ contains the current subpath, the best that
we have yet found, going from v̂ to a goal. We store these
quantities with each node.

IV. BAYESIAN BELIEF UPDATES AND EXPECTED
INFORMATION GAIN

We shall now derive a recursive Bayesian update for the
path-based sensor that assumes a discrete time model. This
model supports continuous paths, assuming any path can be
partitioned into a finite number ` of path segments in order
to reason about the various map cells it traverses. There are
two cases to consider, which we now describe at a high level.
Our presentation in this section uses the language related to
the hazard tracking example (Ex 2).

Case 1, the path-based sensor is not tripped: If the path-
based sensor is not tripped, then we can directly update our
belief map based on the fact that negative hazard observation
has taken place along each of the ` segments in the path. Each
of the ` updates follows the well-known iterative Bayesian
update for a typical sensor.

Case 2, the path-based sensor is tripped: When the path-
based sensor is tripped a belief update is possible by consid-
ering separately each possibility—the finite set of mutually
exclusive events that the sensor was tripped while traveling
along each path segment k ∈ [1, `]—and then combining
the resulting ` separate belief maps weighted by the relative
likelihood of each occurring. This is done by taking the results
of all previous measurements as a prior on the current path
traversal, and then accounting for the probability of false
positives and false negatives along the path. The individual
update for the possibility that the sensor was tripped on
segment k ∈ [1, `] is simply the standard Bayesian update
that would be used if we knew for certain that the agent
had been destroyed along segment k. Given the set of all
possibilities, and their relative likelihoods, we then use the
standard Bayesian trick of re-normalization so that the total
probability mass sums to one. The resulting entropy can be
calculated using the same general idea.

The remainder of this section focuses on the mathematical
formulations of the Bayesian update rules and information
theoretic calculations of both cases. The mathematical formu-
lation of a standard recursive Bayesian update (such as for a
camera) is presented in Section IV-A and used as a subroutine
for the path-based sensor updates. The more involved descrip-
tion of Case-2 is also presented in Section IV-B. A standard
sensor update is also used when we consider a secondary
environmental phenomenon of interest for both positive and
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negative sensor readings. The presentation in IV-B is described
using the X , Y , and t notation. The update case for each of
the multiple segment updates that occur when the path-based
sensor is not tripped (Case 1) is obtained by replacing these
quantities with Z, Q, and τ , respectively.

A. Typical Sensor Updates

Let X0 denote the prior belief defined over S that each
point s ∈ S contains the phenomenon in question, e.g., a
target. For notational convenience, we increment the time
index t based on the number of successfully communicated
sensor measurements; i.e., t ordered sensor observations have
been delivered to the uplink points by time t. Given X0 and
sensor measurements y1, . . . , yt, which may have been taken
across multiple paths of varying lengths, an iterative Bayesian
update can be used to compute P (Xt|y1, . . . , yt), the posterior
probability of X given the t sensor readings delivered to the
uplink points by time t.

P (Xt|Y1 = y1, . . . , Yt = yt)

=
P (Yt = yt|Xt−1)P (Xt−1|Y1 = y1, . . . , Yt−1 = yt−1)

P (Yt = yt|Y1 = y1, . . . , Yt−1 = yt−1)
(1)

The denominator need not be explicitly calculated; as is often
done, we calculate the numerators of Equation 1 for all events
Xt = x ∈ X and then normalize such that they sum to 1.

The information entropy of Xt is denoted H(Xt) and
defined:

H(Xt) = −
∫
x∈X

P (Xt) logP (Xt) dx

and provides a measure of the unpredictability of Xt. As
entropy increases, Xt is essentially “worse” at being able to
predict the presence or absence of the phenomenon. In other
words, its values are closer to a uniformly random process.

The conditional information entropy H(Xt+1|Yt+1) is the
updated entropy of the environmental state X given a new
observation Yt+1, averaged over all possible values that
Yt+1 may take. The difference between the entropy H(Xt)
and the conditional entropy H(Xt+1|Yt+1) is called mutual
information, defined I(Xt;Yt+1) = H(Xt)−H(Xt+1|Yt+1).
Mutual information quantifies the expected reduction in the
unpredictability of our estimation of X given the new mea-
surement Yt+1.

It is useful to calculate the mutual information of a standard
sensor measurement Yt+1 before it is taken, so that we may
compare the expected benefits of sampling various locations.
The mutual information of a new observation is calculated:

I(Xt;Yt+1) =

∫
y∈Y

∫
x∈X

P (Yt+1 = y,Xt = x)

· log

(
P (Yt+1 = y,Xt = x)

P (Yt+1 = y)P (Xt = x)

)
dxdy

where

P (Yt+1 = y,Xt = x) = P (Yt+1 = y|Xt = x)P (Xt = x) .

We desire paths that gather as much mutual information
as possible, given fuel constraints and other goals. Given a

path ζ that enables sensor observations yt+1, . . . , yt+` if and
only if it is completed successfully, the expected cumulative
information gained along that path, given all measurements so
far, is calculated:

I(Xt;Yt+1, . . . , Yt+`) =

t+∑̀
k=t+1

I(Xk−1;Yk|Yt+1, . . . , Yk−1)

where the notation I(A;B|C) denotes the conditional mutual
information of A and B, integrated over all possible outcomes
in the event space of C and weighted by their relative
likelihoods. That is, I(A;B|C) = EC (I(A;B)|C).

In the most general case, in which a phenomenon at any
location in the environment may affect sensor readings at
any other location, the calculation of I(Xt;Yt+1, . . . , Yt+`)
can become intractable because the number of terms involved
in the computation of the inner I(Xk−1;Yk|Yt+1, . . . , Yk−1)
scales according to |Y|k. However, this complexity can be
reduced, e.g., to a small constant, by assuming that a phe-
nomenon only affects sensor observations in its own local
neighborhood.

In Ex 3 no information about the secondary phenomenon
is actually gained, from the point-of-view of the planning
system, until the robot reaches an uplink point. Hence, no
information about targets is gathered in the event that the
robot is destroyed along its path. In such a scenario the
expected mutual information along a particular path, assuming
the robot may or may not be destroyed along that path, is:

I(Xt;Yt+1, . . . , Yt+`|Θζ)

= P (Θζ = θζ,alive) I(Xt;Yt+1, . . . , Yt+`).

B. Path-Based Sensor Updates
Both events Θζ = θζ,0 and Θζ = θζ,1 can be used to per-

form an iterative Bayesian update of Z based on ζ. However,
the iterative updates to Z based on Θζ take different forms
depending on if Θζ = θζ,0 or Θζ = θζ,1. In other words, in
hazard detection, different updates are used depending on if
Θζ = θζ,alive or Θζ = θζ,dead, respectively.

We begin by noting that if we somehow had access to
the direct observations at all cells along the path, then a
straightforward belief update would be the following:

P (Zτ+j |Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1)

= P (Qτ+j = qτ+j |Zτ+j−1)

· P (Zτ+j−1|Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1)

P (Qτ = qτ |Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1)
(2)

Next, we observe that whenever the sensor is not tripped
we do have direct access to all “observations” of hazards
along the path. All observations are either true negatives or
false negatives, since the path-based sensor was not tripped,
and so they are Qj = qj = 0 by construction. Formally,
Θζ = θζ,0 ⇐⇒ qτ+1 = 0, . . . , qτ+l = 0. Thus, we simply
perform the standard update:

P (Zτ+j |Θζ = θζ,0)

= P (Zτ+l|Zτ , Qτ+1 = 0, . . . , Qτ+l = 0)
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which can be computed iteratively, for each j = 1, . . . , l (by
repeatedly applying the typical Bayesian update described in
the previous section) as follows:

P (Zτ+j |Zτ , Qτ+1 = 0, . . . , Qτ+j−1 = 0)

= P (Qτ+j = 0|Zτ+j−1)

· P (Zτ+j−1|Zτ , Qτ+1 = 0, . . . , Qτ+j−1 = 0)

P (Qτ = 0|Zτ , Qτ+1 = 0, . . . , Qτ+j−1 = 0)

We now move onto the case that the path-based sensor is
tripped Θζ = θζ,1 or, in the hazard example, the agent does
not survive Θζ = θζ,dead. The recursive Bayesian update of
Z must take a different form. Given a path with l segments,
with the first segment starting at time τ , the event Qτ+j = 1 is
equivalent to the statement “the path-based sensor was tripped
along the j-th segment of the path.”

Given Θζ = θζ,1, we know that the path-based sensor was
tripped somewhere along ζ, but we do not know where. How-
ever, we can integrate over all l possibilities, i.e., considering
each possibility that it was tripped on a different path segment
j for all j such that 1 ≤ j ≤ l, and then summing these results
weighted by the relative probability of each given our current
hazard beliefs.

In order to build intuition, it is convenient to use the
metaphor of a multiverse. We simultaneously assume the
existence of j different universes, such that in the j-th universe
the sensor was tripped along the j-th path segment. Assuming
we are in a particular j-th universe, we can calculate the
iterative Bayesian update to Z by applying Equation 2 exactly
j times, assuming that on the k-th application:

Qτ+k = qτ+k =

{
0 if k < j

1 if k = j

and where no observations are made for k > j in the j-
th universe. Let Zjτ+l denote the version of Zτ+l that is
calculated in the j-th universe.

The final overall update to the “real” Zτ+l is the expected
value of Zτ+l in the multiverse, found by combining all Zτ+l
weighted by P (Qτ+j = 1|Zτ ,Θζ = θζ,1), the probability of
being in the j-th universe of the multiverse.

Zτ+l =

l∑
j=1

P (Qτ+j = 1|Zτ ,Θζ = θζ,1)Zjτ+l (3)

The quantity P (Qτ+j = 1|Zτ ,Θζ = θζ,1) can be obtained
by calculating the probability that the path-based sensor re-
mains untripped to the j-th path segment given Zτ , and is
then tripped somewhere along the j-th path segment. After
doing this for each of the path segments, we renormalize such
that the total probability mass of all l possibilities sums to 1.

P (Qτ+j = 1, Zτ ,Θζ = θζ,1)

=
P (Qτ+j = 1, Zτ )

∏j−1
k=1 P (Qτ+k = 0, Zτ )∑l

j=1 P (Qτ+j = 1, Zτ )
∏j−1
k=1 P (Qτ+k = 0, Zτ )

where

P (Qτ+k = q, Zτ )

=

∫
z∈Z

P (Qτ+k = q|Zτ = zτ )P (Zτ = zτ ) dz

for q ∈ {0, 1}.
The expected decrease in entropy about hazard locations

gained from sending an agent along path ζ can be calculated by
first calculating the conditional decrease in entropy assuming
either possibility of Θζ = θζ,0 and Θζ = θζ,1 independently,
and then combining the results weighted by the probability of
each event given Zτ .

Let Zθζ,aliveτ+l be the value of Zτ+l that results if the path-
based sensor remains untripped along the entire path—as
calculated according to Equation 2. Similarly, let Zθζ,1τ+l be the
result if the sensor is tripped—as calculated by Equation 3.

The mutual information regarding hazards—the ex-
pected information gained from a path-based sensor
observation—is given by the expected reduction in entropy:
I(Zτ ; Θζ) = H(Zτ )−H(Zτ+l|Θζ , Zτ ), where

H(Zτ+l|Θζ , Zτ ) =

∫
θ

P (Θζ = θ|Zτ )H(Zτ+l|Θζ = θ, Zτ )dθ

is the conditional entropy, and

P (Θζ = θζ,0|Zτ ) =

l∏
j=1

P (Qτ+j = 0, Zτ )

P (Θζ = θζ,1|Zτ ) = 1− P (Θζ = θζ,0|Zτ )

H(Zτ+l|Θζ = θζ,0, Zτ ) = Z
θζ,0
τ+l

and
H(Zτ+l|Θζ = θζ,1, Zτ ) = Z

θζ,1
τ+l .

V. FORMAL PROBLEM DEFINITIONS

In this section we formally define the information gathering
problems that we study in this paper, problems 1, 3, 4, and
5. For comparison, we also define the classic information
gathering problem that has typically been studied in the past,
problem 2. We use the triangle symbol ‘4’ to indicate the end
of a formal problem statement.

The most basic path-based sensor information gathering
problem involves designing a path in order to maximize the
expected information that is gathered from the environment.
Assuming we are given a subset of points at which the path
can start/end, this problem is formally defined as follows:

Problem Definition 1. Path-based sensor mutual informa-
tion path planning:

Given a search space S, and a set of uplink points
{w1, . . . , wk} = W ⊂ S, where an agent can start at any
wstart ∈ S and end at any wgoal ∈ S. Find the path ζ∗ that
maximizes the expected information gain about a phenomenon
Z:

ζ∗ = I(Zτ ; Θζ)

where for all ζ it is true that ζ : [0, 1]→ S s.t. ζ(0) = wstart
and ζ(1) = wgoal, subject to distance constraints ‖ζ‖ < `, and
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where Θζ is the space of observations about whether or not
the paths sensor makes an observation along the path. 4

It is useful to compare Problem 1 to the typical information
gathering problem, where it is assumed that we have direct
access to the sensor state at each time step along a path, and
which is defined as follows:

Problem Definition 2. Mutual information path planning
(typical formulation for a non-path-based sensor):

Given a search space S, and a set of uplink points
{w1, . . . , wk} = W ⊂ S, where an agent can start at any
wstart ∈ S and end at any wgoal ∈ S, and assuming the agent
has a noisy target sensor that provides observations Y about a
phenomenon X each time step, find the path ζ∗ that maximizes
the expected information gain about that phenomenon X:

ζ∗ = arg max
ζ

I(Xt;Yt+1, . . . , Yt+`|Θζ)

where for all ζ it is true that ζ : [0, 1]→ S s.t. ζ(0) = wstart
and ζ(1) = wgoal, subject to distance constraints ‖ζ‖ < `, and
where Θζ is the space of observations about whether or not
the agent successfully completes the path. 4

Problem 2 is encountered, for example, when gathering
information about search-and-rescue targets in the absence of
hazards. Problem 2 differs from Problem 1 in that direct access
to sensor data provides a sequence of separate measurements
Yt+1, . . . , Yt+` instead of the single path-based measurement
Θζ that we get in Problem 1.

Problems 1 and 2 both involve a single path. Problem 3 is an
iterative extension to Problem 1 in which robot(s) repeatedly
follow paths, and we update our belief about the phenomenon
we are monitoring after each path-based sensor reading.

Problem Definition 3. Iterative path-based sensor mutual
information path planning:

Repeatedly solve Problem 1 to continually refine our belief
about Z given Y and Θζ , respectively. 4

In this general formulation, each path may start and end at
any wstart, wgoal ∈ S. However, if the same single agent is
used across all paths—a modification only advisable in non-
hazardous scenarios—then it is possible to add a requirement
that wgoal of one path becomes the wstart of the next path.

Problem 4 formalizes the Ex 3 scenario, in which an
agent operates in a hazardous environment while gathering
information about a separate ‘target’ phenomenon.

Problem Definition 4. Mutual information path planning
for targets and hazards without communication:

Given a search space S, and a set of uplink points
{w1, . . . , wk} = W ⊂ S, and assuming an agent can start at
any wstart ∈ S and end at any wgoal ∈ S, and assuming an
agent has a noisy target sensor that provides observations Y
about targets X , find the path ζ∗ that maximizes the expected
information gain about both targets X and hazards Z:

ζ∗ = arg max
ζ

cXI(Xt;Yt+1, . . . , Yt+`|Θζ) + cZI(Zτ ; Θζ)

where cX , cZ ∈ [0, 1] are weights that represent user prefer-
ence for either type of information, and where for all ζ it is true
that ζ : [0, 1]→ S s.t. ζ(0) = wstart and ζ(1) = wgoal, subject
to distance constraints ‖ζ‖ < `, and where Θζ is the space

of observations about whether or not the agent successfully
completes the path. 4

We conclude this section by defining Problem 5 as the
iterative extension to Problem 4.

Problem Definition 5. Iterative mutual information path
planning for targets and hazards without communication:

Repeatedly solve Problem 4 to continually refine our belief
about targets X and hazards Z given Y and Θζ , respectively;
assuming we are able to replace agents that are lost, once their
failure to appear at their destinations has been observed, and
that each path may start and end at any wstart, wgoal ∈ S. 4

VI. ALGORITHMS

In Section VI-A we present algorithms that solve Prob-
lems 1 and 3. In Section VI-B we present algorithms that
solve Problems 4 and 5. In Section VI-C we describe the
modifications necessary to create an optimal algorithm. Our
presentation in this section uses language related to detecting
hazards with a path-based sensor.

A. High Level Algorithms For Basic And Iterative Path-Based
Sensor Information Planning (Problems 1 and 3)

The outer loop of the iterative planning approach that solves
Problem 2 appears in Algorithm 1. We iteratively calculate
the r-th path (line 2), send a robot along that path (line 3),
observe if the robot survived (line 4), and then perform the
appropriate Bayesian update depending if the robot survived
(line 5) or did not (line 7). The update that occurs when the
path-based sensor is not tripped is equivalent to recording
a sequence of typical Bayesian updates assuming that we
received a negative sensor reading (“0”) at each node along the
path. The three main subroutines that are used in Algorithm 5
appear in Algorithms 2-4, respectively.

The Subroutine calculatePath(Z) is described in Al-
gorithm 2, and solves the basic iterative path-based sensor
information path planning problem (Problem 1). It makes use
of a first-in-first-out queue. A node v̂ is inserted into the queue
using InsertFIFOQueue(v̂) and the top node is removed from
the queue using PopFIFOQueue. The subroutine InQueue(v̂)
returns true if v̂ is in the queue and otherwise false.

Algorithm 2 performs an efficient but suboptimal reverse
search. (Optimal solutions suffer from a runtime that is expo-
nential in path length, see Section VI-C.) Each node v̂i has
an associated quantity hv̂i which tracks the entropy expected
to remain after we travel from that node to a goal. All hv̂i

Algorithm 1 Iterative Path-Based Sensor Mutual Infor-
mation Path Planning.
Input: Prior hazard beliefs Z
Output: Iterative sequence of paths, and updates to Z

1: for r = 1, 2, . . . do
2: ζ = calculatePath(Z)
3: Robot r moves along path ζ
4: if θζ,alive then
5: Z← BayesianCellUpdates(Z, [0, . . . , 0])
6: else
7: Z← KilledOnPathUpdate(Z, ζ)
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are initialized to negative infinite values (lines 1-2). We insert
all of the goal nodes at time ` into the queue after initializing
all of the associated subpaths to the empty set (lines 3-5).
Next, via indirect use of the queue (lines 5, 6, 16, and 17), we
consider all possible nodes at time `, then their predecessors
at time `− 1, etc. (lines 6-15). For each node v̂i within time
layer `− 1, we determine the best subpath that connects node
v̂i to a goal through one of its neighbors v̂j (lines 6-14). This
is done by considering all edges (v̂i, v̂j) that move forward in
time (toward the goal) from v̂i. (In practice, storing these with
node v̂j is advised.) The suboptimality of this algorithm is a
direct consequence of considering only the set of paths that
can be created by connecting nodes at time slice t to then best
subpaths remembered at time t+ 1, and not all of the longer
subpaths that connect further forward in time.

We calculate the maximum amount of information that
can be gained via this process by creating a temporary path
ζ ← (v̂i, v̂j) + ζv̂j (line 8) and then calculating the resulting
expected entropy ĥthis that remains after traversing the entire
path (lines 9-11). The lowest resulting entropy corresponds
to the most information gain. The cases of destruction and
survival are handled separately (lines 9 and 10, respectively)
and then combined according to their probabilities of occurring
(line 11)—the probability paliveζ of surviving from v̂i to the
goal at the end of the path in question is calculated as part
of the hypothetical destruction update (line 9). If this is the
best predecessor path that we have found from v̂i then we
remember both the expected entropy and the subpath itself
(lines 12-14).

We make sure that the predecessor nodes of v̂i are in the
queue, adding them if not, so that the process will eventually
continue onto the next time slice (lines 15-17). Once the queue
is empty, we select the start node for which we have found
the most informative path to a goal (line 18), and then return
that path (lines 19-20).

The subroutine KilledOnPathUpdate(Z, ζ) in Algo-
rithm 3 performs the Bayesian update that is run in the event

Algorithm 2 calculatePath(Z)
Input: Hazard beliefs Z
Output: Path ζ

1: for all v̂i ∈ VS×T×H do
2: hv̂i = −∞
3: for all uplink points w ∈Wgoal do
4: ζw ← ∅
5: InsertFIFOQueue(w)
6: while v̂i ← PopFIFOQueue do
7: for all (v̂i, v̂j) ∈ ES×T do
8: ζ ← (v̂i, v̂j) + ζv̂j
9: (Zlive, p

alive
ζ )← KilledOnPathUpdate(Z, ζ)

10: Zkilled ← BayesianCellUpdates(Z, [0, . . . , 0])
11: ĥthis ← paliveζ H(Zlive) + (1− paliveζ )H(Zkilled)

12: if ĥthis > hv̂i then
13: ζv̂i ← ζ
14: hv̂i ← hthis
15: for all (v̂k, v̂i) ∈ ES×T do
16: if not InQueue(v̂k) then
17: InsertFIFOQueue(v̂k)
18: wstart ← arg minw∈Wstart

hw
19: ζ ← ζwstart
20: return ζ

Algorithm 3 KilledOnPathUpdate(Z, ζ)
Input: Beliefs Z, Path ζ which triggered path-based sensor
Output: Posterior Beliefs Z

1: psurvivedTo1 ← 1
2: for k ← 1, . . . , ` do
3: i← index of cell in which k-th observation was made
4: pkilledInGivenAtk ← (pkill + pmalfunc(1− pkill))Z[i]

+pmalfunc(1− Z[i])
5: psurvivedTok+1 ← psurvivedTok (1− pkilledInGivenAtk )
6: Zk ← Z
7: Zk ← BayesianCellUpdates(Zk, [01:k−1, 1])
8: pdeadζ ←

∑`
k=1 p

survivedTo
k

9: Z←
∑`
k=1

psurvivedTok

pdead
ζ

Zk

10: return (Z, (1− pdeadζ ))

Algorithm 4 BayesianCellUpdates(B, β̄)
Input: Beliefs B, Standard sensor observation sequence β̄
Output: Posterior beliefs B

1: for k = 0, . . . , ` do
2: i← index of cell in which k-th observation was made
3: B[i]← P

(
Bi |B[i], β̄[k]

)
4: return B

Algorithm 5 Iterative information path planning for tar-
gets and hazards
Input: Prior target beliefs X and hazard beliefs Z
Output: Iterative sequence of paths, and updates to X and Z

1: for r = 1, 2, . . . do
2: ζ = calculatePath(X,Z)
3: Robot r attempts path ζ
4: if θζ,alive then
5: X← BayesianCellUpdates(X,Yζ)
6: Z← BayesianCellUpdates(Z, [0, . . . , 0])
7: else
8: Z← KilledOnPathUpdate(Z)

that the robot is destroyed. This happens both as part of the
outer iterative information search algorithm, and also as part
of the calculation of the most informative subpath during the
path planning process.

Algorithm 3 works by considering the probabilities that the
agent survived to each time step (lines 2-7). This is calculated
based on our previous estimate of hazard presence (lines 1-
5). For each time step we record the hypothetical Bayesian
update that would occur if we were certain that the agent
was destroyed at that time (lines 6-7). Since the agent was
destroyed, we renormalize the relative probabilities of each
possibility so that the probability mass sums to one (line 8).
Next, we combine all possible updates based on the relative
probability they occurred (line 9). Finally, we return both the
combined update as well as the probability, based on our
previous beliefs, that the robot would have survived the entire
path (line 10).

Subroutine BayesianCellUpdates(B, β̄) in Algorithm 4
shows the recursive Bayesian update that is used for the belief
vector β̄ given the observation vector Bi. Line 3 performs
the recursive update that yields the posterior probability Bi
regarding the i-th map cell.
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Algorithm 6 calculatePath(X,Z)
Input: Target beliefs X and hazard beliefs Z
Output: Path ζ

1: for all v̂i ∈ VS×T×H do
2: hv̂i = −∞
3: for all uplink points w ∈Wgoal do
4: ζw ← ∅
5: InsertFIFOQueue(w)
6: while v̂i ← PopFIFOQueue do
7: for all (v̂i, v̂j) ∈ ES×T do
8: ζ ← (v̂i, v̂j) + ζv̂j
9: ĥXlive ←

∫
x∈X H(Xlive)dx

10: (Zlive, p
alive
ζ )← KilledOnPathUpdate(Z, ζ)

11: Zkilled ← BayesianCellUpdates(Z, [0, . . . , 0])
12: ĥthis ← cZ(p

alive
ζ H(Zlive) + (1 − paliveζ )H(Zkilled)) +

cXp
alive
ζ ĥXlive

13: if ĥthis > hv̂i then
14: ζv̂i ← ζ
15: hv̂i ← hthis
16: for all (v̂k, v̂i) ∈ ES×T do
17: if not InQueue(v̂k) then
18: InsertFIFOQueue(v̂k)
19: wstart ← arg minw∈Wstart

v̂j
20: ζ ← ζwstart ;
21: return ζ

B. High Level Algorithms For Hybrid And Iterative Hybrid
Path-Based Sensor Information Planning (Problems 4 and 5)

We now present algorithms that solve the problem in
which we seek to gather information about both hazards
(phenomenon one) using a path-based sensor and information
about targets (phenomenon two) using a standard sensor.

The outer loop of the algorithm that solves the iterative
version of this problem appears in Algorithm 5. The difference
between Algorithm 5 and Algorithm 1 is the dependence of
the path on both target belief X and hazard belief Z (line 2),
and the addition of the update to the target distribution that
occurs if and only if the robot survives (line 5), where Yζ

is the sequence of sensor observations about targets that the
robot gatherd along its path using a typical sensor.
calculatePath(X,Z), which solves Problem 4, appears

in Algorithm 6. Algorithm 6 is very similar to Algorithm 2
except that it also considers target beliefs X. This involves
calculating the expected information gained about the target
distribution along each candidate subpath (line 9), and then
combining this with the expected information gained about
hazards (line 12) using the user defined combination weights
(cX and cZ , respectively). The integral that appears on line
9 is deceptively simple in appearance. In Section A of the
appendix we discuss how it can be implemented efficiently
using dynamic programming.

C. Optimal But Computationally Complex Algorithms

We now describe optimal algorithms (Algorithms 7 and 8)
that use the same basic framework as Algorithms 2 and 6,
respectively. The main differences between the optimal algo-
rithms and their counterparts are the following: instead of us-
ing the graph ES×T, which contains |VS×T×H| = `|VS| nodes,
we must use a different graph GS×T×H that contains all possi-
ble valid histories of reaching each goal node from each start

Algorithm 7 calculateOptimalPath(Z)
Input: Hazard beliefs Z
Output: Path ζ

1: for all v̂i ∈ VS×T do
2: hv̂i = −∞
3: for all uplink points w ∈Wgoal do
4: ζw ← ∅
5: InsertFIFOQueue(w)
6: while v̂i ← PopFIFOQueue do
7: for all (v̂i, v̂j) ∈ ES×T×H do
8: ζ ← (v̂i, v̂j) + ζv̂j
9: // Note: ES×T×H contains all possible histories of length `

10: (Zlive, p
alive
ζ )← KilledOnPathUpdate(Z, ζ)

11: Zkilled ← BayesianCellUpdates(Z, [0, . . . , 0])
12: ĥthis ← paliveζ H(Zlive) + (1− paliveζ )H(Zkilled)

13: if ĥthis > hv̂i then
14: ζv̂i ← ζ
15: hv̂i ← hthis
16: for all (v̂k, v̂i) ∈ ES×T do
17: if not InQueue(v̂k) then
18: InsertFIFOQueue(v̂k)
19: wstart ← arg minw∈Wstart

v̂j
20: return ζwstart

Algorithm 8 calculateOptimalPath(X,Z)
Input: Target beliefs X and hazard beliefs Z
Output: Path ζ

1: for all v̂i ∈ VS×T do
2: hv̂i = −∞
3: for all uplink points w ∈Wgoal do
4: ζw ← ∅
5: InsertFIFOQueue(w)
6: while v̂i ← PopFIFOQueue do
7: for all (v̂i, v̂j) ∈ ES×T×H do
8: // Note: ES×T×H contains all possible histories of length `
9: ζ ← (v̂i, v̂j) + ζv̂j

10: ĥXlive ←
∫
x∈X H(Xlive)dx

11: (Zlive, p
alive
ζ )← KilledOnPathUpdate(Z, ζ)

12: Zkilled ← BayesianCellUpdates(Z, [0, . . . , 0])
13: ĥthis ← cZ(p

alive
ζ H(Zlive) + (1 − paliveζ )H(Zkilled)) +

cXp
alive
ζ ĥXlive

14: if ĥthis > hv̂i then
15: ζv̂i ← ζ
16: hv̂i ← hthis
17: for all (v̂k, v̂i) ∈ ES×T do
18: if not InQueue(v̂k) then
19: InsertFIFOQueue(v̂k)
20: wstart ← arg minw∈Wstart

v̂j
21: return ζwstart

node. In general, GS×T×H contains |ES×T×H| = Ω(c`|VS|)
nodes, where c is the number of neighbors of each node, i.e.,
the branching factor.

Given the submodularity property of information gain, the
consideration of all possible histories is required to guarantee
that we find the optimal path. The algorithms in this subsection
quickly become intractable as path length increases.

VII. THEORETICAL RUNTIME AND SPACE REQUIREMENTS
ANALYSIS

We now discuss the runtime and space requirements of our
method, the optimal variant, and a faster relaxation of our
method. The relaxation method itself is presented in detail in
the appendix.
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A. Runtime And Space Requirements, Our Method

We require storage for O(`m) nodes in the space-time
graph given that we seek a path of length ` through a map
that contains m map cells. Each cell has some number of
neighbors. Let cmax be the maximum number of neighbors
of any cell. Storage of the space-time graph itself, including
nodes and edges, requires O(cmax`m) space.

The information theoretic calculation of the next node in a
path requires that we consider all possible histories of events
local to that cell. Because we assume that events are local to
each cell, if we visit a particular cell cvisits times, then we
must consider the potential outcome of 2cvisits different events
(see Figure 8). Because events are local to each cell, we need
only update events related to the particular cell that is visited
at each new path segment (see Figure 9). The amount of data
we track to calculate entropy along any path is O(`+ 2cmv ),
where cmv is the greatest number of visits to a particular cell
along any particular path.

It is often the case that cmv � `, therefore we parameterize
the space requirements using cmv . In our algorithm (which
is not optimal), there are at most m partial paths that are
tracked at each time step. The total space required is then
O(cmax`m+ `2m+ `m2cmv ).

The runtime requirements of the algorithm are closely
linked to the space requirements. We must calculate the
possible predecessors for each subpath, accounting for the pos-
sibilities of extending them through each neighbor backward
in time. At each of ` times there are O(mcmax) possible paths,

even though only m of them are chosen for extension. Using
the dynamic programming scheme described in Algorithm 9
each one of these calculations takes time proportional to
the length of the subpath to determine if the new cell has
previously been visited, taking O(`) time. This is followed
by a determination of the probabilities and entropy values
associated with adding another visit, taking O(2cvisits) time
when the new path segment goes through the cell the cvisits-th
time.

The total runtime is O(`2m + `mcmax2cmv ). In the envi-
ronments we use in our experiments cmv tends to be a small
constant. However, we believe that it is possible to design
scenarios that would cause cmv to be large. In particular, cmv
will be large whenever `� m.

B. Runtime and Space Requirements, Optimal Method

The main difference between the optimal algorithm and
our method is that the optimal algorithm must consider all
paths to a particular node in space-time. The optimal method
considers all possible O(c`max) histories of length ` start-
ing from each of the m different map locations. Moreover,
it tracks a number of alternative histories proportional to
the maximum number of revisits to the most revisited cell
along any particular history. The space requirements are
O(cmax`m+`max(`m2cmv ,mc`max2cmv )). At least one sub-
history for each map cell involves simply remaining stationary,
in which case cmv = `, and so the space and time requirements
are both Ω(m`2`).

Fig. 3: Fifteen robot paths and the belief and entropy maps that are created from their path-based sensor readings (1-15). Each path is plotted
on the map that results from its path-based sensor reading, so each path is planned based on the data in the previous map. Paths along which
the robot is destroyed are labeled red and with a ‘*’ after their iteration label. Maps use different color scales for probability (hazards and
target belief) and entropy.
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C. Runtime and Space Requirements, Heuristic Method

The greedy heuristic ignores repeated visits to the same cell.
This allows us to forgo the O(2cmv ) storage and calculation
of the different outcomes over all possibly revisit histories to
any particular node. Space requirements areO(cmax`m+`2m)
and time requirements are O(`2m+ `mcmax).

VIII. EXPERIMENTS AND DISCUSSION OF RESULTS

In Sections VIII-A through VIII-E we describe a number
of experiments in which our methods have been evaluated in
different scenarios and/or compared to other ideas.

A. Toy Example Involving Problem 5

We begin our evaluation by focusing on a simple toy
example of Problem 5. This experiment is included mostly
for illustrative purposes, and involves paths constrained to
10 moves in a 5 × 5 environment where false positive and
false negative rates are both 0.01. Travel is defined by 9-grid
connectivity; forward one time unit in time and up, down, left,
right, diagonal, and stationary in space. Figure 3 shows the
first 15 paths and how their path-based sensor readings affect
the environmental belief maps and resulting entropy. When
robots are destroyed there is no change in the entropy related to
targets because that information is destroyed; however, we still
get information about hazards—and hazard entropy increases
or decreases depending on if the robot’s destruction was a
surprise or reinforces our beliefs, respectively.

B. Runtime Comparison of Information Gathering Methods

We evaluate the runtime of our method, its relaxation, the
optimal version, and greedy information surfing on Problem
5 (Ex 3) in a 5 × 5 grid environment. Travel is defined by
9-grid connectivity. We increase path length until the optimal
algorithm becomes intractable. Experimental results (Figure 4)
verify the theoretical result that the optimal method quickly
becomes intractable versus path length. Our method and its
relaxation have nearly identical runtime in this experiment.
Both outperform greedy information surfing with respect to
the amount of information gathered but take longer to run.

C. Comparison of Methods for Iterative Information Gather-
ing: Searching for an Insect Nest

In this experiment a path-based sensor is used to iteratively
collect information about the location of an insect nest in the
environment (Problem 2 and Ex 1). We perform Monte Carlo
trials in simulation to compare the performance of our method
and its heuristic-based relaxation to greedy information surfing
as well as a random walk.

The environment is represented by a 15× 15 map. Move-
ment is defined by 9-grid connectivity. The agent has fuel for
25 moves. Insect detection false positive rate is pFalsePos = .01
per time step. In expectation a false positive path-sensor
reading happens during 1− (1− 0.01)25 ≈ 0.22 = 22% of all
forays of length 25. A false positive happens, e.g., when
an insect is collected but does not come from the nests we
seek. The false negative rate is set to pFalseNeg = .7, meaning
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that 70% of the time we fly through a cell that contains a
nest we will not obtain an insect sample. This high false
negative rate is chosen to evaluate the usefulness of our
methods in the case that observing the phenomena of interest
is relatively improbable. In each trial the start and goal are
placed uniformly at random. 10 non-start/goal locations are
picked uniformly at random (no replacement) and populated
with insect nests.

The results from this experiment are presented in Figure 5,
and show that both our method and its relaxation outperform
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greedy information surfing and a random walk.

D. The Effects of False Negatives and False Positives

In this experiment a path-based sensor is used to iteratively
collect information about the location of an insect nest in the
environment (Problem 2 and Ex 1). We perform Monte Carlo
trials in simulation to compare the performance of our method
and its heuristic-based relaxation to greedy information surfing
as well as a random walk.

The environment is represented by a 10× 10 grid map.
Movement is defined by 9-grid of connectivity. The agent
has fuel for 10 moves. In one set of trials we hold the false
negative rate constant at 0.1 and vary false positive rate per cell
traversal across the range 0.001, 0.003, 0.01, 0.033, 0.1, 0.333.
In a second set of trials we hold the false positive rate constant
at 0.1 and vary false negative rate per phenomenon containing
cell traversal across the range 0.01, 0.2, 0.4, 0.6, 0.8. Results
appear in Figure 6.

E. Comparison of Methods for Iterative Information Gather-
ing: Searching for Targets in a Hazardous Environment

We test our algorithm using three different objective func-
tions: weighting information from targets and hazards equally
cX , cZ = {1, 1}; gathering only target information cX , cZ =
{1, 0}; and gathering only hazard information cX , cZ =
{0, 1}. We compare our method to three other ideas: (1) 1-
step look ahead information surfing2; (2) a Markov random
walk; and (3) planning paths to gather target information
while ignoring hazards altogether by not accounting for the
probability of being destroyed when evaluating the expected
information gain and using a cX , cZ = {1, 0} objective. In all
methods agent movement is only allowed in directions from
which the agent can still reach the goal given its fuel reserves.

We evaluate the performance of all seven methods/variants
across six hazard lethality rates: 0.01, 0.2, 0.4, 0.6, 0.8, and
0.99 in 15 × 15 maps with fuel for 25 moves. Two subsets
of trials are run that involve different numbers of targets and
hazards. In both sets statistics are gathered by testing each
combination of method and hazard lethality rate across 30
Monte Carlo trials. The same cell may contain a hazard and a
target. True and false positives are calculated based on a 95%
belief: if target existence belief is ≥ 0.95 in a cell, then we
declare that there is a target in that cell, likewise for hazards.
• Experiment set E.1. Start and goal locations are placed

uniformly at random per each of the 30 scenarios.

2In “information surfing” the path is greedily computed—the path is
initially unknown when that agent leaves the start and then the path is
computed on-the-fly. Hazard existence belief is tracked and used to determine
the expected information that will be gained about targets. In practice, the
destruction of an agent eliminates direct knowledge of the path taken by the
agent. While it may be possible to integrate over all possible paths the agent
could have taken to obtain a valid update, this computation is at least as
hard as the algorithm we present for planning the optimal path. Instead, for
the purposes of comparison we choose to be overly generous to “information
surfing” and (unrealistically) assume that if the agent is destroyed, then we still
know the path that it would have taken to the goal had it not been destroyed.
Using this path to refine hazard beliefs (by calculating the relative likelihood
the agent was destroyed on each segment) provides a performance bound such
that the results for “information surfing” are better than what is expected in
practice.

Fig. 6: Performance of our method in response to different false
positive rates (top) and false negative rates (bottom). Different rates
are drawn with different color saturation. In both cases the other
value (false negative or positive, respectively) is held constant at 0.1.
Entropy (Left) and true/false positives (Right) of cells identified as
containing event causing phenomena based on 95% belief threshold.
Error bars show standard error every 50 paths.

Hazards: 10 non-start/goal locations picked uniformly
at random (no replacement). Targets: 20 non-start/goal
locations picked uniformly at random (no replacement).
Results appear in Figure 7.

• Experiment set E.2. Start and goal locations are se-
lected once, uniformly at random, and then reused across
30 scenarios. Hazards: 4 non-start/goal locations picked
uniformly at random (no replacement). Targets: 6 non-
start/goal locations picked uniformly at random (no re-
placement). Results appear in Figure 12 in the appendix.

We find the relative performance of the various methods
to be stable across different hazard lethality rates, and across
both sets of trials. Increasing hazard lethality makes hazard
detection easier and target detection harder for all methods.

Our path-sensor path planning method with cX , cZ = {1, 1}
objective consistently outperforms the other methods. The
cX , cZ = {0, 1} objective initially has less accurate beliefs
regarding target existence before improving during later path
planning iterations. This makes sense given that this objective
explicitly ignores ignores target information.

Not considering the existence of hazards during target
search in a hazardous environment yields the worst perfor-
mance of all methods—even worse than a random walk.
This happens because target beliefs remain unchanged in the
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event that agents are destroyed—if hazards are ignored then
subsequent agents will continue to attempt the same dangerous
path until it is successfully completed. We also note that
greedy information outperforms a random walk.

Our algorithms work as intended. Planning a path to maxi-
mize the expected information gain improves the performance
of path-based sensors. Because this is the first presentation of
a path-based sensor, the methods to which we compare have
been repurposed from different but related problem domains.
Thus, the lackluster performance of the other methods with
respect to our problem domain—for which our method was
specifically designed—should not be taken as a general reflec-
tion on the quality of the other methods. The other methods
are expected to work well in the problem domains for which
they were originally designed.

IX. CONCLUSION

We have introduced the notion of a path-based sensor and
derived its recursive Bayesian update for a discrete time model.
We have also presented a number of algorithms that leverage
these ideas for Shannon information theoretic path planning.

The recursive Bayesian update accounts for both false
positives and false negatives and can be used regardless of
how the path has been calculated. This means that the path-
based sensor Bayesian update can be used when a path-based
sensor piggybacks on an unrelated mission—even if we have
no control over the path(s) the robot(s) must follow on these
missions. Our experiments show that even a path-based sensor
that follows a random walk provides useful information for the
path-based sensor belief update. That said, designing a path to
maximize the information gathered by the path-based sensor
improves performance.

Tracking hazards in a dangerous environment enables us
to gather more information about a separate phenomenon of
interest, especially when robot survival is a prerequesite for
returning information about the separate phenomenon of inter-
est. Risky paths are attempted only if the expected information
gain is sufficient to justify the risk. Our algorithms can be be
modified to handle the case of malfunction in environments
without hazards by prepopulating the hazard belief map cells
with prior values of zero, and then running them as normal.
This may be useful in cases where robot malfunction causes
the loss of all target information that has been gathering during
a path traversal.
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APPENDIX

ALGORITHM OPTIMIZATIONS

In this section we discuss optimizations that enable our
algorithms to run quickly in practice. We also describe a
relaxation that leads to significant speedup in practice.

Much of the computational complexity of solving Problems
4 and 5 is due to the path entropy integral that pertains to the
target beliefs—equation that appears on Line 8 in Algorithm 6:

ĥXlive ←
∫
x∈X

H(Xlive)dx

This equation is a major bottleneck of solving Problems 4
and 5—as well as any problem in which a typical sensor is
used to gather information at multiple points along a path (in
particular, in standard non-path-based sensor formulations).

Even if we assume the simplest possible cell-wise interac-
tion, i.e., that targets and hazards only affect sensor readings
and robot survivability within their own cells, then repeatedly
solving this equation still takes a significant amount of time—
especially if a naive approach is used

In Section A we discuss a dynamic programming solution
that speeds this calculation. In Section B we describe how
similar ideas can be used for the other quantities that require
tracking. In Section C we show how a lower bound on the
required value can be calculated even more quickly by using
a modification to this dynamic programming solution.

It is important to note that the computational efficiency of
these methods leverages an assumption that the neighborhood
in which targets or hazards cause observable effects is much
smaller than the size of the entire environment.

A. Dynamic Programming Calculation of
∫
x∈X H(Xlive)dx

The overall structure of Algorithm 6 requires us to calculate
a set of all subpaths of length k before extending these to
length k + 1. Assume that we have two subpaths, one of
length k and the other of length k + 1, such that the first
and the second are identical at their first k segments. If
mutual information were not submodular—e.g., in a “pretend”
universe—then the additional expected mutual information
gained along the longer path would simply be the mutual
information gained in the final segment of the longer path.

This “pretend” ideal case is not what happens, in general.
However, if we can assume that a particular hazard or targets
only affect the robot and its sensor when the robot is located
in (or near) the same cell as that hazard or target, then the
ideal pretend case only breaks down when the robot visits a
particular cell (or goes near to that cell) more than once during
the same path.

Given our assumptions, the expected mutual information
gained from all readings relevant to a particular cell depends
only on the readings that have been made which are applicable
to that cell (as well as their relative order in scenarios where
effects go beyond a single cell but change as a function of
distance), and is independent of the particular path segment(s)
index at which the readings were taken.

Thus, use a parallel data structure to track the number
of observations that are not mutually independent and, in
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Fig. 7: Performance of various methods across six different hazard kill ratios in a 15 by 15 map with 10 hazards and 20 targets. Different
kill ratios have different color saturation values. Row corresponds to method and the top three rows show our method with different objective
weights for information about targets versus hazards. Columns correspond to different performance metrics. Performance metrics are also
differentiated by color hue value. Statistics include path-based sensor true positives and false positives, with positive detection defined by
a ≥ .95 likelihood value in the map. Each datapoint represents the mean over 30 random trials. Error bars show standard error every 100
paths.
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Fig. 8: Visualization of the local histories (different possible sets of outcomes given multiple visits to the same cell) that need to be tracked
to calculate the information that is gained along the entire path. Figure 9 shows how this can be done more efficiently. i repeated visits to a
particular cell require storing the information that will be gathered in each of the 2i−1 different possible observation histories local to that
cell. Note that this depiction assumes that target sensors are only influenced by targets when they are in that target’s cell.

Fig. 9: Visualization of the local histories (different possible sets of outcomes given multiple visits to the same cell) that need to be tracked
to calculate the information that is gained along the entire path. This improves the idea presented in Figure 8 because paths only need to
recalculate a new (larger) set of histories for each new cell that is added to a path. Note that this depiction assumes that target sensors are
only influenced by targets when they are in that target’s cell.

scenarios where effects extend beyond a single cell, their order
and distance. If, as in our experiments, hazard and target
effects are limited to a single cell, then the calculation can
be further simplified by realizing that the relative order of
visits to a particular cell does not affect the final expected
information gained about that cell. All observations are essen-
tially identical, except for the amount of new information they
provide.

To calculate the expected information gained along a path,
we must track all possible local history of the visits to that cell
(see Figure 9). The size of the data will grow exponentially
with respect to the number of visits i made to a particular cell,
since (for a binary sensor) there are 2i−1 possible outcome
histories that must be tracked. Thus, data structure size is upper
bounded by a function of the number of revisits made to the
most revisited cell.

We find that the number of revisits to a particular cell is
often small, in practice. However, it is possible to design
arbitrarily bad cases by carefully constructing a prior belief
that forces a particular cell to have much more information
available than the others (see the the next section of this
appendix for more details).

Efficiency is gained by recalculating a new (larger) set of

i+ 1 histories for the new cell only when a new edge takes
the path through a previously visited cell (see Figure 9). This
is convenient for a binary sensor because we can calculate the
new set of history outcomes relevant to that cell by starting
with the existing 2i−1 possible local history outcomes given i
visits and then calculating the two possible history extensions
in which the sensor reads 0 or 1, respectively. This results in
2 ∗ 2i−1 = 2i local history outcomes at time i+ 1. This idea
is used in the dynamic programming implementation of the
integral (Algorithm 9).

We now describe Algorithm 9 in detail. We use a C++ like
notation such that fields of the node data structure are accessed
with the ‘.’ symbol. Each node stores information relevant to
the path that goes from itself to the goal. This is used to extract
the best path from any node that we have found so far. v̂i.X̃[:]
tracks all 2c−1 possible cell values that may result given c
repeated visits to the cell associate with node v̂i. Similarly,
v̂i.P̃X=x[:] tracks the relative probabilities of each of the 2c−1

histories occurring.
Let ζ[k] denote the k-th segment of the path. We start by

determining if a new path segment revisits any cell that was
previously visited along the path (lines 1-6). If the cell was
not previously visited along the path, then we simply populate
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Algorithm 9 integral(v̂i, v̂j , ζv̂j )

1: k ← −1
2: for k̂ ← 1, . . . , |ζv̂j | do
3: if mapCell(ζv̂j [k̂]) = mapCell(v̂i) then
4: u← ζv̂j [k̂]

5: k ← k̂
6: break
7: if k = −1 then // This IS the first visit to cell v̂i along ζ
8: k ← |ζv̂j |+ 1
9: nmax ← 2

10: v̂i.X̃[1 : 2]← [P (Xi |X[i], 0) , P (Xi |X[i], 1) ]
11: v̂i.P̃X=x[1 : 2]← [ (1.0−X[i]) , X[i] ]
12: else // This is NOT the first visit to cell v̂i along ζ
13: nmax = |v̂j .P̃X=x[:]|
14: v̂i.X̃[1 : 2nmax]← 01:2nmax
15: v̂i.P̃X=x[1 : 2nmax]← 01:2nmax
16: for n← 1 : nmax do
17: v̂i.X̃[n]← P

(
Xi | v̂j .X̃[n], 0

)
18: v̂i.P̃X=x[n]← v̂j .X̃[n] ∗ (1.0−X[i])

19: v̂i.X̃[n]← P
(
Xi | v̂j .X̃[n], 1

)
20: v̂i.P̃X=x[nmax + n]← v̂j .X̃[n] ∗X[i]
21: H̃←

∑nmax
n=1 v̂i.P̃X=x[n] ∗H(v̂i.X̃[n])

22: v̂i.Ĩ[k]← H(X[i])− H̃
23: if |ζv̂j | = 0 then // The path ζ is equivalent to v̂i
24: v̂i.Ĩtotal ← v̂i.Ĩ[k]
25: else if k = −1 then // This IS the first visit to cell v̂i along ζ
26: v̂i.Ĩtotal ← v̂j .Ĩtotal + v̂i.Ĩ[k]
27: else // This is NOT the first visit to cell v̂i along ζ
28: v̂i.Ĩtotal ← v̂j .Ĩtotal + v̂i.Ĩ[k]− u.Ĩ[k]
29: return v̂i.Ĩtotal

v̂i.X̃[1 : 2] and v̂i.P̃X=x[1 : 2] with both of the possible
history outcomes and their relative probabilities, respectively
(lines 7 to 11).

On the other hand, if this is not the first visit to this cell,
then the k-th node of the path also visited this cell and, as the
first time this node’s cell was added to this path, it holds the
previous set of history outcomes for all previous (local) visits
to the map cell. For each set of history outcomes we extend the
history by one (doubling the size of the history outcomes) by
considering all possibilities—either we get a sensor reading at
the new node or we do not (lines 12-20). We update the total
expected information gained along the path by determining
how much new information the new visit to the final node’s
cell will add (lines 20-29).

B. Dynamic Programming Calculations of Updates

The discussion in Section A is more applicable to the use
of a standard sensor (target case) than the case of a path-based
sensor (hazard case). In the algorithms presented in Section VI
we have simplified the path planning for information about
hazard computation in a different way—by ignoring how
events that happen on-the-fly affect our hazard beliefs. We
do not account for the fact that if the robot moved through
a particular cell without being destroyed early in the path
then this should correlate with an increased chance of moving
safely through the same cell again later in the path, since
it provides additional evidence that the cell is hazard free.

Instead, we only update beliefs once the robot returns to base
or is presumed to be destroyed.

The calculation of the Bayesian updates that occur if the
robot survives to a particular node in the path can be calcu-
lated iteratively, as was done for the information integral in
Section A. We again leverage the assumption that events are
local to cells, and so Bayesian updates only affect the cells
that the path visits. Adding a node to the path only requires
recalculating the Bayesian update in the single cell associated
with that node.

C. Heuristic Calculation of Lower Bound on∫
x∈X H(Xlive)dx

The dynamic programming approach described above sug-
gests a simple lower bound that can be computed in time
proportional to path length and branching factor: simply
assume that additional visits to a particular cell yield no new
information. This can be seen by comparing Figures 9 and 10.

EXAMPLE WHERE OUR METHOD IS SUBOPTIMAL

In this appendix we present a simple example demonstrating
a situation in which our method produces the suboptimal path.
This is depicted in Figure 11. Consider a 1-D environment
with five nodes across the space at each time step. These
imply the existence of five nodes at each time step of a space-
time graph. The space-time plot of the search graph found
by our method is depicted (Left). The optimal path (Right),
spends an equal amount of time sampling at high information
locations a and e, transferring sides halfway through at `/2.
The inner three (orange) locations in column a and e have
belief values that are very close to either 1 or 0, and so there
is little information to be gained by sampling them. The outer
(blue) locations in columns b, c, and d have belief values ≈ 0.5
and so there is maximum information to be gained by sampling
them. Information to be gained at a is an infinitesimal amount
larger than information to be gained at e, which is why the
nodes at column c opt to choose nodes in column b as their
parent instead of those in column d. As long as the marginal
information to be gained with another visit to column a (resp.
e) is greater than the marginal information to be gained by
visiting the nodes in column c, then nodes in column a and b
(resp. e and d) will choose nodes in column a (resp. e) as their
parents. This is suboptimal after `/2, but continues to happen
because of the locally optimal—but globally sub-optimal—
tendency to avoid the very low-information column c. This
ceases to be the case at time 2 in this “worst case” example.
If the path were longer, than the path would eventually switch
to sampling the other side, since it contains much information
to be gained.

ADDITIONAL EXPERIMENT FIGURES

Figure 12 presents experimental data from experiment set
E.2, which involves Problem 5 (scenario Ex 3) and is described
in Section VIII-E.
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000000 0

Fig. 10: Much less storage and computation is needed (compared to Figure 9) if we are willing to ignore the effects of repeated visits to the
same cell (find a suboptimal solution). In the extreme case depicted here, we assume that no additional information is provided by repeated
visits to the same cell. Note that this depiction assumes that target sensors are only influenced by targets when they are in that target’s cell.
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Fig. 11: Example where our method produces the suboptimal path.
The 1-D environment contains five nodes. The space-time plot of the
search graph found by our method is depicted (Left). The optimal
path (Right), spends an equal amount of time sampling both of the
high information nodes a and e, transferring sides halfway through
at `/2. The inner three (orange) nodes (in column a and e) have
belief values that are very close to either 1 or 0, and so there is little
information to be gained by sampling them. The outer (blue) nodes
(in columns b, c, and d) have belief values ≈ 0.5 and so there is
maximum information to be gained by sampling them.
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Fig. 12: Performance of various methods across six different hazard kill ratios in a 15 by 15 map with 4 hazards and 6 targets. Different kill
ratios have different color saturation values. Row corresponds to method and the top three rows show our method with different objective
weights for information about targets versus hazards. Columns correspond to different performance metrics. Performance metrics are also
differentiated by color hue value. Statistics include path-based sensor true positives and false positives, with positive detection defined by
a ≥ .95 likelihood value in the map. Each datapoint represents the mean over 30 random trials. Error bars show standard error every 100
paths. Comparing these results to those in Figure 7 we note that the existence of fewer targets and hazards tends to decrease the entropy
associated with their existence probability distributions. The detection of all targets and hazards happens more quickly here than in Figure 7.


