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Abstract
We pose the “trained at runtime heterogeneous swarm response problem” in which a swarm of robots must do the
following three subtasks: (1) Learn to differentiate multiple environmental feature pattern classes, where feature patterns
are distributively sensed using the sensors of all robots in the swarm. (2) Perform a specific swarm behavior in response
to the feature pattern that is recognized in the environment at runtime, where a swarm behavior is defined by a mapping
of robot actions to robots. (3) Both the specific environmental state pattern classes the swarm learns to differentiate (in
subtask 1) and the mapping from feature classes to swarm behaviors used (in subtask 2) are uploaded to the swarm
after it has been deployed. To solve this problem we propose a new form of emergent distributed neural network that
we call the “artificial group mind”. The group mind transforms a robotic swarm into a single meta-computer that can be
programmed at runtime. In particular, the swarm-spanning artificial neural network emerges as each robot maintains a
slice of neurons and forms wireless neural connections between its neurons and those on nearby robots. The nearby
robots are discovered at runtime. Experiments on real swarms containing up to 316 robots demonstrate the group mind
enables collective decision making based on distributed sensor data, and solves the trained at runtime heterogeneous
swarm response problem. The group mind is a new tool that can be used to create more complex emergent swarm
behaviors. The group mind also enables swarm behaviors to be a function of global patterns observed across the
environment—where the patterns are orders of magnitude larger than the robots themselves.

Keywords
Robotic Swarm, group mind, Neural Network, Emergent Behavior, Coordination, Distributed Sensing, Multi-Agent
System, Machine Learning, Hive Mind, Artificial group mind.

Introduction

Robot swarms may contain many robots. In other words, the
definition of “swarm” is rooted more in the scalability of
the algorithms used by a group of robots than in the size of
the group. A group of robots is a swarm only if it employs
methods for sensing, planning, and control that will still
work if the number of robots is increased by a few orders
of magnitude.

As long as the assumption of scalability is respected,
then a particular swarm may contain any number of robots
N > 1. However, because by definition swarm methods are
designed to scale to arbitrarily large numbers of robots, they
are best suited to problems that have sufficient numbers of
robots to break other techniques. Respecting the assumption
of scalability means that we cannot provide every robot in a
swarm with a unique piece of software. Indeed, to achieve
tractability only a small number c of different groups can
receive unique programming, where c� N .

Robotic swarms are useful in situations where having
numerous interchangeable robots provides an advantage over
using a single robot or a team of uniquely specialized
robots. The actuation parallelism provided by swarms
enables missions with a high degree of task independence
to be completed more quickly. The redundancy provided
by large numbers of robots means that a swarm may lose

a large percentage of its robots and still accomplish its
mission (where the percentage of tolerable loss is problem
dependent). Redundancy is particularly useful for dangerous
missions and long-term deployments in which we expect
some robots to be damaged or destroyed, but we have no way
of predicting which robots will be damaged or destroyed.

The traditional approach to producing a particular swarm
behavior can be summarized as a two step process:
(1) pre-program the same action (i.e., a single robot mission
program) on each of c� N subsets of the swam, and then
(2) rely on robot-robot and robot-environment interactions
to cause a desired complex swarm behavior to emerge at
runtime. This form of complex distributed behavior, resulting
from the interaction of multiple agents each performing one
of a small set of actions, is called an emergent behavior.

The usefulness of emergent behavior is demonstrated in
the natural world by the success of biological swarms. For
example: bees build hives, ants forage for food, birds flock,
fish school; all of these species (and many more) rely on
some form of emergent behavior for their survival. The
existence of emergent swarm behaviors in the biological
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world is a major source of inspiration for robotic swarms.
However, many of the methods used to generate emergent
behavior in artificial swarms adhere to a design philosophy
that limits their diversity of behavior by assuming all robots
receive identical programming (c = 1). This is much more
limiting than many strategies found in the natural world.
For example ant colonies have workers, soldiers, males, and
queens.

Our work is motivated by the belief that allowing different
subsets of robots to be programmed with different behaviors
(1 < c� N) will enable a larger, more diverse, and useful
set of swarm behaviors to emerge. Indeed, there likely exist
many problems that can only be solved if different robots
in the swarm run different programs at the same time, and
other problems that can be solved much more efficiently by
a swarm that uses a behavior defined by heterogeneous robot
actions.

Programming every single robot with its own behavior
becomes prohibitively expensive as N increases; this is why
c� N . Indeed, if we let N →∞ then, from a theoretical
point of view, we require c = O(1) to retain tractability over
any scale of swarm.

Indeed, even dividing the swarm into c subsets to receive
different programming a priori can be impractical for a
number of reasons. For example, we may not know where
a robot will be deployed during a mission, but we may want
certain robots to run different action programs depending on
where they are deployed. We may also want different robots
to run different action programs depending on what else is
happening in the environment, or across the environment, or
as a combination of deployment location and environmental
state.

At a larger scale of organization, we may want the entire
swarm to have different swarm-scale emergent behaviors
depending on what the swarm senses in (or across) the
environment at runtime. Each emergent behavior may
require different subgroups of robots to run different action
programs, and the swarm may need to be broken into
different subgroups depending on which emergent behavior
is desired. Assuming the swarm has access to distributed
sensor information, then the swarm’s behavior may even be
selected based on patterns in the environment that are too
large for a single robot to discern—but that the swarm as a
whole is capable of detecting using its distributed sensors.

Consider the example of a swarm designed to respond to
multiple disaster scenarios such as a fires, floods, tornadoes,
and earthquakes. The swarm would first need a way to
detect which disaster has happened—if any—and then react
appropriately. An emergent behavior that is designed to put
out a fire will not be helpful if there is actually a flood (and
may make things worse). An environment in which “the
eastern furnace is burning and the western lake is flooded”
will require a different emergent swarm response behavior
than “there is a tornado moving south” or even “the eastern
furnace is flooded and the western lake is burning”.

In practice we may need to deploy a swarm of robots
before we know which scenarios the swarm is likely to
encounter, e.g., launching a swarm of robots on a mission to
another planet. In such a case the swarm can only be trained
to differentiate between relevant scenarios after it has been
deployed. Similarly, the particular emergent swarm behavior

that the swarm should perform in response to any scenario
may not be known until robots are deployed; and may depend
on how many robots are functional, the locations that the
robots end up, etc.

If we are allowed to assume each robot is pre-loaded with
a number of single-robot actions (or, alternatively, that such
actions can be uploaded to the robots en mass once they
are in the environment), then we may wait until the swarm
is deployed before telling it (1) which scenarios it needs
to differentiate between, and (2) which swarm behaviors
(i.e., which subsets of robots perform which actions) are
the preferred response to each scenario. In the Preliminaries
Section of this paper we formalize the mission described
above, and call it the “trained at runtime heterogeneous
swarm response problem”.

We solve the “trained at runtime heterogeneous swarm
response problem” using an emergent swarm-spanning
neural network that we call an “artificial group mind”. In the
artificial group mind each robot maintains a slice of neurons,
and the neurons on each robot are linked with the neurons on
neighboring robots using ad hoc wireless communication.

The artificial group mind emerges at runtime as
neighboring robots discover and then link with each other
using wireless communication (See Figure 1). The group
mind is trained at runtime to distinguish between different
patterns of feature data it detects across the environment
using the swarm’s distributed sensors. Once trained, the
group mind outputs (on every robot) the class label of
the current environmental state that is detected. Using this
class label, each robot then locally calculates the action that
it should perform as part of the desired swarm response
behavior. The same class label may map to different actions
depending on which subgroup a particular robot belongs.
Feature training data, subgroup membership, and class-label
mappings are uploaded to the swarm at runtime after the
swarm is deployed.

The artificial group mind uses wireless signals to
train, and wireless signals are unreliable. Therefore, we
design a special version of the backpropagation training
algorithm that has convergence guarantees despite using
unreliable communication between neurons. Part of this
paper is devoted to describing this special backpropagation
algorithm, and proving its convergence guarantees. The basic
idea is to temporarily pause training on a robot whenever
information from one of its neighbors gets too far out-
of-date; once the neighbor has caught up then the paused
robot is unpaused (in theory, any finite number of training
iterations may be chosen as the threshold for “too far
out-of-date”). Our proofs of convergence are applicable
beyond neural network training—they show, given a few
nonrestrictive assumptions, this form of pausing will enable
any form of distributed stochastic gradient descent to
converge in the presence of unreliable communication,
almost surely in the limit as the number of iterations
increases without bound.

To demonstrate the utility of the group mind we perform
experiments with the swarms of Kilobot robots. The Kilobot
robotic platform has visual light sensors, communicates
using infrared signals, locomotes with vibrating legs, and
displays multi-colored LED lights. Once trained, and after a
particular projected image is recognized in the environment,
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Figure 1. Emergent artificial group mind neural network. (A) Each robot maintains a slice of neurons (depicted along the vertical
axis) and forms wireless neural connections with its neighbors. (B) The Kilobot robot that we use. This Figure is reprinted/adapted
by permission from: Springer Proceedings in Advanced Robotics, Vol 1, “2016 International Symposium on Experimental Robotics”,
COPYRIGHT 2017.

the swarm performs whatever heterogeneous behavior has
been prescribed for that particular projected image. We
experiment with two different types of heterogeneous swarm
behavior output. In the first, the swarm displays special LED
images using a single multi-colored LED on each robot such
that the entire swarm becomes an emergent LED screen∗. In
the second, the swarm constructs different physical shapes by
having robots move away from certain areas and into others.

The main contributions of our paper are as follows:

1. We both formalize the “trained at runtime heteroge-
neous swarm response problem” and experimentally
demonstrate a solution to it. No previous solution
exists that enables a swarm to: (A) be programmed
at runtime with different heterogeneous behaviors,
such that (B) different behaviors will be performed in
response to specific environmental patterns that are (C)
detected across the environment using its distributed
sensors.

2. The “artificial group mind” technique we present is
both new and very general; we believe it can likely
solve a number of other problems in which distributed
agents need to be trained to make collective decisions.

3. A simple method to achieve distributed stochastic
gradient descent in the presence of unreliable
communication, along with its proof of almost sure
convergence in the limit, is a very general result that
can potentially benefit a variety of fields.

The rest of this paper is organized as follows. We begin
with a survey of related work, before moving on to a
Preliminaries Section in which notation is defined and formal
problem statements appear. The High-Level Algorithms
Section describes the artificial group mind algorithm and its
major subroutines. This is followed by a section in which
the medium-level details of the modified backpropagation
algorithm are described. Formal analysis of the modified
backpropagation algorithm’s convergence appears in the
Analysis Section. Swarm Behaviors and Actions Used in Our
Experiments, the Experiments themselves, Discussion, and
Conclusions all appear in their own sections, respectively.

Finally, an appendix contains low level implementation
details that may be necessary to duplicate our work and
additional related work (a survey of related concepts from
other fields and a comparison of the group mind to other
forms of distributed neural networks).

Related Work from Robotics
In this section we review closely related work in robotics.
A high level summary of how previous work relates to our
work appears in Table 1. Related ideas from other fields are
surveyed in Appendix C, while related work involving neural
networks is covered in-depth in Appendix D.

Holland et al. (2005) propose that wireless communication
among a swarm of robots can be used to create a
distributed computer they call an “UltraSwarm”. However,
their work is purely speculative with respect to distributed
computation, and multi-robot aspects of the problem are not
discussed (technical details focus on the design of a robotic
platform, and experiments are performed with a single
robot). De Nardi et al. (2006) is an extension that details
the single-robot motion controller used in the experiments
of Holland et al. (2005). More recent work on “UltraSwarm”
(De Nardi and Holland 2007) focuses on flocking, and does
not mention distributed computation within the swarm.

Distributed computation across a team of six robots is
used to find a centralized solution to the multi-robot motion
planning problem by Otte and Correll (2010b,a). Robots
form teams over ad hoc wireless Ethernet as a response
to robot-robot conflicts detected at runtime. The resulting
multi robot teams use a distributed algorithm for centralized
motion planning. Differences vs. the current paper include
the problem that is solved, the size and composition of
the team/swarm, the architecture of the resulting distributed
computer.

∗Note that the light images the swarm detects across the environment
are completely different from the LED images that the swarm displays in
response.
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Giusti et al. (2012) incrementally train a 13 robot swarm
to recognize hand gestures that can be used to command
the swarm. In extensions to the work a variety of learning
methods are applied to the task. Giusti et al. (2012) and
Di Caro et al. (2013) use a modified support vector machine
(SVM), while Nagi et al. (2012b) use online ridge regression,
and Nagi et al. (2012a) combine a SVM with a Neural
Network. Each robot has its own camera and all robots
observe the same hand. Once trained, each robot locally
predicts the hand gesture that it sees and communicates
the prediction to the swarm (or a subset of it). Each
agent independently runs a consensus algorithm over all
predictions to determine the gesture most likely observed.
In contrast, the group mind distributes computation and
learning across the swarm such that no computation is
duplicated on any participant. Another difference is that the
swarm response behaviors in our work are allowed to contain
heterogeneous robot actions.

Hosseinmardi et al. (2015) embed computational nodes
in a smart-wall that sense and share local gesture data to
classify the gestures. Our work differs in three ways. First,
Hosseinmardi et al. (2015) solves a gesture recognition
problem, where gestures take the form of 1-dimensional
paths embedded in D-dimensional space. In contrast,
we classify D-dimensional feature patterns that have a
2-dimensional geometric component (but no temporal
component). Second, Hosseinmardi et al. (2015) require
that each computational node (or 7-neighborhood of nodes)
maintains a copy of all global data and training examples,
and each node (or 7-neighborhood of nodes) computes the
classification output in parallel using the k-nearest neighbors
algorithm. In contrast, the group mind uses a distributed
neural network that does not duplicate data used within any
strict subsets of swarm. Third, Hosseinmardi et al. (2015)
use reliable multi-hop wire communication, while we use
unreliable local ad hoc wireless communication.

Distributed mobile sensing is combined with machine
learning and data fusion in Chen et al. (2012a, 2013, 2015)
to predict both traffic congestion and taxi demand using a
form of distributed multidimensional regression. Taxis are
equipped with sensors, communication (both centralized and
ad hoc are investigated), and a priori knowledge of the road
network graph structure. Each vehicle maintains its own
model of traffic congestion and taxi demand, and summary
data from informative parts of the road network are shared
between agents in a distributed Gaussian process. The idea of
refining predictions by performing coordinated and informed
walks is also investigated. In contrast, we solve a variant
of multidimensional classification, train the group mind at
runtime, and assume robots remains stationary until after a
classification has been performed.

Low et al. (2006) implement a neural network on each
robot on a swarm of robots. The neural network is used
to determine movement based on the locations of targets,
obstacles, and other robots. In contrast, the group mind is
a single neural network that is distributed across the swarm
such that each robot maintains a small set of neurons.

See Table 1 for a summary comparison of the group mind
and the closely related works described above.

Previous work related to the parallelization of neural
networks is surveyed in-depth in the appendix. In

summary, the group mind differs from previous neural
networks in at least one of four of ways (depending on
the previous work that is being considered): (1) Neurons
are spatially distributed in the real world and subject to
the network topology that emerges from the placement of
participants. (2) Input data is distributed and collected across
the swarm by sensors on each robot. (3) The computational
nodes communicate using an unreliable (an infrared) ad hoc
wireless communication protocol. (4) Each neural strip is
embedded on a fully functional robot that can also interact
with the world independently of the swarm.

We believe that Noel and Osindero (2014) is the most
closely related work from the neural network literature. Noel
and Osindero (2014) use unreliable multicast communication
to spread messages between the nodes of a distributed neural
network, and weight updates are unlocked and asynchronous.
Noel and Osindero (2014) differ from our work in that they
perform data-parallelism over a wired master-slave system
in which all nodes sync to the master, while we use model-
parallelism over an ad hoc wireless (infrared light) network
that forms between a loose confederation of robots (i.e.,
computational nodes) of equal priority.

The group mind has ‘Any-Com’ properties in that perfor-
mance gracefully declines as the quality of communication
between the robots decreases. The definition of Any-Com
comes from Otte and Correll (2010b). Previous work on
Any-Com algorithms has focused on problems that require
search through an initially unknown space to find a set
of mutually collision free paths (Otte and Correll 2010b,a)
or a space’s point-wise collision properties (Otte et al.
2014). In contrast, as we prove in the Analysis Section,
the group mind’s Any-Com properties are rooted in the fact
that stochastic gradient descent (in general) and the training
of a neural network (in particular) work even when some
messages are dropped.

A preliminary version of the current paper first appeared
in Otte (2016a). The current journal version contains
significant new material including a theoretical analysis of
algorithmic convergence properties, additional experiments,
a more refined and detailed presentation of algorithms, and
additional discussion of related work. The Kilobot robot
system that we use in our experiments has previously
appeared in a number of papers, including Rubenstein et al.
(2012, 2014); Becker et al. (2013).

Preliminaries

Robots and Set Ordering Assumption
Let n be the index of a robot. The n-th Robot’s location is
denoted xn. Let N be the number of robots in the swarm.
The set of locations of all robots in the swarm is denoted X,

X = {x1, . . . , xN} =
⋃

n∈[1,N ]

{xn}.

For the convenience of using X as an argument and output of
set functions that will be used in our presentation, we assume
that X is ordered by robot ID number when an ordering is
necessary or implied. In our presentation we use boldface to
indicate sets such than an ordering assumption is made.
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Group mind (this paper) distributed wireless distributed distributed yes 4-316 individual + G.M a priori and runtime no state class
Giusti et al. (2012)

local/parallel+consensus wireless distributed distributed yes 13 individual a priori no gestureNagi et al. (2012b,a)
Di Caro et al. (2013)

Hosseinmardi et al. (2015) local/parallel+consensus wired-lossy distributed duplicate simulation 4X4-12X12 individual a priori no gesture
Chen et al. (2015) distributed and local/parallel+consensus wireless distributed partial-duplicate real/sim 8/30 individual a priori yes env state
Low et al. (2006) local none(visual) distributed independent simulation 60 individual a priori yes output is control

Levine et al. (2016) centralized (disSampColction) wired dis/cent cist/cent yes 6-14 individual a priori no grasp control
Hamann and Wörn (2007) distributed unspecified distributed distributed simulation 4-1400 emergent a priori yes

Holland et al. (2005) distributed wireless distributed distributed real/speculative 1 individual a priori yesDe Nardi et al. (2006)
Otte and Correll (2010b) distributed wireless distributed partial-duplicate yes 6 individual a priori yes

Table 1. Summary of relationships between our work and closely related work. Top: Group mind. Middle: Works that involve
learning in swarms. Bottom: works that involve distributed computation in swarms of robots.

Workspace
We assume the workspace X of the robot swarm is a subset
of euclidean space X ⊂ R2; however, our results generalize
to higher dimensional spaces and more complex topologies.
Robots exist in the workspace, xn ∈ X for all xn ∈ X.
Similarly, the set of robot locations exists in a product space
XN containing N copies of the workspace,

X ∈ XN = X1 × . . .×XN .

Robot Actions
Each robot is assumed to have one or more actions that it is
capable of performing. Actions can be simple or complex,
such as “display LED” or “forage for building materials”.
A single action may be equivalent to performing multiple
simpler actions.

We assume robots have a finite library of actions, and that
each action is represented by a unique integer z ∈ Z. Let αn
denote the action performed by the n-th robot (See Figure 2-
top). If the n-th robot performs action z then αn = z.

Swarm Behaviors, Mission Objectives, and
Behavior Sets
A swarm behavior is defined by each robot performing its
own particular action. Let B denote a swarm behavior. The
behavior of a swarm with N robots is described by the set
of actions performed by its robots, ordered by robot ID (See
Figure 2-bottom).

B = {α1, . . . , αN} =
⋃

n∈[1,N ]

{αn}.

A heterogeneous swarm behavior is a swarm behavior in
which at least two robots perform different actions. Formally,
in a heterogeneous swarm behavior there exists at least two
robot actions αn, αm ∈ B such that αn 6= αm.

Defining a swarm behavior B as a set of robot actions
is convenient for expressing a particular mapping of tasks
to robots; however, it is insufficient to express the fact that
completely different swarm behaviors may be capable of
achieving the same high-level mission objective such as
“build space station”.

The relationship between a swarm’s behavior and its
ability to achieve a mission objective is complicated by the
facts that: (1) certain swarm behaviors may achieve high-
level mission objectives through the use of emergence. In

other words, the mission objectives are achieved through
the culmination of many robot-robot and robot-environment
interactions, and/or on a time-scale that is much longer than
any single robot action’s control loop. (2) The ability of a
behavior to achieve a mission objective may also depend on
where the swarm is located.

We assume that different high-level mission objectives can
be represented by unique integers k ∈ Z. Reasoning about
a swarm’s ability to achieve a high-level mission objective
is now formalized. First, we define a swarm behavior tupel
(X,B) that represents a swarm behavior B performed at a
swarm location X. Next, we define a swarm behavior tupel
set Bk to be the set of all swarm behavior tupels that achieve
the k-th mission objective (See Figure 3).

Let B be the set containing all possible swarm behavior
tupels†,

B =
⋃
{(X,B)}.

Any swarm behavior set Bk is a subset of B.

Bk ⊆ B for all k.

Let function gmissionk return true or false if a swarm
performing a particular behavior at a particular location
will eventually fulfill the k-th mission objective or not,
respectively.

gmissionk : B → {true, false}.

gmissionk is a tool that we introduce into our formulation
that both: (1) simplifies our presentation, and (2) enables
our formalization to generalize to more complex missions.
We note that the swarm’s location need not remain fixed
for the duration of the mission (or even be known to the
swarm itself). In the case that X changes over time as the
result of B, the function gmissionk ((X,B)) is assumed, for
the purposes of our formalization, to account for the future
movement and interactions of the swarm, and return true
or false based on the current (X,B). In practice, it may
often be impossible to determine gmissionk without actually
deploying a swarm to location X, telling it to run behavior
B, and then observing if the mission objective is met or

†More formally,B is the smallest possibly infinite set containing all possible
swarm behavior tupels over all possible swarm sizes. Here “smallest” is used
to prevent unnecessary duplication (e.g., in a similar way to how a sigma
algebra is defined as the “smallest” collection of all subsets of a set).
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State Space Example Swarm Location

X

X1

X21.0

0.5

0.0

0.0 0.5 1.0

X21.0

0.5

0.0
X =

⋃
n∈[1,N ]{xn}

x1 = [0.2, 0.8]

Examples of Robot Actions

z1 = “rotate in place”

z2 = “display blue LED”
Robot Action IDs

Examples of Swarm Behaviors
α1 = z1 α5 = z2 α1 = z2

(X1,B1) (X2,B2) (X3,B3)

B1={α1=z1, α2=z1, α3=z1, α4=z1, α5=z1, α6=z1,
α7=z2, α8=z2, α9=z2, α10=z2, α11=z2, α12=z2}

B2={α1=z1, α2=z2, α3=z1, α4=z1, α5=z2, α6=z1,
α7=z2, α8=z2, α9=z1, α10=z2}

B3={α1=z2, α2=z1, α3=z2, α4=z1, α5=z1, α6=z2,
α7=z2, α8=z1, α9=z2, α10=z1}

(X4,B4) (X5,B5) (X6,B6)

B4={α1=z1, α2=z1, α3=z1, α4=z1, α5=z1, α6=z1,
α7=z2, α8=z2, α9=z2, α10=z2, α11=z2, α12=z2}

B5={α1=z1, α2=z1, α3=z1, α4=z2, α5=z2, α6=z2}

B6={α1=z2}

Figure 2. Top: Examples of State Space X , Robot Locations
x1, . . . , x12, The swarm locations X1, . . . ,X6 are sets of robot
locations. Middle: Different robot actions z1 and z2 are depicted
in different colors. Bottom: swarm behaviors B1, . . . ,B6 are
each defined by sets of robot actions that are ordered by robot
ID. Swarm behavior tupels (Xj ,Bj) are defined by a set of
behaviors performed at a corresponding set of locations.

not. In the special cases considered in this paper, e.g., in
Figure 3 and in our experiments, temporal effects are absent
from mission requirements such that gmissionk is grounded in
a time-independent mapping that is easy to visualize.

Swarm behavior set Bk ⊂ B is formally defined as the
(possibly infinite) set of all swarm behavior tupels that fulfill
the k-th mission objective:

Bk =
⋃
{(X,B) | gmissionk (X,B)}.

Examples of Swarm Behavior Classes
gmission1 = “One half of the swarm rotates in place, and

the other half displays a blue LED”

B1

(X1,B1)(X2,B2)(X3,B3) B1
k = {αn ∈ Bk |αn = z1}

B2
k = {αn ∈ Bk |αn = z2}

Bk∈B1 if and only if Bk=B1
k∪B2

k and |Bk|
2

= |B1
k|= |B2

k|

gmission2 = “Robots above X2 = 0.5 spins in place and
those below X2 = 0.5 display a blue LED”

B2

(X1,B1)(X4,B4)(X5,B5)(X6,B6)

A2 = oZ2 (X )

Bk ∈ B2 if and only if αn = oZ2 (xn) for all αn ∈ Bk

Figure 3. Examples of swarm behavior classes. Classes B1

and B2 contain sets of swarm behaviors that fulfill a particular
mission objective. In B1 half of the robots display blue and the
other half display red. In B2 robots display red or blue if they are
in the top or bottom halves of the environment, respectively.
Mission objective functions gmission1 and gmission2 return true if
a particular mission objective is met by a swarm behavior tupel,
and so Bk =

⋃
{(X,B) | gmissionk ((X,B))}. A single swarm

behavior Bk is an ordered set of robot actions (ordered by robot
ID). In this case, both B1 and B2 are infinite sets, and so we
show only a few member of each as examples.

Because the k-th mission objective may be met by swarms
of various sizes, different swarm behaviors tupels in Bk will
contain X (and B) with varying cardinality, in general. X
and B that form a particular tupel have the same cardinality.

The set of all swarm behavior tupel sets is denoted B,
where

B =
⋃
k∈Z
{Bk}.

Swarm behaviors can be defined in many different ways,
and Figure 3 shows two different examples. In the first
example a behavior is defined by half the swarm (by
cardinality) doing action α1, and the other half of the swarm
doing action α2. In the second example the behavior is
defined such that, at the instant the behavior starts, robots
in the top half of the environment perform α1 and robots
in the bottom half of the environment perform α2. We find
the second method convenient, and use it extensively in
this work. We now formalize a few concepts that make
this possible. Let oZ be a function that maps robot actions
to spatial locations. A swarm behavior template is defined
A = oZ(X ) and can be displayed as an image in which
the colors represent different robot actions (See Figure 3-
Bottom-Right). Given a oZk for a particular class Bk, a swarm
at location X can calculate the actions {α1, . . . , αN} = B
that make up a valid behavior in the behavior tupel set Bk,

oZk =⇒ B = oZk(X) such that (X,B) ∈ Bk.
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Environmental Features
Each robot in the swarm gathers data about the environment
using its sensors, and the swarm’s group mind uses data from
all robots to infer the global state of the environment. We now
define notation for the data collected by the swarm about the
environment.

An environmental feature Φ is a one-dimensional space
containing all possible values of a particular property of
the environment; for example, the property “temperature”.
A feature value is a single value of a feature; for example
“30 degrees Celsius”. We denote a value of the i-th feature
as observed by the n-th robot as φn,i ∈ Φi. It is important
to note that each feature value is associated with the robot
that observes it—and not, e.g., a particular location in the
environment. While a feature value observation is implicitly
linked to a particular location in the environment via the
position of the robot that observes it; in general, a robot need
not know its own location in order for the feature values that
it observes to be useful.

The environmental feature space F is defined over one or
more environmental features.

F = Φ1 × Φ2 × . . .

We assume that F contains a single dimension for each
mission-relevant feature that can be sensed by at least one
robot in the swarm. A feature vector defines a point in the
feature space. The feature vector of the n-th robot is denoted
~Fn ∈ F , where

~Fn = [φn,1, φn,2, . . .].

The swarm’s feature vector set F ∈ F is the set
containing all robots’ feature vectors,

F = {~Fn, . . . , ~FN} =
⋃

n∈[1,N ]

{~Fn}.

Collectively, the feature vectors in set F contain the current
distributed feature data collected across the entire swarm.

Environmental Feature Patterns
An environmental feature pattern oF is a piecewise
continuous function that maps locations in the workspace X
to feature vectors in the feature space F ,

oF : X → F

such that
oF (xn) = ~Fn.

We assume that any environmental feature pattern oF is
defined at all points in X (although it may not be observable
by a robot lacking an appropriate sensor). Each feature vector
~Fn is assumed to be a sample of the piecewise continuous
environmental feature pattern oF taken at a particular robot’s
location. ~Fn contains one feature value per feature‡.

With a slight abuse of notation we overload function oF

and allow it to operate on both elements of X and sets of
elements of X ; thus,

F = oF (X).

y1 = oF
1 (X ) y2 = oF

2 (X ) y3 = oF
3 (X )

Figure 4. Examples of three environmental states y1, y2, and
y3, defined by environmental feature patterns oF

1 , oF
2 , oF

3 ,
respectively. In this example the feature space contains a single
dimension for visual light intensity.

We assume that many different environmental feature
patterns oF may exist, but only one may be active in
the environment at a particular time. We use subscripts
to differentiate between different environmental feature
patterns.

For example, if we define F ≡ Φ1, where feature Φ1 is
“visual light intensity”, and we also assume that a particular
image of a pi symbol is projected onto the workspace X ,
then environmental feature pattern oF

1 = oF
pi symbol is the

function that maps locations in X to the visual light intensity
values that create that particular pi symbol image (See
Figure 4).

Environmental State
The feature pattern that is active in the environment
determines the current environmental state. Let yi be the i-th
state of the environment. Formally,

yi = oF
i (X ).

Let Y be the set of all environmental states,

Y =
⋃
{y}.

It is convenient to define an environmental state class
as the set of all environmental states that meet a particular
criteria. An environmental class may be simple, “the average
temperature is between 20 and 21 degrees Celsius”, or
complex “visual light creates a 1-by-1 meter pi symbol when
viewed from above.”

We assume that there are H different mission-relevant
environmental state classes; these can be represented by
unique integers h ∈ [1, H] (See Figure 4 for an example).
Function gstateh returns true or false if an environmental state
is a member of the h-th environmental state class or not,
respectively. gstateh : Y → {true, false}.

Environmental state set Yh ⊂ Y is defined as the (possibly
infinite) set of all environmental states that belong to the h-th
environmental state class:

Yh =
⋃
{y | gstateh (y)}.

We define the set of all mission-relevant environmental
state classes as Y , where

Y =
⋃

h∈[1,H]

{Yh}.

‡In our work we assume that all robots have identical sensors; however, it
this were not the case, then feature values from robots that did not have an
appropriate sensor should be given a value of “undefined”.
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This paper focuses on the case in which environmental
state categories are defined by environmental feature
patterns that may be spatially heterogeneous across the
environment (in other words, feature patterns that are not
the same everywhere). Spatially homogeneous patterns are
also allowed, but are arguably simpler to detect, and so we
assume the heterogeneous case in our formalization. For
example, we perform experiments in which Y1 is defined as
“a particular pi symbol is projected onto the environment
using visual light” and Y2 is defined as “A particular on-
off symbol is projected onto the environment using visual
light” (See Figure 5). We assume the features that define
a state category can be measured by the robots’ onboard
sensors. Swarms are particularly well suited to recognize and
distinguish between spatially heterogeneous environmental
feature patterns because they can contain many robots spread
across a relatively large set of space.

The Heterogeneous swarm response problem
In the heterogeneous swarm response problem the swarm
must perform a behavior from the correct behavior
tupel set Bk, where Bk is determined as a function f
of the environmental state class Yh that contains the
current environmental state y. Let f be the required
injective mapping function from environmental state classes
to behavior tupel set, f : Y → B. In other words,
f : Yh 7→ Bk.

For simplicity we assume that the mission-relevant
environmental state classes are mutually exclusive. That is,
each environmental state belongs to only a single mission-
relevant environmental state class, Yh ∩ Yh′ = ∅ for all
h 6= h′. We now formally define the heterogeneous swarm
response problem (a less rigorous high level description can
be found in this footnote§).
The heterogeneous swarm response problem:
given a swarm of N robots at locations X, a set of mutually
exclusive environmental state classes Y = {Y1, . . . ,YH},
a set of behavior tupel sets B = {B1, . . . ,Bmax}, and an
injective mapping f : Y → B; the swarm must perform
a swarm behavior B such that both of the following
requirements are met:

• {α1, . . . , αN} = B
• (X,B) ∈ Bk = f(Yh) if and only if the current

environment state oF
i (X ) = yi ∈ Yh.

Estimating environmental state
Solving the heterogeneous swarm response problem
requires, among other things, detecting which oF

i is active in
the environment. In principle this can be done by sensing all
of X to get y, and then calculating oF

i from the relationship
y = oF

i (X ). However, although a swarm may be numerous
in robots, it may not be able to observe all points in the
environment. Therefore, the environmental state y must be
inferred given the feature vector set F collected across all
robots’ locations X.

Knowledge of X is implicit in the deployment of the
swarm (each robot is at its own location), the swarm can
observe F directly, and knowledge of various mission-
relevant oF

y can—in principle—be provided to the swarm at
runtime.

y1 = oF
1 (X )

y1 y2 y3

Y

x1 x2 x1 x2

~F1 = oF
1 (x1)

~F2 = oF
1 (x2)

X1 =
⋃

n∈[1,N ]

{xn} X1 and Y1 F1 = oF
1 (X1)

x1 x2 x1 x2

~F1 = oF
1 (x1)

~F2 = oF
1 (x2)

X2 X2 and Y1 F2 = oF
1 (X2)

Figure 5. Top: Examples of three environmental states y1, y2,
and y3, defined by environmental feature patterns oF

1 , oF
2 , oF

3 ,
respectively. The set of mission-relevant feature patterns Y .
Middle Left: swarm location X1 with the specific locations x1
and x2 of robots 1 and 2 labeled. Middle Center: The location of
the swarm, depicted within the environmental state. Middle
Right: the set of feature vector samples ~F1 obtained by the
swarm at its current location assuming the environmental state
is y1. Selected feature vectors for robots 1 and 2 are also
shown. Bottom: the same quantities are depicted as in the
middle row, assuming the same environmental state y1 but a
different swarm location X2 that results in a different feature
vectors set ~F1. There are more robots in X2 and the location of
x1 and x2 differ between X1 and X2. Note that we abuse our
notation and overload each function oF

i such that if it operates
on a location then it returns the feature vector at that location
(e.g., ~F1 = oF

i (x1)); and if it operates on a discrete or
continuous set of locations then it returns a discrete or
continuous set of feature vectors at those locations, respectively
(e.g., F1 = oF

i (X1) and yi = oF
i (X )).

In practice, given X and F it is only possible to infer an
approximate function ôF

i such that F = ôF
i (X) is locally

equivalent to oF
i at X. While ôF

i is only guaranteed to be
valid for X; it provides an approximation ŷi = ôF

i (X ) for
the overall environmental state, ŷi ' yi = oF

i (X ).
In summary, X and F can be used to obtain the

approximation ôF
i , and ôF

i is then used to calculate the
most likely oF

i that is active in the environment. Once we
have determined the most likely oF

i , then we can calculate

§From a high level point of view, the heterogeneous swarm response
problem is solved by having a swarm perform a “correct” behavior in
response to the current environmental state, where the specification of
what behaviors are “correct” for various environmental states is assumed
to be provided a priori, e.g., by a user. Many different behaviors may be
considered “correct,” and any “correct” behavior may involve various robots
performing different actions (or even the same actions).
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y = oF
i (X ) for the current y observed at runtime, and then

determine Yh such that yi ∈ Yh.

Learning a direct mapping from sensor data to
environmental state class index
As discussed in the previous subsection, the goal of having
the swarm sense the environment is to calculate Yh. In
practice, we can remove one level of indirection and have the
swarm instead learn a direct mapping from various (X,F)
to the relevant environmental state class index h, which
uniquely determines Yh.

This is done by providing the swarm with examples of
each environmental state class Yh, as observed from the
swarm’s current position, and then having the swarm learn
a classification function based on all examples.

Given X, each training example Th,i = (h,Fi) is a tupel
implicitly defined by oF

i such that both oF
i (X) = Fi and

oF
i (X ) = yi ∈ Yh.

Let the training example set be denoted T , where
T =

⋃
h

⋃
iTh,i.

Given T , the most we can hope is that the swarm learns
the approximate classification Ĵ : F → [1, H] such that
Ĵ(Fi) = h for all (Fi, h) = Th,i ∈ T .

Learning a direct mapping to behavior sets
The final part of solving the heterogeneous swarm
response problem requires determining an appropriate
swarm behavior B to perform in response to the particular
Yh that contains the current environmental feature pattern.

Given X it is also possible to provide the swarm with
(possibly multiple) examples from each behavior class
{α1,k, . . . , αN,k} = B and such that (X,B) ∈ Bk for all k.

Moreover, it is possible to provide the swarm with an
injective mapping f̂ : [1, H]→ B such that f̂(k) = Bk.

Trained at runtime heterogeneous swarm
response problem
The variant of the heterogeneous swarm response problem
that we address in this paper is called the trained at runtime
heterogeneous swarm response problem. In this variant
both (1) training data regarding the potential environmental
feature patterns, as well as (2) the appropriate behaviors that
the swarm should perform in response to each feature pattern
class are uploaded to the swarm at runtime. The problem
variant is now formally defined.
Trained at runtime heterogeneous swarm response
problem:
Given a swarm of N robots at locations X, a set of mutually
exclusive environmental state classes Y = {Y1, . . . ,YH} a
set of behavior sets B = {B1, . . . ,Bmax} with examples
Bk = {(X,Bk,1), . . .} for each k, a set of training
examples T and an injective mapping f̂ : [1, H]→ B;
then the swarm must first learn (during a training
period) the classification function Ĵ : F → [1, H] such that
Ĵ(Fi) = h for all (Fi, h) = Th,i ∈ T , and then (after the
training phase) perform a swarm behavior B such that
{α1, . . . , αN} = B and (X,B) ∈ Bk = f̂(Ĵ(F)).

Emergent Artificial Group Mind Neural Network
The function Ĵ is learned by a swarm-spanning artificial
neural network that emerges at runtime. We call the resulting
computational architecture an “artificial group mind neural
network”, or group mind for short.

Each robot in the swarm is responsible for maintaining
a slice of L neurons within the group mind (Figure 1),
where L is defined a priori. Wireless neural connections are
established from neurons at layer ` on a robot n to those at
layer `+ 1 on each of its neighbors m ∈ Nn for 0 ≤ ` < L,
where Nn is the neighbor set of n, and n is considered a
neighbor of itself (n ∈ Nn), see Figure 6.

A neural signal originating from the neuron at layer ` on
robot n is denoted sn` . Each neural connection has a weight
associated with it that is maintained by the receiving robot.
Let wmn` be the weighting term applied by robot n to signal
sm` .

As with standard artificial neural networks (ANNs), each
neuron’s output is calculated by performing a weighted
sum over incoming signals and then passing the result
through a step-like activation function step. The neural
signal originating from neuron at layer ` on robot n is
calculated:

sn`+1 = step

( ∑
m∈Nn

sn`w
mn
`

)
for ` > 0

and the signal values sn0 at layer 0 are set by the real-time
environmental sensor (light sensor) readings (of the robot
responsible for that part of the neural network).

sn0 = ~Fn.

In our experiments step is the hyperbolic tangent suggested
by LeCun et al. (2012).

When properly trained, output signal from layer L on
each robot should be the correct environmental class ID
h = Ĵ(Fi) for all (Fi, h) = Th,i ∈ T .

Training the group mind is accomplished with a
version of the backpropagation training algorithm we have
modified to work with unreliable communication. In general,
backpropagation involves adjusting all link weights w to
improve performance vs. the training example set. More
specifically, backpropagation involves iteratively sending
update signals in the backward direction along neural
connections. Let un` be the update signal sent from the neuron
at layer `+ 1 on robot n. Update signal un` is sent to all
neurons at layer ` that provide input to the neuron at layer
`+ 1 on robot n.

Updates from the final layer L contain the signal error for
each training example unL = h− ĥi and those from internal
layers ` < L encode the cumulative error at L ascribed to
local error at `, which is calculated differently depending on
the particular backpropagation algorithm being used (details
are provided in Appendix A).

Given updates from Nn, a node n at layer ` can adjust
the weights assigns incoming neural signals such that overall
ANN performance improves.

For the analysis of convergence, it is convenient to
concisely represent the group mind’s model weights. Let W
be a vector with one element for each link weight in the group
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` = L = 2

` = 1

` = 0

sn,h0

sn,h1

sn,h2

sm,h0

sm,h1

wnn0

wnn1

wmn0

wmn1

wnm0

wnm1

un,h1

un,h2

um,h1

~Fn ∈ Fi ~Fm ∈ Fi

ĥi = Ĵ(Fi)

robot n robot m ∈ Nn

Figure 6. Diagram of variables used in the distributed
backpropagation algorithm. Assume code is running on robot n.
Robot m is a neighbor of n. Layers ` = 0, . . . , L refer to the
neural links (black arrows). Layers ` = 0, . . . , L− 1 refer to
neurons (purple discs). Each neuron broadcasts a signal s to
downstream neighbors, where signals depend on training
example/real-time data h. Each node adjusts the weight factor
w that it assigns to each incoming link. Update messages u
travel in the reverse direction (red arrows), and are used to
perform gradient descent (training) in the backpropagation
algorithm. Input sn0 from training examples or real-time sensor
readings is assumed to come from a calibrated sensor (green
boxes). The group mind neural network outputs the appropriate
environmental class index h on each robot.

mind.
W = [w11

0 , . . . , wnm` , . . . , wNNL−1]

The model space of the group mind includes all possible
link-weight vectors,

W =
⋃
{W}

whereW has one dimension per link weight,

W ⊂ R1 × . . .× R|W|

and |W| is the total number of link weights in the neural
network. Each vector w ∈ W defines a particular decision
function Ĵ that can possibly be encoded by the group mind.

The training error of any neural network can be defined
in terms of a cost function CĴ :W → R, such that CĴ(w)
defines a cost gradient overW .

Training any neural network with a backpropagation
algorithm is equivalent to performing gradient descent with
respect to CĴ(w).

High Level Algorithms
A diagram of the high-level state machine that runs on
each robot appears in Figure 7. The collective distributed
operation of the swarm emerges as each robot runs this state
machine in parallel and robots communicate.

The overall system contains five states named: Link,
Upload, Train, Observe, and Act. Each of these is described
shortly in its own subsection. The states Train and Act are
significantly more complex then the other states; Train is
responsible for training the swarm-spanning neural network
based on training data provided by the user, while Act is
responsible for running whatever local robot action αn is
part of the greater swarm behavior B that the group mind
decides the swarm should perform. Each of the five phases is
now described at a high level. More specific details of states
Train and Act are presented later in dedicated (full) sections,
while specific low-level implementation details necessary to
duplicate our work are available in the appendix.

State Link
Each robot is assumed to start in state Link. In state Link a
robot continually broadcasts wireless messages advertising
its presence to nearby robots. This allows each robot n to
discover the members of its neighbor set Nn.

Each robot is assumed to have an identification number
(ID) that is unique within its neighborhood (in other words,
no robot in the swarm should have two neighbors with the
same ID). This can be achieved by assigning each robot a
unique ID a priori. However, it can also be ensured with high
probability (and more conveniently) by having the swarm to
run a distributed unique ID generation algorithm as a pre-
processing subroutine during state Link (this is what we do
in our experiments).

The structure of the swarm-spanning artificial group mind
neural network emerges during state Link. Each robot is pre-
programmed to know the depth L of the neural network
that will be created over the swarm. For each neighbor
m ∈ Nn, robot n allocates memory to hold incoming and
outgoing neural signals as well as training update signals.
Incoming data includes neural signals for each neuron at
layer `− 1 on each neighbor m to the neuron at layer `
on robot n. Outgoing data includes the output of neurons
at layer ` on robot n (the same outgoing signal is sent to
the neuron at layer `+ 1 that resides on each m ∈ Nn).
Training signals travel in the opposite direction as neural
signals and contain slightly different types of data depending
on the training algorithm being used. Training signals are
described in greater detail in the next section, which is
titled “Slice-wise Parallel Backpropagation Neural Network
Training Algorithm”. In general, a separate set of training
signals is required for each of the environmental state classes
Yh that we train the group mind to recognize.

State Link ends when training data from the user is
detected, although many other suitable stopping criteria can
also be used (timeouts, special messages, etc.).

State Upload
In state Upload each robot in the swarm uploads data from
the user. Uploading this data is what enables the group mind
to be programmed at runtime, and it includes:
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Link
Neighboring robots link neurons
using wireless communication. 
The group-mind neural network 
emerges.

Sense:
training data

Upload
Group mind uploads training 
data from the user, including 
environmental feature pattern 
examples (see left).

Sense:
no training data

Act
Swarm performs the prescribed 
heterogeneous behavior given 
the group mind's environmnetal 
feature pattern classification.

Train
Group mind learns to recognize 
different environmental feature 
pattern examples.

Observe
Swarm performs distributed 
sensing. 

Calculate:
nontraining action

Display: 
LED status output

Send:
“train” messages

Display: 
LED status output

Send:
“link” messages

Display: 
LED status output

Display: 
LED output

Motor Control:
movement

Send:
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Receive:
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Receive:
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Receive:
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Training data

Input
Wireless (infrared)
Environmental data (visual light)

Output
Wireless (infrared)
Visual display (multicolor LED)

Actuation (motor commands)

Receive:
“act” messages

OR

Group mind uses distributed 
sensor data to classify the 
environmental feature pattern.

Swarm pick swarm behavior 
as a function of the class index. 

Robots use actions  as prescribed
by swarm behavior.

Envrionmental feature class training examples.
Each example includes an environmental  
feature set and the corresponding 
environmental feature class index. 

Swarm Behavior Class Examples 
(Swarm Behaviors are Robot action sets).

Mapping from behavior class indices to
behavior classes.

Robot n discovers Nn

Upload training data

T =


(Fi1 , 1)

...
(FiH , H)



{α1, . . . , αN}1=B | (X,B)∈ B1
...

{α1, . . . , αN}max=B | (X,B)∈Bmax

f̂ : [1, H]→{B1, . . . ,Bmax}⊂B

F =
⋃
n∈[1,N ]

~Fn

h = Ĵ(F)

(X,B) ∈ Bk = f̂(h)

αn ∈ B

Learn function Ĵ
such that, for all (Fi, h) ∈ T ,

Ĵ : Fi 7→ h

αn = train

αn 6= train

Perform action αn

Figure 7. High-level diagram of a swarm hosted group mind solving the “trained at runtime heterogeneous swarm response
problem”.
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• T = {(Fi1 , 1), . . . , (FiH , H)} The training example
set that includes at least one example pair (Fih , h)
for each environmental state class we wish the swarm
to recognize. This is the data used to train the neural
network to learn function Ĵ .
• {α1, . . . , αN}j = Bj | (X,Bj) ∈ Bk Examples

of robot actions that belong to behaviors in all
relevant behavior classes. In particular robot n is
told αn ∈ B | (X,B) ∈ Bk the action that it should
perform as part of the swarm behavior B. We assume
each robot (swarm) is provided with at least one action
(swarm behavior) for each swarm behavior class that
the swarm may be expected to perform during its
deployment.
• f̂ : [1, H]→ {B1, . . . ,Bmax} The mapping from

class indices to behavior classes. The mapping f̂ may
be provided a priori without sacrificing the ability to
program the group mind at runtime.

We assume that this data is uploaded via the robots’
onboard sensors. In our experiments, the user is able to
change the state of the environment directly so that they can
provide the swarm direct examples of environmental states.
(An alternative method, which we do not use, is to send such
data over the swarm’s ad hoc wireless network—this would
require the user to address messages to different robots based
on their locations in the workspace.)

State Train
State Train, when run collectively across all robots in the
swarm, is responsible for training the artificial group mind
neural network.

Because wireless neural signals are used, it is probable that
messages between neurons will be dropped. As we prove
in the Analysis Section, convergence is still guaranteed as
long as no robot gets too many training iterations ahead of
its neighbors. This is achieved by having robots pause their
own training whenever they are more than a user-chosen
number of training iterations ahead of their neighbors (this
threshold is set to cwait = 100 in our experiments). To detect
when training needs to be paused, all signals sent along
neural connections are tagged with the number of training
iterations a neuron’s host robot has completed. The function
out of sync() returns true whenever this robot has gotten
so far ahead of a neighbor that it must pause its own training.

Algorithm 1: Train

1 if not already initialized then
2 init neural network()

3 while time left() do
4 if not out of sync() then
5 backpropagation training iteration()

6 send messages() // on a separate thread
7 receive messages() // via a callback function

High-level pseudocode for state Train appears in
Algorithm 1. The subroutine init neural network()
is responsible for initializing the neural network.
backpropagation training iteration() is responsible

for running a single training iteration on the local robot.
Messages are continually sent using and received using
the callback receive messages(). We recommend running
send messages() on a separate thread to minimize latency.
Medium and lower-level details related to the neural
network itself, including pseudocode for the aforementioned
subroutines, are described in the “Slice-wise Parallel
Backpropagation Neural Network Training Algorithm”
Section and in the appendix, respectively.

We now describe the pseudocode for state Train, which
appears in Algorithm 1. If the slice of the group mind
neural network that resides in this robot has not yet been
initialized, then it is initialized (Lines 1-2 in Algorithm 1).
While training time remains, the backpropagation training
algorithm is run one iteration at a time (line 3-5) — but only
if this robot is not out of sync with its neighbors (line 4-5).
Message-passing is never paused because neighboring robots
need data from this robot to continue their training (lines 6-
7).

Although state Train will transition to state Observe
upon timeout, it will likely re-enter state Train numerous
times as the result of a prescribed action (e.g., if a “keep
training” action is set as the default action in state Act,
which is described shortly). Alternative exit criteria could
also be used; for example, the swarm could detect that it
has converged sufficiently vs. the training set, a global signal
could be used, etc.

State Observe
State Observe, when run in parallel by all robots in the
swarm, passes the current environmental state F into the
group mind neural network to obtain the environmental
state classification h. Locally on robot n, this amounts to
the robot feeding ~Fn into the neural network input located
at level 0 on robot n, then performing forward passes on
this data (communicating over an ad hoc wireless network
with neurons on neighboring robots) until the group mind’s
collective computation of Ĵ(F) works its way through the
group mind and h = Ĵ(F) pops out of the neurons at layer
L.

There are a few details of this collective computation that
are particularly important. First, it takes multiple rounds of
message-passing for any pass through the neural network
to complete (and message drops will slow the progress
of this calculation). The send and receive functions are
identical between state Learn and state Observe, and they
cycle through all training messages as well as the signals of
the forward pass calculation given the current environmental
data. Thus, assuming the robot has spent adequate time in
some combination of states Learn and Observe, the output
from h = Ĵ(F) will reflect a slightly delayed environmental
state. To be useful, this implementation implicitly assumes
that the state of the environment changes at a much slower
rate than swarm message-passing and computation.

Another important detail is that, at least in the particular
high-level architecture presented in Figure 7, the active state
continually switches between Learn and Observe. Thus,
Ĵ is being trained at the same time it is being used. In
general this may cause incorrect actions to be output early in
the training phase unless appropriate precautions are taken.
For example a default “keep training” action should both
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(1) be the appropriate action to perform in response to an
environmental state that the user is reasonably sure will exist
for the duration of the training phase, and (2) be associated
with the easiest behavior class index to learn (this depends
on the particular training algorithm being used. The latter
is possible, for example, by priming the neural network
with random numbers such that all environmental states
initially output the training state until training enables pattern
differentiation. Alternatively, other mechanisms can be used
to ensure that a robot stays in state Learn until training is
complete.

All robots operate asynchronously and in parallel. Some
robots may be observing while others are learning. Messages
sent between robots are handled in a separate thread from
the main control loop. Thus, data in a message only affects a
receiving robot once that robot re-enters the state for which
the message was relevant.

Algorithm 2: Observe

1 h← forward pass(~F , 0) // h← Ĵ(~F )

2 Bk ← f̂(h)
3 (X,B) ∈ Bk // pick swarm behavior tupel in B
4 αn ∈ B // αn is this robot’s action in B
5 if αn = train then
6 run state Train

7 else
8 run state Act with αn
9 send messages() // on a separate thread

10 receive messages() // via a callback function

Pseudocode for state Observe appears in Algorithm 2.
Subroutine forward pass(~F , 0) returns the result h = Ĵ(F)
as calculated by the neural network. In this pseudocode, we
assume the convention that setting the second argument to
0 indicates that the current environmental data is being fed
into the neural network and not training example data (which
must also be passed around in order to train the group mind).

On Line 1 of Algorithm 2 the group mind neural network
is used to calculate h from the ~Fn on robot n as well as all
other feature vectors (on other robots) that collectively form
F. Given h the appropriate behavior class is calculated on
Line 2, using the user-provided mapping f̂ . Next, a swarm
behavior tupel is chosen such that (X,B) ∈ Bk = f̂(h), line
3; and this robot’s action αn within behavior B is found (e.g.,
in a look-up table), line 4. If αn is “keep training” then the
robot goes back to state Train, otherwise it transition to state
Act to perform αn, lines 5-8. As previously noted, messaging
(lines 9-10) is identical between states Observe and Train to
facilitate training in parallel to observation.

If there exist multiple (X,B) ∈ Bk then the swarm must
decide which one to choose using a distributed consensus
algorithm. If each Bk contains a single tupel for X, then
running a consensus algorithm is unnecessary. We take the
single tupel per Bk approach in our experiments. The more
general case, in which a variety of different behaviors are
allowed in response to a particular environmental state, is
presented because we believe that others may find it useful.

State Act
State Act is the final state of the high-level state machine.
Once a robot n enters state Act it begins to perform its (non-
training) action αn = z that is part of the swarm’s behavioral
response to the current environmental state data.

Actions themselves may be arbitrarily complex. For
example an action may be encoded as a separate state
machine (and that state matching may even allow transitions
to the previously described states such as Train, Consider,
etc.). In the section titled “Swarm Behaviors and Actions
Used in Our Experiments” we discuss the particular actions
used in our experiments.

If some robot actions involve movement then the group
mind must orchestrate a graceful dissolution before the
movement starts. This is due to the fact that movement will
break neural connections as robots move away from from
their neighbors. Even after the group mind dissolves, the
swarm continues to perform the heterogeneous behavior that
the group mind calculated in response to the environmental
state. This is illustrated in some of the actions used in our
experiments, and which are described later.

On the other hand, if no actions contain movement, then
actions may continue to make use of the trained neural
network. For example, if the environmental state class is
dynamic such that F is expected to change while the swarm
is deployed, then the swarm can continually recalculate
h = Ĵ(F) and update its heterogeneous response behavior
as necessary. This case is also illustrated in our experiments,
and is described in more detail later.

Slice-wise Parallel Backpropagation Neural
Network Training Algorithm

The calculation of h = Ĵ(~F ) is what enables the group mind
to recognize which environmental feature pattern is active
in the environment. Function Ĵ is encoded in a swarm-
spanning neural network that is trained at runtime using
examples provided by the user. The training of Ĵ , combined
with the user-provided mapping f̂ (from feature class indices
to behaviors) is how a user programs the group mind
to have heterogeneous behaviors in response to different
environmental states.

In this section we discuss the middle-level details of
two neural-network backpropagation training algorithms
the group mind can use to learn Ĵ . In general, all
backpropagation algorithms incrementally update internal
signal wights so that the neural network’s performance
improves vs. a training data set. Such training operations
are technically a form of gradient descent over the space
of network weights, the convergence of which is discussed
in detail in the Analysis Section. Readers that are more
interested in the high-level swarm aspects of our work
than the distributed training of Ĵ and its convergence
guarantees are encouraged to skip both this section and
the Analysis Section on an initial read.

We experiment with both “batch” and “stochastic” variants
of the backpropagation training algorithm. Each is now
outlined at a high level, and then described in more detail
in its own subsection.

In batch backpropagation, each training iteration
improves performance of the neural network with respect
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to all examples in the training set simultaneously. In other
words, the direction of gradient descent is an average of the
optimal directions for each training example. In stochastic
backpropagation training each weight update is tuned
especially to improve the performance of Ĵ with respect to
a single training example. Stochastic improvement vs. all
examples happens over separate training iterations; gradient
descent in beneficial directions is reinforced and unhelpful
changes (in directions that increase performance vs. one
example at the expense of another) tend to cancel out. The
batch method is arguably more stable, but it must wait
until new examples exist for all training examples before
each training iteration can occur. In contrast, the stochastic
method is less stable, but more convenient in that training is
allowed to progress as soon as new neural signal data exists
for any training example.

Backpropagation requires both a gradient descent update
direction as well as an update step size. The step size is called
the learning rate in neural network literature.

The overall learning rate is denoted γ, and the learning
rate at layer ` is denoted γ`. We experiment with a number
of different learning rate tuning methods that are used
to calculate the size of each gradient descent step. For
example, decreasing the learning rate such that it is always
proportional to the inverse of iteration count is proven to
converge, in the limit, as the number of iterations increases
toward infinity; γ` = γ = c

τ for all ` and some user-defined
constant c > 0. Other methods that use heuristics to estimate
the Hessian of the weight space have been shown to often
perform better in practice, but have no formal convergence
guarantees (and in which case γ` is often allowed to differ
for each `). All tuning rate methods we experiment with
are discussed in detail in the appendix. In this section the
subroutine γ` ← tune learning rate(·) is used to represent
whatever tuning rate method is being used.

The batch and stochastic variants of our distributed group
mind neural network training algorithm appear in Algorithms
3 and 4, respectively.

Both versions are specially modified to run on a robotic
swarm in which the neural signals are sent over unreliable
wireless communication that may drop messages. The key
modification is to have each robot n pause its own training
weight updates if it gets more than a predefined number cwait
of training iterations ahead of a neighbor m ∈ Nn. Note,
however, that this pausing is accomplished in Algorithm 1
(described in the previous section), the output of which
determines if a training iteration is allowed to happen. Iff
(if and only if) a training iteration is allowed to happen,
then Algorithm 3 or 4 is called, depending on which training
method is being used.

To ease our presentation, both the batch and stochastic
versions make use of the forward and backward pass
subroutines presented in Algorithms 5 and 6, respectively.
forward pass(Fi, h) is responsible for propagating neural
data forward through the network (for both training
examples, as well as the current environmental data).
backward pass(h) propagates weight update gradient
information backward through the network so that nodes at
earlier layers can tune their weights to improve performance.

Batch Backpropagation

Algorithm 3: backpropagation training iteration()
(batch variant)

1 if all new data exists() then
2 for (Fi, h) ∈ T do
3 forward pass(Fi, h)

4 for `← L, . . . , 0 do
5 for (Fi, h) ∈ T do
6 if ` = L then
7 εh` ← ĥi − sn,h`
8 else
9 εh` ←

∑
m∈N u

m,h
`+1 w

nm
`+1

10 un,h` ← calc update parameter(sn,h` , εh` )

11 if ` < L then
12 γ` ← tune learning rate(γ, ε, `, τ)

13 for (Fi, h) ∈ T do
14 backward pass(h)

15 τ ← τ + 1

The learning rates at all levels are updated during the same
training iteration (lines 11-12). If a cost gradient Hessian
method is used then the learning rate update will utilize
the change in error to heuristically estimate the Hessian
(see Algorithm 13). After all update parameters have been
calculated and learning rates adjusted, a backward pass is
performed for each training example (lines 1-14). We note
that ĥi = Ĵ(Fi) is the current output of the group mind given
input Fi. Finally, we increase the iteration counter for the
current robot (line 15).

Stochastic Backpropagation
The stochastic variant of a backpropagation training iteration
appears in Algorithm 4. The basic idea is very similar to
batch version (Algorithm 3); the main distinction is that we
perform an update whenever we receive new information
from any h, n, and ` — instead of waiting until a message
is received for every h, n, and `. The rationale behind this
idea is that, although a single iteration may not take us
down the cost gradient function, we still expect the cost to
decrease when averaged over many iterations. The benefit
of the stochastic method in the context of our application is
that dropped messages do not prevent us from training with
respect to whatever messages are successfully transmitted.

Forward Pass
A forward pass involves calculating the outputs for each
neuron and sending the results forward through the network
from neurons at layer ` to their neighbors at layer `+ 1.
Neural output (at each layer) is calculated by summing
weighted input values and passing the result through an
activation function¶

¶We use the hyperbolic activation function recommended by LeCun et al.
(2012) in our experiments; however, many other activation functions exist
and could also be used. In practice, input signals may need to be scaled
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Algorithm 4: backpropagation training iteration()
(stochastic variant)

1 for (Fi, h) ∈ T do
2 if any new data exists(h) then
3 forward pass(Fi, h)
4 for `← L, . . . , 0 do
5 if ` = L then
6 εh` ← ĥi − sn,h`
7 else
8 εh` ←

∑
m∈N u

m,h
`+1 w

nm
`+1

9 γ` ← tune learning rate(γ, ε, `, h, τ)

10 un,h` ← calc update parameter(sn,h` , εh` )

11 backward pass(h)

12 τ ← τ + 1

Neural signals in the group mind are passed using wireless
communication that runs in a separate thread. Therefore, the
pseudocode in Algorithm 5 assumes that sm,h`−1 contains the
most recent incoming signals and outgoing messages will be
sent from sn,h` .

Algorithm 5: forward pass(~Fn ∈ Fi, h)

1 sn,h0 ← ~Fn ∈ Fi
2 for `← 1, . . . , L do
3 sn,h` ← activation(

∑
m∈N w

mn
`−1s

m,h
`−1)

4 ĥi ← sn,hL
5 return ĥi

We maintain separate network forward pass computations
for the real-time environmental data observed by the swarm
as well as each training example. The value h specifies the
source of the input data (e.g., corresponding to real-time
sensor data or a particular training example). At the swarm
level, running the forward pass subroutine (Algorithm 5)
with a particular h—in parallel and asynchronously across all
robots—generates the corresponding output signal from each
neuron on each robot for that h. Due to the distributed nature
of the algorithm, L message-passing rounds are required for
the calculation associated with a particular h to propagate
through the network. The computations for different h
happen independently as Algorithm 5 is repeatedly called
with different h from within Algorithm 3 or Algorithm 4.

The signals from the 0-th layer are the feature data ~Fn ∈
F from a robot’s sensor(s) (or the training data that was
provided during the upload phase), line 1; in our experiments
this is provided from a calibrated light sensor that returns
values on the range [−1, 1]. The values at layers ` > 0 are
calculated by summing over wmn`−1s

m,h
`−1 , the incoming link

weights multiplied by the corresponding signals experienced
for h, and then passing the result through an activation
function (lines 2-3). The final output signal from layer L is
returned as the raw hi = Ĵ(Fi) output at this robot given
the group mind’s current distributed calculation of Ĵ (lines
4-5). In general, it is possible to use a variety of activation
functions; most take a form similar to a sigmoid in order

to approximate a step function while maintaining continuity.
The particular activation function used in our experiments is
a hyperbolic tangent described in Algorithm 10.

Backward Pass
A backward pass is responsible for adjusting the link weights
on robot n such that the error experienced by each neuron is
reduced. A separate backward pass calculation is required for
training example h.

Algorithm 6: backward pass(h)

1 for `← L− 1, . . . , 0 do
2 for m ∈ N do
3 δ ← un,h`+1 s

m,h
`

4 wmn` ← wmn` + γ` δ

The backward pass subroutine is presented in Algorithm
6. The update signals γ` are calculated in Algorithm 3 or
4 (depending on the training method being used) before
backward pass(h) is called. γ` is multiplied by the signal
weight to provide δ (line 3), where δ is the raw gradient
descent update given h, n, `. As discussed later in section
4, δ can be interpreted as the projection of the gradient
descent update directional vector onto the weight-space
dimension associated withwmn` . The update towmn` involves
multiplication by a learning rate γ` (line 4), where γ` is
the magnitude of the gradient descent update step and is
calculated in a variety of ways depending on the particular
backpropagation variant used, e.g., one of Algorithms 12-14
presented in the appendix.

Analysis (Convergence of parallel stochastic
gradient descent with dropped messages)
LetW denote the model space of a particular neural network
with fixed topology and activation functions. Each decision
function that can possibly be encoded by the neural network
is represented by a point W ∈ W . The k-th component
of W corresponds to the weighting factor along the k-th
link in the neural network. The training error of a model
can be defined in terms of a cost function CĴ :W → R,
such that CĴ(W) defines a cost gradient over W . Thus,
training the neural network amounts to finding W such that
CĴ(W) is minimized. All known training algorithms work
by performing gradient descent on CĴ(W) and therefore
achieve a local minima. The fact that a global minima
is not guaranteed is a shortcoming shared by all neural
networks, including our group mind neural network. That
said, convergence to a local minima is important because it
means that performance will stabilize.

We now prove that the distributed group mind neural
network training algorithm will converge to a local minimum

appropriately for the activation function that is used. For example, at layer
0, the raw light sensor input data is rescaled from the output range of the
sensor to the range [−1, 1], as required by the activation function we use.
Similarly, signal output values at internal layers exist on the range [−1, 1],
and output signals at the final layer are rescaled such that rounding them to
the nearest integer yields a valid class index ĥi.
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almost surely, in the limit, as the number of training iterations
approaches infinity. The main contribution of this analysis
is to show that lossy communication between neurons will
not prevent local convergence (almost surely), provided the
probability of message transmission is bounded away from
zero.

Tsitsiklis et al. (1986) prove conditions of convergence
for distributed asynchronous gradient descent algorithms;
we use their analytical machinery as a starting point. In
our analysis we use similar notation as in the algorithms
presented in the previous section except that n and m
now technically refer to processors instead of robots, and
processors may compute on arbitrary subsets of nodes
(indexed by l) instead of being restricted to a finite number of
layers (i.e., which we indexed using ` in other sections of this
paper). These slight notational distinctions help to generalize
our results, but can likely be ignored by most readers.

Time is considered discrete and represented with the
index τ . There are N processors that independently update
(possibly overlapping) subsets of W and communicate using
message-passing. wml (τ) is the value, at time τ , of the
l-th subset of W maintained at processor m. Note that
the l-th subset of W may contain multiple elements. Also
note that wnl (τ) 6= wml (τ) is allowed for τ <∞; however,
message-passing facilitates mutual convergence, in the limit
as τ →∞. If a message containing wl is sent from m and
received by n at time τ , then the time (in the past) that
the message was sent from m is denoted tnml (τ) and the
particular value wl contained in the message is denoted
wml (tnml (τ)). The relative weight that processor n gives to
wl values sent from m and received at time τ is denoted
anml (τ). The gradient descent update “step” δnl (τ) is a vector
that points from wnl (τ + 1) in a direction of local gradient
descent. The particular calculation of δnl (τ) varies depending
on the neural network training algorithm that is used. A
step weighting factor is denoted γn(τ), and may either be
constant vs. time or decreasing according to 1/τ .

Tsitsiklis et al. (1986) prove the convergence of
asynchronous gradient descent algorithms that use the
following update rule (the necessary assumptions are
discussed later and in depth):

wnl (τ + 1) =

N∑
m=1

anml (τ)wml (tnml (τ)) + γn(τ)δnl (τ).

(1)
Equation 1 performs an update that uses a convex
combination of the wl values stored at all communication
processors plus a small step in the direction of local gradient
descent. By definition anml (τ) = 0 for elements for which
messages have not been received, and

∑N
m=1 a

nm
l (τ) = 1.

Also, the anml values do not need to remain constant vs.
different τ , and so both anml (τ) = anml (τ ′) and anml (τ) 6=
anml (τ ′) are allowed for τ ′ 6= τ .

At each time step a processor may transmit between 0 and
all components of W to other processors, with messages that
may arrive immediately or some time later. Each processor
may also choose to perform some relevant computation (via
a, δ and γ values) at each time step altering the state. In
our distributed neural network each processor, i.e., robot, is
responsible for maintaining the unique slice wl containing
the weights of its own neural links. However, in the general

case of distributed gradient descent, the state updates can be
distributed across processors such that each wl is updated by
between 1 and all processors. The weighting used to combine
different updates to the state (i.e., that is performed on
different processors) allows different and even contradictory
updates to the same elements of the state on different
processors. Clearly Equation 1 represents a very general
model—relevant to much more than our particular group
mind neural network. The following proofs inherit this
generality, and are relevant to any form of distributed
gradient descent with lossy communication between
processors.

Tsitsiklis et al. (1986) use a notion of time in which
at most 1 message is sent per time step. They note that
this convention does not affect generality greatly because
messages between different processors can be assumed to
happen at slightly different times or some other method of
arbitration used.

We now list all relevant assumptions made by Tsitsiklis
et al. (1986) in order to guarantee gradient descent
convergence to a local minima (the validity of each
assumption will later be discussed in-depth). It is important
to note that the following numbering schema is unique to
our presentation; indeed, most of these assumptions are
so common and/or straightforward that they are neither
numbered nor discussed at length by Tsitsiklis et al. (1986):

Assumption 1: The initialization of the algorithm is random,
and the distribution from which the random weights are
drawn has finite mean and variance.
Assumption 2: The objective of the algorithm is to minimize
a nonnegative cost function CĴ .
Assumption 3: CĴ is defined on 0 to infinity.
CĴ :W → [0,∞).
Assumption 4: CĴ has a continuously differentiable
nonnegative cost function with a Lipschitz continuous
derivative. ‖∇CĴ(W)−∇CĴ(W′)‖ ≤ K‖W −W′‖ for
some K such that 0 ≤ K <∞.
Assumption 5: “In route” communication delays are
bounded. 0 ≤ tnml (τ)− τ < c1, where 0 ≤ c1 <∞.
Assumption 6: The time duration between consecutive
communications from one processor to another is bounded.
tnml (τ)− tnml (τ ′) < c2, where 0 ≤ c2 <∞, and for all τ ′

and τ such that a message is sent from n to m at τ ′ and the
next message from n to m is sent at τ .
Assumption 7: Gradient descent updates satisfy the
property that each component is, in expectation, going
down the cost slope when conditioned on the past history
of the algorithm. That is, E

(
∂CĴ

∂wl
(wn(τ))δnl (τ)|FΩ

τ

)
, with

respect to the probability space (Ω,FΩ,PΩ), where FΩ
τ is

an increasing sequence of the smallest σ-algebra s.t. δn(k),
where k < τ − 1, and wn(1) for all n from 1 to N are
FΩ
τ -measurable.

Assumption 8: Processors make progress toward
convergence when they are not idle (assuming they have not
already reached a minimum). CĴ(wn(τ ′)) < CĴ(wn(τ)),
for all τ and τ ′ such that τ is an iteration in which n was not
idle and τ ′ is the next iteration after τ that n is not idle.
Assumption 9: The variance of any stochasticity in the
updates (i.e., stochasticity of δnl (τ) given the current history
of the algorithm) goes to 0 in the limit for all n, l, and
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τ . Formally, E
(
‖δnl (τ)‖2

)
≤ −c3E

(
∂CĴ

∂wl
(wn(τ))δnl (τ)

)
,

where 0 ≤ c3 <∞.
Assumption 10: In the limit as τ →∞, processor n updates
component wl either an infinite number of times or 0 times.
Assumption 11: Each component wl has at least one
processor that computes on it.
Assumption 12: There is a directed path of information flow
from every computing processor n computing a particular
component wl to every other processor m computing the
same component wl.
Assumption 13: All update weights γml are positive, finite,
nonzero, and deterministic (but not necessarily known
beforehand).
Assumption 14: All combining coefficients anml (τ) are
deterministic (but not necessarily known beforehand), and
have a hard lower bound anml (τ) > c4, where 0 < c4 <∞.
Assumption 15: Non-computing processors (i.e., those for
which γn(τ)δnl (τ) = 0 for all n, l) with in-degree greater
than 2 still share the hard lower-bound anml (τ) > c4.
Assumption 16: Each processor n has a buffer in its memory
in which it keeps the element wl of the state vector that it
updates.

By inspection of Assumptions 1-16 it is clear that the
model used by Tsitsiklis et al. (1986) already describes our
scenario in the special case that no messages are dropped.
However, it does not explicitly consider the effects of
dropped messages. We show how it can be extended to
handle dropped messages in the next section.

Dropped messages, general case
Dropped messages affect the recursive relation defined in
Equation 1 by causing the term anml (τ)wml (tnml (τ)) to be
replaced with 0 for each message that was sent from m to n
and would have arrived at τ (if it had not been dropped).
Furthermore, if updates δnl (τ) would have been triggered
by the arrival of a message at n then γn(τ)δnl (τ) is also
replaced by 0. In either case, both wnl (τ ′) and γn(τ ′)δnl (τ ′)
for all τ ′ > τ may be altered as a result of not perform-
ing the update wnl (τ + 1) =

∑N
m=1 a

nm
l (τ)wml (tnml (τ)) +

γn(τ)δnl (τ). Fortunately, this is not a problem. By con-
struction, any infinite sequence (W(1),W(2), . . .) that
results from performing distributed gradient descent with
dropped messages due to lossy communication is identical to
some other infinite sequence (W(1),W(2), . . .) that would
have resulted from performing distributed gradient descent
with lossless communication and simply never sending the
dropped messages in the first place. The convergence of the
latter sequence is guaranteed as long as it meets Assumptions
1-16. The only assumption at risk of being violated is
Assumption 6, since dropping messages reduces the effective
communication from m to n we can no longer guarantee an
upper bound c2 <∞ on communication time between all n
and m.

To compensate for dropped messages, we pause training
on robot (processor) n whenever it is more than cwait
training iterations out of sync with n; in particular, whenever
out of sync() evaluates to true in Algorithm 1. As we
will prove shortly, this throttles the incrimination of τ in
such a way that c2 <∞ is guaranteed‖ ensuring the validity

Assumption 6 with probability 1. Thus we are to achieve
almost sure convergence in the case of randomly dropped
messages. The aforementioned algorithmic modification is
formalized in Assumption 17:
Assumption 17: Training is paused at n whenever it is more
than cwait training iterations out of sync with m (where m
has previously communicated with n).

Almost sure convergence requires that, with probability 1,
communication between n and m does not fail indefinitely.
We formalize this requirement in Assumption 18, after the
introduction of additional notation. The probability space
of the k-th message transmission is defined (S,FS ,PSk )
with sample space Sk = {0, 1}, where 0 denotes the
message is dropped and 1 that it is successful. FS is the
(smallest) collection of all possible outcomes, and PSk is the
probability measure on FS for the k-th transmission, where
PSk : FS → [0, 1]. Let failure = {0} and success = {1}.
Assumption 18: PSk are pairwise independent for all k ∈ N
and

∑∞
k=1 PSk (success) =∞.

In other words, the sum of probability of success, taken
over an infinite number of trials, diverges without bound.
The Second Borel-Cantelli lemma (Émile Borel 1909) tells
us that Assumption 18 is sufficient to guarantee that, with
probability 1, the infinite message transmission sequence
(S × S × . . .) results in an infinite number of successful
transmissions. We note that Assumption 18 is satisfied by
many common models, including:

• A Bernoulli sequence defined by PSk (success) = c
where 0 < c ≤ 1 for all k ∈ N.

• The Gilbert-Elliott Markov communication model,
assuming the nontrivial case where all state transition
probabilities are greater than 0, and at least one state
has nonzero probability of message send.

• A sequence such that PSk (success) = c
message number for

any constant c > 0, and where “message number”
is the number of messages that a processor has
previously sent (successfully plus unsuccessfully).

• Any sequence such that the number of consecutive
message drops is upper-bounded by a constant.

• Many other models.

This leads to the following Theorem.

Theorem 1. Given Assumptions 1-5 and 7-18, the iteration
in Equation 1 will converge to a local minimum with
probability 1.

Proof. Convergence is guaranteed by Tsitsiklis et al. (1986)
whenever assumptions 1-16 hold. Of these assumptions,
lossy communication between processors affects only
Assumption 6. By Assumption 17 the algorithm pauses
whenever Assumption 6 is in danger of being violated. The
probability of indefinite pause is 0 by Assumption 18 and
the Second Borel-Cantelli lemma, and so with probability 1
Assumption 6 holds. Thus, convergence to a local minimum
is guaranteed with probability 1.

‖The amount of throttling is a function of both cwait and the network
topology, given that neighbors of a paused node will only pause themselves
once they become more than cwait out of sync with the latter.
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Verification that Assumptions Hold

Assumptions 1 and 2 hold by construction. We define CĴ to
be squared error over output neurons over training examples
which meets Assumption 3. However, in order to meet
Assumption 4 we require that the activation function and
network topology are “well behaved” as formalized in the
following two assumptions:
Assumption 19: The derivative of the activation
function of the neuron located at robot n and layer ` is
Lipschitz continuous with Lipschitz parameter Kn,` s.t.
0 ≤ Kn,` <∞ for all n and `.
Assumption 20: Each node communicates with a finite
number of neighbors.

Together, 19 - 20 are sufficient to ensure that Assumption
4 holds; in particular, they are necessary to ensure the
Lipschitz constant of ∇CĴ is finite given that we are
using squared error. Assumption 19 prohibits the use of
any activation function that has a discontinuity—including
a pure step function. However, it allows the use of
other common activation functions such as sigmoids and
hyperbolic tangents.

Assumption 5 is met by the physics of any wireless
communication system. Assumption 6 is handled due to our
introduction of Assumptions 17-18 in the previous section.

Assumption 7 can be met by choosing an appropriate
update function. One possibility is to adjust the learning
rates γ as a function of both the current cost values, the
messaging parameter cwait, and the Lipschitz constant K
of the cost gradient ∇CĴ (the latter can be bounded by
the maximum neighborhood size and Lipschitz constant of
the derivative of the signal function). However, this requires
knowing the Lipschitz constant of ∇CĴ , which may be
difficult or impossible to obtain, and may lead to a slower-
than-necessary learning rate. Indeed, much neural network
literature is dedicated to different methods of picking the
update function such that this assumption is met∗∗.

Assumptions 8 and 9 are true by construction as long
as Assumption 7 holds. We enforce Assumption 10 by
keeping robots stationary during training and observing that
communication radii of each robot are non-shrinking—note
that a less restrictive way to guarantee Assumption 10 is
to use multi-hop communication between nodes and to
enforce communication graph connectivity. Assumption 11
is true by construction. Assumption 12 is met as long as
the communication graph is connected, which we can also
ensure in practice. Assumptions 13, 14, and 15 are true by
construction. Assumption 16 is true given our hardware.
Assumption 17 is true by construction of the algorithm.
Assumption 18 is true by the way our robots communicate —
their communication range and rates are limited such that it is
impossible to place enough robots in a 2-D area such that the
communication channel is saturated. Assumption 19 is true
for the activation functions we use. Assumption 20 is true
given the physical constraints imposed by communication
radii and robot radii.

Theorem 2. Assuming that the update function meets
Assumption 7, then the algorithms presented in Section 1
will almost surely converge to a local minimum when

implemented on our hardware, in the limit, as the number
of training iterations approaches infinity.

Proof. Assumptions 1-5 and 8-20 are met for our
hardware and implementation (as demonstrated above).
Given Assumption 7 is met, then Theorem 1 guarantees
that the gradient descent training of our group mind neural
network will almost surely converge to a local minimum,
in the limit, as the number of training iterations approaches
infinity.

We note that, in general, Assumption 7 is met by batch
and stochastic variants of the backpropagation algorithm that
use a decreasing learning rate (Algorithm 12) but not by the
heuristic Hessian versions (Algorithms 13 and 14).

Swarm Behaviors and Actions Used in Our
Experiments
A particular swarm behavior is defined by the collective
actions of all robots {α1, . . . , αN} = B. In general, we
assume a broad definition of “action”; a particular action can
be defined by any piece of software code or state machine,
and may include transitions to other actions (for example,
based on sensor readings, messages, etc.) and/or other states
in the group mind state machine depicted in Figure 7.

In this section we discuss the swarm behaviors classes,
swarm behaviors, and robot actions used in our experiments;
the experiments themselves appear later in the Experiments
Section.

Swarm Behaviors and Actions used in
experiments with stationary robots
One of our experiments involves a large stationary
swarm, and robots display different color LED lights
depending on which action they perform (as a consequence
of the environmental feature data that is detected in
the environment). Swarm behaviors tupels (X,B) cause
different LED images to be collectively displayed across the
surface of the swarm (i.e., so that an LED picture image
is created when the swarm is viewed from above). Each
robot displays a single color such that the swarm as a whole
produces the desired LED image.

Different behavior sets are defined by different LED light
patterns, as follows:

• B0 = collectively display nothing.
• B1 = collectively display the firewire symbol.

∗∗That said, practical implementations of standard algorithms often forfeit
this assumption (and thus convergence guarantees) in favor of more practical
alternatives. Arguably, the easiest such alternative is to define γ as a
small constant, in which case the algorithm is guaranteed to converge such
that limτ→∞ ‖CĴ (wl(τ))− C

∗
Ĵ
‖ ≤ γKcwait, where C∗

Ĵ
is the cost at

some minimum cost point. Another alternative is to assume a continuously
differentiable cost gradient such that the Hessian has Lipschitz continuity,
and then choose updates as a function of the Hessian directly (this is
similar to Newton’s method), or as a function of the Hessian Lipschitz
constant. There is much literature regarding the use of such methods in
batch backpropagation (which require additional information be passed in
messages the enable the estimation of the Hessian) and also experimental
results showing that a number of successful heuristics loosely based on
Hessian information work well in the stochastic backpropagation setting.
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• B2 = collectively display the wifi symbol.

Each action used in this experiment requires the executing
robot to display a particular LED color (or to turn off the
LED so that no color is displayed):

• z0 = Off LED.
• z1 = Red LED.
• z2 = Blue LED.

We restrict the size of each behavior set to 1, such that B1

involves displaying a particular wifi symbol and B2 involves
displaying a particular firewire symbol (these are shown in
Figure 13). However, we note that it would be possible for
one behavior class to include two or more different images—
if this were done, then a valid swarm behavior would require
the swarm to display one of the images in the set, and a
distributed consensus algorithm would need to be used to
pick which image in the set was displayed.

Each behavior tupel (X,B) ∈ B1 that is used in
this scenario contains a swarm behavior with actions
{α1, . . . , αN} = B such that αn = z1 iff αn exists at a
location in the state space that maps to a red part of the
firewire image, αn = z2 iff αn exists at a location in the
state space that maps to a blue part of the firewire image. A
complimentary definition exists for swarm behaviors in B2,
except that the wifi symbol is used instead of the firewire
symbol. See Figure 8 for an example.

The state machine used in state Act in this (large stationary
swarm) experiment is displayed in Figure 9. Because the
robots are guaranteed to remain stationary, it is possible to
have the swarm change the image it displays in response to
changing environmental feature data; this is accomplished by
having each action state transitions back to the state Observe
of the high-level algorithm (that is, in Figure 7). While
training, the state machine continually transitions back to the
Learn state until the swarm is trained, enabling us to watch
how the LED images displayed by the swarm improve as
the group mind neural network learns to recognize different
environmental feature states.

We also run a similar but much smaller experiment with
four robots. The high-level swarm behaviors and low level
actions used in the four robot experiment are conceptually
similar to those described above, and are described in detail
in Appendix B. Differences include: (1) Only four robots
are used in the small swarm experiments. (2) The neural
network is taught to differentiate between four different
environmental feature patterns instead of three. (3) Swarm
behaviors are homogeneous in that each behavior requires all
robots to display the same color; though a different color is
displayed in response to each environmental feature pattern
that the swarm recognizes.

Swarm Behaviors and Actions used in
experiments with moving robots
In a separate set of experiments we define swarm behavior
sets such that robots physically move to form shapes.
Different behavior sets are defined as follows:

• B0 = collectively display nothing.
• B1 = collectively form a blue smiley face.
• B2 = collectively form a red frowny face.

Robot Actions
z0 = “Off LED”
z1 = “Red LED”
z2 = “Blue LED”

Behavior Set Templates (Display These Pictures)

A1 A2 A3

Swarm Behavior Tupel Sets

(X1,B1,0) (X2,B2,0) (X3,B3,0) A1

B0

(X1,B1,1) (X2,B2,1) (X3,B3,1) A2

B1

(X1,B1,2) (X2,B2,2) (X3,B3,2) A3

B2

Figure 8. Robot actions and swarm behaviors used in the large
swam experiment without movement. Each robot displays a
single LED color such that an LED image is collectively
displayed by the swarm. Different colors represent different
robot actions (Top). Different swarm behavior set tupels B0, B1,
and B2 (Middle) are defined by robots doing the action from the
templates A1 = oZ1(X ), A2 = oZ2(X ), and A3 = oZ3(X ) that
maps to the position of their light sensor location, respectively;
allowing the swarm to calculate B = oZ(X) for oZ1 , oZ2 , and oZ3
given the swarm’s current location (Bottom). The behavior
tupels for three example swarm locations are shown within each
behavior tupel set. In this example light sensors are assumed to
be at the centers of robots.

Such shapes can be formed by having some robots move
while others remain stationary. Thus, robot actions include
both actions with movement and actions without movement.
Moreover, stationary actions fall into two separate categories
depending on the LED color that is displayed by a robot as it
remains stationary. Robot actions include:

• z0 = Train: transition to state Train.
• z1 = Red Attract: stop moving, display red LED,

broadcast “attraction” messages.
• z2 = Blue Attract: stop moving, display blue LED,

broadcast “attraction” messages.
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Input
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Output
Wireless (infrared)
Visual display (multicolor LED)

Actuation (motor commands)
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Calculate:
nontraining action

Display: 
LED status output

Send:
“sense” messages

Receive:
“sense” messages

Sense:
environmental state

Calculate:
training action

Act:
Display_Off

Receive:
“act” messages

Sense:
environmental state

Display: 
LED off

Motor Control:
off

Send:
“act” messages

Act:
Display_Red

Receive:
“act” messages

Sense:
environmental state

Display: 
LED Red

Motor Control:
off

Send:
“act” messages

Act:
Display_Blue

Receive:
“act” messages

Sense:
environmental state

Display: 
LED Blue

Motor Control:
off

Send:
“act” messages

State Act (with different robot actions)

Train and other states

Blue

Red

F =
⋃
n∈[1,N ]

~Fn

h = Ĵ(F)

B ∈ Bk = f̂(h)

αn ∈ B

αn = z0

αn = z1

αn = z2

αn = train

Figure 9. The various actions used in the experiment with a large swarm (316 robots) that does not involve movement. Because
there is no movement, the group mind remains intact as long as the swarm is deployed. In this case, all robot actions transition back
to state Observe, which is part of the overall state-machine described in Figure 7. Each action requires the robot to display a
particular color (red or blue LED) or no color at all (by turning the LED off). This allows the swarm to collectively display an image
across the environment using all robots’ LEDs. Each state automatically transitions back to state Observe so that the swarm can
update the image that it collectively displays as the group mind detects different environmental feature patterns (e.g., as the feature
patterns change in the environment as the swarm is deployed). The environmental feature patterns used in the experiment are
shown in Figure 13-B.

• z3 = Rand Search: move randomly while displaying a
rainbow LED sequence, until receiving an “attraction”
message.
• z4 = Display White: stop movement and display

white LED, unless an “attraction” message is not
received within a small amount of time.

The actions used in the experiments with moving robots
are displayed in Figure 10. Movement breaks neural
connections, which makes recomputation of hi = Ĵ(~Fi)
impossible once movement has started. Thus, robots do not
transition back to state Train or Observe after beginning a
non-training action.

The physical shapes formed by the swarm are an emergent
property resulting from having robots within the desired

shape remain stationary, and having robots outside of the
desired shape randomly move until they either become part
of the desired shape or leave the environment.

Experiments
We experimentally evaluate the group mind in a variety of
scenarios. Experiments are performed both with a physical
robot swarm and in simulation. Physical experiments are
necessary to test how well the group mind works in practice,
while simulation facilitates performing large numbers of
trials to evaluate the convergence properties of the four
different variations of the distributed backpropagation
algorithm. We use both small (4 robot) swarms and large
(up to 316 robot) swarms. The small swarms facilitate
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Input
Wireless (infrared)
Environmental data (visual light)

Output
Wireless (infrared)
Visual display (multicolor LED)

Actuation (motor commands)

Act:
Red_Attract

Display: 
LED Red

Motor Control:
off

Send:
“attract” messages

Act:
Blue_Attract

Display: 
LED Blue

Motor Control:
off

Send:
“attract” messages

Act:
Random_Search

Display: 
LED rainbow

Motor Control:
random walk

Act:
Display_White

Display: 
LED White

Motor Control:
off

Receive:
“attract” messages

Receive:
“attract” messages

Recently Received
close “attract” message

Recently Received
close “attract” messages

Not recently Received
close “attract” message

Random Walk

forward for rand_t()
left for rand_t()
forward for rand_t()
right for rand_t()

Red Blue

WhiteRainbow

Figure 10. The various actions used in the experiment with a large swarm (167-262 robots) involving movement (and hence
dissolution of the group mind), and the portion of the state machine connecting them with the overall behavior described in
Figure 7. Red Attract and Blue Attract involve the swarm displaying red or blue LEDS, respectively, and broadcasting “attract’
messages. Both of these continually self-transition, so a robot that starts in either of them will remain in it. Rand Search and
Display White form a self-contained two-state state machine. Robots that receive a close “attract” messages (i.e., from a robot in
Red Attract or Blue Attract that is less than 5 cm away) transition to (or remain in) Display White. Robots that do not receive close
“attract” messages within a small timeout period transition to (or remain in) Rand Search, in which case they perform a random
walk around the environment. Overall this causes the swarm to exhibit emergent behavior such that robots performing
Rand Search move toward robots performing Red Attract or Blue Attract which creates physical shapes in the environment. The
environmental feature patterns used in the experiment are shown in Figure 14.

running repeated trials, while the large swarms demonstrate
that the algorithm scales to hundreds of robots. We also
use two different classes of behavioral responses: (1)
the swarm displays different coordinated light patterns
depending on global environmental input, and (2) the swarm
physically constructs different shapes in response to the
global environmental input. The details of both (1) and
(2) are described in the previous section. Note that (1) is
performed both with real robot swarms and in simulation,
while (2) is only performed with real robot swarms.

Experimental Setup
Each experiment involves a swarm of physical robots or
a swarm of simulated robots (we do not mix real and
simulated robots). The swarm consists of 3.3 cm Kilobots by
Rubenstein et al. (2014) (see Figure 1-B). Kilobots locomote
via vibration, communicate wirelessly using infrared light
(range 10 cm), have AtMega328 microprocessors (8 MHz
32K memory), visual light-intensity sensors, and a multi-
color light emitting diode (LED).

Experiments with large swarms are performed on a surface
created by placing a whiteboard on the ground. A digital
light projector mounted above the environment controls
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environmental light intensity patterns by projecting 50 by
50 pixel grayscale images onto the swarm. Light projections
are used both for human-to-swarm communication and also
to create various global light patterns which the swarm is
trained to differentiate.

Grayscale images are projected onto the swarm (on the
whiteboard) to provide training examples Th,i = (h,Fi) for
each Yh (during the “upload” phase) and to provide real-
time global environmental data to the swarm (during the
state Observe) which the swarm samples to get the current
F. Grayscale images are also used (during the state Upload)
to project template images Aj = oZj (X ) of swarm behaviors
(where each robot action is associated with a particular light
value); combined with the swarm’s current location X, this
enables the swarm to calculate Bj = oZj (X) based on light
data readings, and thus the tupel (X,Bj) for each j.

In experiments with movement, robots are manually
removed from the environment once they travel outside of
the illuminated area. A digital video camera mounted on a
tripod to the side of the whiteboard is used to capture videos
(Videos have been included as supplementary material,
and they are also available at https://tinyurl.com/
yasy3fl9 as a YouTube play-list; the full url also appears
in our references (Otte 2016b)). Code is written in C and runs
on Atmega328 microprocessors onboard the Kilobots.

In experiments with (only) small swarms of physical
robots, training examples are hard-coded a priori. Robots
are placed on white printer paper in non-direct natural light.
Real-time small swarm training error (Figure 11-C-Right) is
produced by modifying the algorithms, such that all robots
output their internal training error in the form of a color LED
code. These are recorded via a digital video camera and then
averaged at 1-minute time increments to determine swarm
training error.

Simulations are run in C on one core of a Dell Optiplex
3020 with 4 gigabytes of RAM. Simulated robots use nearly
all of the same C code as the physical hardware experiments;
except that code libraries related to hardware are replaced
and simulate this functionality in software; in particular,
message-passing, visual sensor input, and LED color output.
Movement is not considered in simulation. Simulated robots
are randomly distributed in a 200 cm area, have radius 5cm,
and communication radius 25cm. Overlapping simulated
robots are randomly re-positioned, if any simulated robots
remain overlapping after 1000 re-positions then they are
allowed to overlap. Simulated robots are programmed to
have random and slightly different message loop cycles
(distributed uniformly at random on the interval 0.5 seconds
+/- 0.1 seconds). Control loops are run only if a message
has been sent or received by a simulated robot. Messages are
assumed to take 0.01 seconds to send. If any robot receives
two messages at the same time than that robot drops both
messages.

We evaluate four variants of the distributed backpropaga-
tion algorithm, including:

i Batch Decrease, the batch weight update is used
(Algorithms 3) and learning rates decrease as a
function of iteration (Algorithm 12).

ii Stochastic Decrease, the stochastic weight update is
used (Algorithms 4) and learning rates decrease as a
function of iteration (Algorithm 12).

iii Batch Tune, the batch weight update is used
(Algorithms 3) and a batch heuristic Hessian algorithm
is used for on-line learning rate tuning (Algorithm 13).

iv Stochastic Tune, the stochastic weight update is used
(Algorithm 4) and a stochastic heuristic Hessian
algorithm is used for on-line tuning of the learning rate
(Algorithm 14).

Each method (i-iv) requires between one and three tuning
parameters to be chosen a priori. These affect training
speed and reliability. Because we do not know the optimal
value of these parameters a priori, we follow the standard
machine learning practice of selecting parameters based on
performance vs. a tuning data set that is different from the
test data set. We use the following procedure to select tuning
parameters:

1. A parameter sweep in simulation vs. a tuning set yields
simulation parameters.

2. The simulation parameters (from step 1) are used vs.
the test set in simulation.

3. The simulation parameters (from step 1) are the
starting point for a manual greedy search with the
physical swarm vs. the tuning set. This search yields
physical parameters.

4. The physical parameters (from step 3) are used vs. the
test set on the physical robot swarm.

This process is repeated for each algorithm variant that is
tested.

Experiments with a small robot swarm
In this set of experiments the group mind is created over a
4-robot swarm, where the robots are organized in a square.
The group mind is taught to differentiate between 4 different
global environmental input signals (Figure 11-A,B). We use
the average performance over 10 repeated experiments for
each measurement. Mean group mind classification error vs.
training time is presented in Figure 11-C. To reduce figure
clutter we only show results for the tuning data that use the
particular tuning parameters selected for use vs. the test data.

Experiments with a large stationary robot
swarm
In this experiment we randomly distribute hundreds of robots
within a square environment. The group mind is trained
to distinguish between three global light intensity patterns:
(1) a pi symbol, (2) an on-off symbol, and (3) a “blank”
pattern (Figure 12-B,C). When the group mind detects a
non-blank pattern, then the swarm collectively displays a
prescribed response image by having robots adjusts their
color LED lights according to the appropriate response
behaviors (firewire symbol or wifi symbol, respectively).

Simulated experiments involve 250 robots, are performed
across all four algorithm variants. Datapoints reported for the
simulated experiments represents the average performance
over 10 random trials. Physical experiments involve 303-316
Kilobot robots; however, only one algorithm variant (i batch
decrease) is evaluated and only one trial is performed per
measurement used in the large physical robot swarm. The
reason for the limited number of physical experiments (e.g.,
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Figure 11. Small robot swarm experiment. Tuning (A) and test (B) sets, where the top row (grayscale) is the light intensity input
patterns the swarm is taught to differentiate between, and the bottom row (color) is the corresponding class the swarm must learn
to recognize. (C) Results depicting classification error vs. time for the swarm in simulation and physical hardware (left and right).

vs. the 4-robot experiments in the previous section) is due to
the fact that running an experiment with hundreds of robots
is quite laborious, and we prefer to focus our efforts on the
case involving movement presented in the next section. We
chose the method i batch decrease because it proved to be
the most stable variant vs. tuning parameter selection in the
small swarm experiments and in large swarm simulation.

Results depicting group mind classification error vs.
time in simulation appear in Figure 12-A, while results of
experiments with real hardware appear in Figure 13-E.

Figure 13 shows experiments in which the collective
responses involve displaying 2-D color images across the
swarm’s distributed LED array. Robot behaviors include
display “Red LED,” “Blue LED,” and “Off LED.” Thus,
the swarm is able to display a yin-yang, wifi symbol,
etc., by having different robots perform different behaviors
(Figures 13 A-D). In these experiments, the swarm may
safely use its group mind as it is being trained, allowing
direct assessment of the group mind’s training status via its
improving collective behavior.

Experiments with a large robot swarm and
actions involving movement
In this experiment the swarm learns to differentiate between
a set of heterogeneous environmental light feature patterns
(peace symbol, biohazard symbol, and blank pattern), and
then perform a physical heterogeneous swarm response
(make a smiley face, make a frowny face, and keep training)
depending on the particular feature pattern that is detected
across the environment at runtime.

Figure 14 depicts a set of experiments in which the
response behaviors require physical movement to create one
of two different shapes (blue smiley face or red frowny
face) depending on which environmental feature pattern
is observed at runtime (peace and biohazard symbols,
respectively). Robot behaviors include: “Random Search,”
“Red-Attract,” “Blue Attract,” and “Continue Training.”
Red Attract and Blue Attract cause a robot to broadcast
“Attract” messages while remaining stationary and display-
ing red or blue LEDs, respectively. A robot performing
Random Search will move around the environment at ran-
dom until receiving an “Attract” message sent from closer
than 5cm, in which case it halts and displays a white LED.
Physical shapes emerges as Random Search robots move

from their original positions to fill the space around attracting
robots (or leave the environment). Videos of this experiment
have been included as supplementary material, and they are
also available at https://tinyurl.com/yasy3fl9
as a YouTube play-list; the full url also appears in our
references (Otte 2016b).

The “Continue Training” behavior causes a robot to
continue training until its training error has fallen below
5%, and then to display a yellow LED. By training the
group mind to “Continue Training” in response to a (uniform
medium-gray) pattern displayed during training, the overall
group mind training status can be evaluated by observing the
proportion of the swarm displaying yellow LEDs.

Physical movement breaks neighborhood connectivity
which causes the group mind to dissolve. Thus, the group
mind must coordinate an organized deliquesce prior to the
start of movement. Each robot n continually evaluates the
group mind’s calculation of n’s output behavior based on
the real-time distributed sensor data. If this behavior is
not “Continue Training” for more than a predefined length
of time (30 seconds), then robot n begins performing the
prescribed behavior while broadcasting messages indicating
the pattern detected. Any robot m 6= n in a poorly trained
subset of the group mind can calculate its own behavior by
combining the data from n’s message with its own behavior
map. m then performs the appropriate behavior and re-
broadcasts the message from n.

This experiment is designed to demonstrate that a group
mind can be used to coordinate swarm movement in response
to a global environmental input pattern and is only performed
with the physical swarm. Robots are trained to differentiate
between three different input patterns, one of which is a
“blank” pattern (as in the previous set of experiments). As
long as the blank pattern is observed, robots output their
training status by lighting a yellow LED once they have
finished training. However, if/when the group mind detects
one of the non-blank patterns, then it dissolves back into
a decentralized swarm, and the swarm collectively moves
to physically form one of two different shapes depending
on which patterns is observed — a blue smiley face or a
red frowny face depending on if a peace sign or biohazard
symbol is detected, respectively (Figure 14). Figure 15 shows
the swarm state from data upload to swarm action for a
particular experiment trial.
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Figure 12. Large Swarm Experiments Without Movement. (A) group mind classification accuracy vs. time. The swarm’s
interpretation of the test data set (B) and tuning data set (C). In (B, C) The top row contains input signals and the bottom contains
the light pattern used to communicate desired output behaviors to the group mind (different light intensity correspond to different
behaviors). Each input/output is shown with the raw light pattern projected onto the swarm (left image in each pair) as well as the
resulting intensity/class that is detected by each robot and reported via LED light color (right image in each pair).

Although the output behavior of the swarm (physical
movement) is different from the previous experiment
(display LED picture), the group mind training algorithm
remains the same. Thus we use the same tuning parameters
as in the large swarm experiment without movement. We
perform five repeated trials of this experiment using between
167 and 262 robots in the swarm and evaluating both possible
outputs. Batch decrease (variant i) is the only training variant
tested in this experiment. Results appear in Figure 14-B.

Experiments with robot failures

In order to achieve the theoretical convergence guarantees
that we proved in the Analysis Section, we require that
robots pause their own training whenever a neighbor falls
too far behind schedule. This works well as long as the
robots themselves never malfunction. However, if a robot
malfunctions such that it is unable to send messages, then
its neighbors will cease training, and then their neighbors
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Figure 13. Large Swarm Experiment Without Movement on Real Hardware. The light pattern tuning set (A) and test set (B) used
for experiments with 303 and 316 robot swarms, respectively. Top rows are the raw light intensity feature patterns and bottom rows
are the corresponding output behaviors (represented by color) the group mind must learn to perform in response. Feature patterns
projected onto the swarm (C,D) for tuning and test cases, and the behavior that was actually performed as a result. Classification
accuracy vs. different input patterns (E). This Figure is reprinted/adapted by permission from: Springer Proceedings in Advanced
Robotics, Vol 1, “2016 International Symposium on Experimental Robotics”, COPYRIGHT 2017.

will cease training, and eventually the entire swarm will
cease training. In this section we experimentally evaluate the
effects of robot malfunctions on the group mind’s ability to
train.

We perform two sets of experiments, the results of which
are depicted in Figures 16 and 17. In the first set we
have robots pause training according to our algorithm, in
the second we do not pause robots (and thus forfeit the
theoretical convergence guarantees, but also eliminate the
possibility that a malfunctioning robot pauses training on
the entire swarm). In both sets of experiments we run
repeated trials for the four different versions of the training
algorithm that were previously discussed. Experiments are
run in simulation to facilitate a large number of repeated
trials.

Robots are programmed to malfunction according to an
exponential Poisson decay process that has a known expected
failure rate. For example, a failure rate of 10−3 means that
the n-th robot is expected to malfunction once every 103

seconds, on average. All robots have the same failure rate
in a particular experimental trial; thus, if the swarm contains
Nwork functional robots and the failure rate is 10−3 then
we expect half of the robots, e.g., Nwork/2, to fail after 103

seconds have elapsed.

Failure rates are depicted in Figures 16 and 17 as different
line styles, and each datapoint represents the mean result
from 50 trials. Once the n-th robot malfunctions, then the
n-th robot will not send or receive messages for the rest of
that experimental trial. We note that the class error rates that

are shown in Figures 16 and 17 are with respect to the set of
robots that has not yet malfunctioned by a particular time.

Discussion

Discussion regarding communication
Communication and layer depth: We use a single hidden
layer in our experiments due to the slow communication rate
(2 Hz) and small packet size (10 bytes) of the Kilobot robot
platform. However, it is theoretically possible to use a group
mind neural network of any depth. Since deeper networks
are arguably capable of learning a larger set of functions, it
is natural to ask: what negative ramifications would using a
deeper group mind have in practice?

Assuming that both hardware and communication
bandwidth are held constant, then using a deeper network
is likely to increase training time (as with any type of neural
network). Increasing layer depth will also require more data
to be passed between robots as part of the backpropagation
algorithm, since each robot will be responsible for managing
more neurons. As more and more communication becomes
necessary, the communication channel will eventually
become saturated. While total communication failure can
be avoided by throttling the rate at which data is sent, this
would tend to increase training time even more. Data storage
capacity may also be a concern for lightweight platforms
such as the Kilobot, but would not be an issue for larger
platforms.

That said, one of the take-home messages of our work is
that even shallow neural networks can be useful—and these
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Figure 14. Large Swarm Experiments With Movement on Real Hardware. Light intensity pattern test set (A) for experiments with
movement. (B) Results (top to bottom): the swarm’s training status when movement started, classification accuracy vs. the raw light
intensity pattern that initiated movement, and the breakdown of the swarm’s behavior at experiment end. (C-G) Columns
correspond to experiments. (C) Training data (light intensity and output behavior pattern, top and bottom) for the behavior that was
eventually chosen. (D) Training status when movement started. (E) Real-time light intensity feature data and resulting output
behavior (top, top and bottom). (F) Swarm position at experiment end. (G) Swarm behavior at experiment end. Videos of this
experiment have been included as supplementary material, and they are also available at https://tinyurl.com/yasy3fl9
as a YouTube play-list; the full url also appears in our references (Otte 2016b). This Figure is reprinted/adapted by permission from:
Springer Proceedings in Advanced Robotics, Vol 1, “2016 International Symposium on Experimental Robotics”, COPYRIGHT 2017.

can be trained within a reasonable amount of time, even on
lightweight platforms such as the Kilobot.

Communication range effects: In general, communication
range (combined with layer depth) is directly tied to the
number of robots that are involved in a decision in any
particular part of the network. If an area of the network that
is larger than radius ∗ depth has training data such that all

inputs are the same in this area for all training examples, then
it is possible that robots at the center of the area will not
be able to train a discriminative classifier. Such robots will
need to rely on the classification performed in other parts of
the network to inform them of what feature pattern has been
detected.
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Figure 15. Diagram of group mind interaction and movement. All images appear as pairs with the raw light intensity on the left/top
and robot status on the right/bottom. Data upload shows light intensity patterns and behavior profile that the group mind believes it
should learn to recognize and perform. During training robots display a green LED once they finish training their portion of the
group mind. When a non-blank pattern is projected onto the swarm, the group mind is used to recognize which pattern it is, and
which behavior each robot should perform in response. In this case, a peace symbol is detected so robots move to create a blue
smiley face outlined in white.

The communication range of the Kilobot robots are
limited to about 10cm in practice. Therefore, in our
experiments, each robot aggregates discriminative data from
about a 30 cm radius by the final output layer depth.

Training time vs. training iteration: The convergence
guarantees that we proved in the Analysis Section assume
that neighboring robots do not get too many training
iterations out of sync. If a robot falls too far behind its
neighbors (in training iterations) then training is paused on
its neighbors until the lagging robot catches up. This ensures

that communication is never lost for more than a user-defined
number of training iterations; however, it also means that
dropped messages may cause a small number of training
iterations to be stretched over a very long period of time.

Of critical importance is that we do not assume a particular
message will be transported within any particular amount
of time. However, given our other assumptions, the amount
of time over which any particular training iteration will be
stretched is finite with probability 1.
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Figure 16. Mean classification error (left) and the
corresponding number of functioning robots (right) when
different methods (top to bottom) experience various rates of
robot failure (different colors). This figure shows performance
when the training iterations are paused on robots whenever a
neighbor is more than 100 raining iterations behind. Data points
represent the mean over 50 trials.
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Figure 17. Mean classification error (left) and the
corresponding number of functioning robots (right) when
different methods (top to bottom) experience various rates of
robot failure (different colors). This figure shows performance
when the training iterations are never paused (and neighbors’
iterations are allowed to become increasingly out of sync). Data
points represent the mean over 50 trials.
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Discussion regarding malfunctioning robots
Drained batteries were an unexpected difficulty that
we encountered in our experiments. The chances of
experiencing drained batteries can be minimized by
replacing batteries prior to an experiment and/or modifying
the hardware or output behaviors to be more power efficient.
However, one reason for using swarms is their robustness
to partial loss. In experiments where color LED images
were the desired output, a dead battery simply meant that
a particular robot’s LED was dark. In experiments with
movement, the desired output shape was discernible despite
moderate (up to 26%) loss. Thus, we did not observe dead or
malfunctioning robots leading to problems in practice.

However, in terms of algorithmic performance, if a robot
loses power during the training process then its neural signals
freeze from its neighbors’ point of view. Because each robot
n pauses training after becoming cwait iterations out of sync
with any neighborm, power loss on one robot can potentially
pause training across the entire swarm. Although a full-scale
failure was not observed in the experiments, this is clearly a
weakness of our algorithm.

We believe that we did not observe this type of failure in
our experiments because robots were allowed to be up to
100 training iterations out of sync, which gave most of the
swarm adequate time to train before any robots lost power.
Another reason may be because if such a frozen signal is
detrimental to a neighbor’s neural performance, then that
signal will be weighted less and less over time as part of the
training procedure.

Modifying our algorithm such that robots cease interaction
with uncommunicative robots may be able to eliminate
this problem. Such a modification may still require treating
the last known signals of pruned robots as if they
remain fixed values. Although this would technically break
the asymptotic theoretical convergence guarantees, these
guarantees are also broken whenever a robot becomes
permanently uncommunicative (and thus forfeit in the event
of power loss anyway).

Discussion regarding training the group mind
Comparison between training algorithms: The most
reliable training algorithm variant tested resulted from batch
link weight updates (Rumelhart et al. 1986) combined
with learning rates proportional to the inverse iteration
number (Tsitsiklis et al. 1986). Stochastic updates (Bottou
1991) and/or heuristic Hessian tuning (Silva and Almeida
1990) often yielded quicker convergence but suffered from
increased tuning parameter sensitivity. Heuristic Hessian
methods also required an order of magnitude more pre-
computation for parameter selection, and were prohibitively
expensive for use on large swarms.

One difference between batch and stochastic versions of
the modified backpropagation algorithm is that the batch
version must wait until it has data regarding all training
examples before performing a training iteration. As a result,
the batch method is expected to train more slowly than the
stochastic method, but it will tend to weight each training
example more equally over short periods of time.

Transforming parameters from one problem to another:
We find that tuning parameters learned on one (tuning)

problem can successfully be used on a different (test)
problem. This is obviously a prerequisite for the group mind
to be useful in practice, given that we may not always know
what a swarm will be required to learn during any a priori
training phase.

Using simulation to expedite parameter tuning: Our results
strongly suggest that simulation can and should be used
to guide/bootstrap the search for optimal tuning parameters
on the physical swarm. On the other hand, applying tuning
parameters learned in simulation directly to the physical
system does not always work (although batch methods
appear to be more robust than the stochastic methods in this
regard). We attribute this discrepancy to the fact that there
are many aspects of the physical swarm that the simulation
fails to capture. We suspect that more accurate simulations
will yield tuning parameters closer to those optimal for the
physical system.

Summary of convergence properties: The convergence
properties that we derive in the Analysis Section show that, if
robots pause training whenever their neighbors fall too many
training iterations behind (and no robots malfunction), then
the group mind will converge in the limit, at the number if
iterations increases, with probability one.

This guarantee is technically valid only for the batch
and stochastic variants of our modified backpropagation
algorithm that use a decreasing learning rate. It is not valid
for the heuristic Hessian variants; even though the heuristic
Hessian variants sometimes have quicker convergence in
practice.

The ability to pause the neighbors of a robot whenever that
robot falls too far behind is necessary to ensure almost sure
convergence in the limit. An implicit assumption is that the
lagging robot continues to train and communicate so that it
can eventually catch back up. This assumption is obviously
broken if robots fail or otherwise malfunction.

In practice, it seems reasonable that we may decide to
sacrifice theoretical convergence in the interest of possible
practical gains, by simply letting robots go out of sync.
The results of experiments comparing our original algorithm
to this idea appear in Figures 16 and 17, respectively.
These figures show that, although performance decreases
as more robots fail, the observed difference in performance
between pausing and not pausing is relatively small in the
experiments that we run. This was an unexpected result and
may indicate that the loss of connectivity that happens due to
a robot’s failure or malfunction is detrimental to that robot’s
neighbors’ chances of training well.

Discussion regarding robot actions, swarm
behaviors, and emergent swarm behaviors
Homogeneous swarm behavior: After the group mind
detects and classifies the environmental state pattern that
is present in the environment, the swarm performs a
specific heterogeneous behavior that the user has designed
specifically for that environmental state pattern.

It is worth emphasizing that it is only the swarm’s behavior
that is heterogeneous and not the robot hardware that we use
in our experiments. The behavior is heterogeneous because
different groups of robots run different action programs. In

Prepared using sagej.cls



30 Journal Title XX(X)

contrast, much of the existing work in the swarm robotics
community assumes that all robots run identical single
robot actions (e.g., all robots run the same distributed
control algorithm, or all robots forage, or all robots run
a consensus algorithm, etc.) such that both the robots’
behaviors and hardware are homogeneous. We believe that
having heterogeneous and not homogeneous robot actions
can lead to more interesting emergent swarm behaviors.

Nothing prevents our method from being used on a swarm
consisting of heterogeneous hardware. However, each type of
robot would need to be told which of its own possible actions
it should run in response to a particular feature set class being
active in the environment.

Designing behaviors: We define a swarm behavior tupel to
contain both a set of robot actions and a corresponding set of
robot positions. Actions are essentially “any program a robot
might care to run”. A robot does not need to know its own
position explicitly, as long as it performs the correct action
for its position. This definition of robot swarm behavior is
simple and concise, but it does not answer the (broader)
question of how to assign a set of robots actions such that
a desired emergent behavior is the long-term output product.
How to design useful emergent behavior is not a question that
our work answers. Rather, we provide a tool that can be used
to generate a rich set of finely-tuned emergent behaviors; a
tool that also enables these emergent behaviors to be selected
by the swarm as a function of the global environmental state
it detects at runtime.

This tool potentially increases the number of problems that
swarms can be used to solve; however, it is up to the robot
swarm programmer to figure out which actions performed
by which subsets of robots are likely to result in an emergent
behavior that solves a particular problem.

Behavioral complexity: The simple actions used by the
robots in our experiments could easily be replaced by
more sophisticated actions with no change to the training
and decision making algorithms. Other environmental
features (chemical, temperature, acoustic, etc.) and their
combinations could easily be used in place of light intensity.

Discussion regarding the group mind concept
Proof of concept: We have performed a variety of
experiments on real robot swarms containing from 4 to
316 robots that demonstrate a group mind can be created
within a swarm of robots and trained to react differently
depending which complex environmental pattern it senses
in the environment. Our work shows that an artificial group
mind can emerge as the result of distributed computation
over an ad hoc wireless network that emerges at runtime
as robots discover and form wireless neural links with their
neighbors. The ad hoc process in which neural connections
form in the group mind is a departure from traditional ANNs,
and echoes similar emergent neural linking in the animal
brain.

Our work also demonstrates that an artificial group
mind is a useful tool for solving the “trained at runtime
heterogeneous swarm response” human-swarm interaction
problem. That is, a swarm already deployed in the
environment can be programmed to perform different swarm
behaviors in response to different inputs that it detects. This

enables fine-grained heterogeneous swarm behavior to be
programmed at runtime and at a high level by a human user.

Group minds vs. swarms: The group mind is one of many
different swarm algorithms, where a “swarm algorithm” is
arguably any algorithm that runs on a group of robots that is
able to scale, without major difficulty, if the number of robots
in the group is increased by a few orders of magnitude.

That said, the swarm community is often interested in
focusing on a handful of specific algorithmic traits that tend
to be part of many algorithms that scale well. We now discuss
the group mind’s possession of some of these traits, ending
with a discussion of scalability, in general.

Self-configuring: The connections between neurons on
different robots emerge as a property of robot positions.

Self-optimizing: Given the emergent neural structure, the
swarm trains itself to differentiate between user-provided
patterns. This training involves the swarm autonomously
tuning the weights between neurons using a distributed
backpropagation algorithm that runs over the emergent ad
hoc wireless network.

Self-healing: The group mind is self-healing in the sense
that the swarm adjusts for dropped messages between
neurons. While total robot failures during the group mind
training process are not explicitly handled, each robot
remembers the last signal sent from all robots Thus, further
training will mitigate (or eliminate) the effects of the stagnant
signals from failed robots as the weights of the uninformative
signals are decreased.

Scalability: The group mind itself scales well because
it relies on local communication and assumes all robots
received the same programming a priori. Once the
group mind has dissolved, then the swarm inherits the
swarm properties of whatever distributed behavior is being
performed by the swarm. Any standard swarm algorithms
can be run, as well as variations that can benefit from:
(A) different subsets of robots performing different actions
and/or (B) knowledge of the global environmental pattern
that has been detected by the group mind.

Why call it a group mind?: We believe that “artificial
group mind” is an appropriate name for a distributed neural
network that spans across a swarm of robots and uses
wireless communication to transmit neural data between
robots. In popular culture and science fiction there is a well
established history of calling an autonomous-agent-spanning
computation system a “group mind”. Thus, we did not invent
the term; we engineered and tested an artificial system that
does what the term “group mind” already describes.

Conclusions and Summary
We pose the “trained at runtime heterogeneous swarm
response problem” in which a swarm of robots must: (1)
learn to distinguish between different environmental state
pattern classes that it senses using the swarm’s distributed
sensors; (2) perform a particular swarm response behavior
prescribed for the class of the state pattern that is observed.
Each swarm behavior is defined by different subsets of robots
performing different actions (single robot programs). Robots
come pre-loaded with a library of individual single robot
actions; however, (3) the specific environmental state pattern
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classes the swarm must distinguish between and the mapping
function from class index to swarm behaviors are provided
by a user at runtime, after the swarm is already deployed in
the environment.

To solve this problem we propose a new form of
emergent distributed neural network that we call the “group
mind”. In the group mind, each robot maintains a set of
neurons and forms wireless neural connections between
its own neurons and the neurons on neighboring robots.
Neighbors are discovered at runtime via local ad hoc wireless
communication. The group mind is trained to differentiate
between the environmental feature patterns using an
asynchronous distributed backpropagation algorithm we
have modified especially for the type of unreliable wireless
neural connections that are used.

Using swarms of 4 to 316 Kilobot robots, we
experimentally demonstrate that the group mind is capable
of solving various instances of the “Trained at runtime
heterogeneous swarm response problem”. We also compare
four different variations of the backpropagation training
algorithm when used within a group mind, and prove that
two of them will almost surely converge to a solution, in the
limit, as the number of training iterations increases.

In order to guarantee this convergence property, despite
dropped wireless messages, robots must pause their own
training whenever a neighbor falls to far behind. A practical
disadvantage of this pausing is that a malfunction or dead
battery on a single robot can potentially cause the entire
swarm to pause training (although we did not observe this
in our experiments). In additional experiments designed to
evaluate performance when robots fail, we find that dropping
the pausing requirement does not appear to affect practical
performance in the event of robot malfunctions.

We find the group mind is a powerful tool for human-
swarm interaction, enabling new types of heterogeneous
swarm behavior, and enabling swarm behavior to be a
function of the global environment state that is observed at
runtime.
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Appendix A: Additional Algorithms

In Appendix A we provide lower level details about selected
subroutines that were called within the algorithms presented
in the main body of the paper. These are included to help
practitioners and others that may wish to replicate our work.
We break this section into four subsections. In the first we
provide pseudocode for the send message thread and the
receive message callback, both of these run concurrently to
the main state machine in order to facilitate message-passing
between robots.

The second subsection covers the lower level neural net-
work implementation details used in our experiments. These
are provided to document our particular implementation; it
is likely that other implementations will also work. The third
subsection provides pseudocode for the various learning
rate tuning methods that were used in our experiments. As
with the previous algorithmic details, these are provided to
document our approach and to assist practitioners that may
wish to duplicate our work.

The fourth subsection presents pseudocode for the low-
level message packing and unpacking that we used with
the Kilobots. Because Kilobots messages are limited to a
maximum of 10 bytes, we thought it fair to give practitioners
some idea of how we packed all necessary data for training
and using the group mind neural network (indeed, we
actually break the messages for a single training iteration
into multiple packets containing independent information,
in an effort to minimize the negative effects of dropped
message). In the fourth and final subsection we provide the
high level behaviors and actions that are used in the small
robot experiments without movement.
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Algorithm 7: group mind Send Message Thread

1 loop
2 if state ∈ {Train,Observe} then
3 neural data← get neural data()
4 message← {state, local id, neural data}
5 else if state = Act then
6 act data← get act data()
7 message← {state, local id, h, act data}
8 else
9 populate message as required for calibration,

initialization, etc.

10 broadcast(message)

High Level Send and Receive
Algorithm 7 depicts the message broadcast thread that runs
concurrently to the main state machine (in an independent
thread) and is responsible for broadcasting data from robot n
to its neighbors.

Function get neural data() retrieves the neural network
data that resides on this robot’s portion of the group mind
(line 3). For each training example as well as the real-time
environmental sensor input, this includes both the forward
neural signals and backpropagation messages (including
training iteration number and, for each backpropagation
message, the destination ID). Neural data is broadcast, along
with this robot’s state and ID (line 4). In practice, due to the
Kilobots’ small message payload size (10 bytes), we must
divide each batch of neural network data across multiple
messages (not shown). If there is movement behavior such
that state Act is used, then the robot sends an identifier for
this state, its own local ID, and the swarm behavior class h
output of the neural network vs. real-time environmental data
(lines 5-6). To save space we omit the other message-passing
details necessary to run the standard distributed algorithms
that we employ as subroutines during the start-up phase and
the various actions used in state Act (represented by lines
8-9).

The receive message callback function appears in
Algorithm 8. Normal training data is received on lines 2-
5. If a neighbor has decided to act then this robot will join
it (lines 6-15); making sure to perform its own prescribed
behavior behaviour relevant to the overall swarm behavior
h (line 15). The function modify action(αn,message) is used
to modify the specific output behavior of this robot during
the Act phase, as a function of interaction with neighboring
robots (lines 16-18). This enables more complex swarm
behaviors to emerge out of the interactions between robots.
For example, the smiley faces in our experiments are created
as randomly searching robots stop moving in the vicinity
of attracting robots. Lines 19-20 represent other message
processing that is used for the distributed subroutines within
the start-up phase.

Standard Neural Network Implementation
Details
Algorithm 9 describes the subroutine that initializes the slice
of the neural network residing on this robot. The global robot

Algorithm 8: group mind Receive Message Callback

1 if state ∈ {Train,Observe} then
2 sender state← message
3 if sender state ∈ {Train,Observe} then
4 {sender local id, neural data} ← message{2 : 3}
5 update group mind(sender local id, neural data)

6 else if sender state = Act then
7 state← Act
8 h← message{3}
9 B ← f̂(h)

10 B ∈ B // pick swarm behavior in B
11 αn ∈ B // αn is this robot’s action in B
12 if αn = train then
13 run state Train

14 else
15 run state Act with αn

16 else if state = Act then
17 if sender state = Act then
18 αn ← modify action(αn,message)

19 else
20 use message for calibration, initialization, etc.

index n is assumed to be unique within each neighborhood as
discussed in the High Level Algorithm Section. Henceforth
we shall refer to this robot as robot n.

Algorithm 9: init neural network()

1 n← local id
2 τ ← 0
3 for m ∈ N do
4 for `← 0, . . . , L do
5 for h← 0, . . . ,H do
6 sm,h` ← 0

7 for `← 0, . . . , L− 1 do
8 wmn` ← random weight()
9 wnm` ← 1

10 for h← 1, . . . ,H do
11 forwardτm,h` ← 0

12 for `← 1, . . . , L do
13 for h← 1, . . . ,H do
14 um,h` ← 0

15 for `← 1, . . . , L− 1 do
16 for h← 1, . . . ,H do
17 backwardτm,h` ← 0

18 for `← 0, . . . , L− 1 do
19 ξ` ← NaN // (batch version only)
20 for h← 1, . . . ,H do
21 ξh` ← NaN // (stochastic version only)

The iteration counters for robot n and those that it
maintains for its neighbors are initialized to 0 (lines 2,
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10-11, 16-18). The signal values are initialized to 0 for
all neurons on all robots in the local neighborhood, and
with respect to all training examples (Fi, h) ∈ T as well
as the real-time environmental data h = 0 (line 6). Edge
weights are initialized to a small random number (line 8),
and edge weights maintained by neighbors are set to 1 (line
9). The latter are reset to their actual values when messages
from those neighbors are received; however, the two are
equivalent for robot n (line 15). ξ, which holds squared
error calculated during the previous training iteration, is/are
initialized to NaN (lines 18-21); however, the structure of ξ
depends on the variant of the backpropagation used. Batch
backpropagation maintains one value per neuron (line 19),
while stochastic backpropagation maintains one value per
neuron per training example (lines 21).

We now provide details for the remaining nontrivial
low level functions that are used in our experiments. This
includes our implementation of the activation function,
the update based on its derivative, learning rate update
variants, group mind utilization, training error calculation,
and message packing/unpacking functions.

Algorithm 10: activation(v)

1 return 1.7159 tanh(2v/3)

The activation function (Algorithm 10) maps total
weighted neural input signal v to neural output. We use the
hyperbolic activation function recommended by LeCun et al.
(2012), which has been shown to work well in practice, is
easy to calculate, and has a derivative that is also easy to
calculate.

Algorithm 11: calc update parameter(A,B)

1 return 1.14393(1−A2)B

Algorithm 11 provides the derivative of the activation
function, evaluated at v, multiplied by B. Note that
activation(v) is assumed to have been previously calculated.
The derivative of the activation function in Algorithm 11
simplifies to this form because the derivative of tanh(v) is
1− tanh2(v).

Neural Network Tuning Method Implementation
Details

Algorithm 12: tune learning rate(τ) (decreasing rate
variant)

1 return cγ/τ

Algorithm 12 shows the “decreasing rate” version of
tune learning rate(), the function used to update the
relative size of gradient descent updates vs. training iteration
number. This version (vs. the alternative methods in
Algorithms 13 and 14) leads to the most stable, but also the
slowest convergence. Learning rates for all neurons start at
a user-defined constant tuning parameter cγ and decrease
proportionally to the inverse of training iteration number.

It can be used with both the batch and stochastic training
methods.

Algorithm 13: tune learning rate(γ, ε, `) (batch
heuristic Hessian variant)

1 ζ ←
∑

(Fi,h)∈T (εh` )2

2 ∆← ζ − ξ`
3 if ∆ = NaN then
4 γnew

` ← cγ

5 else if ∆ > 0 then
6 γnew

` ← cupγ`

7 else
8 γnew

` ← cdownγ`

9 γnew
` ← min(cmax,min(cmin, γ

new
` ))

10 return γnew
`

Using cost gradient Hessian information to update the
learning rate can often enable faster convergence but comes
at the price of requiring additional tuning parameters. We
use a simple heuristic method by Silva and Almeida (1990).
The batch version of this method appears in Algorithm 13.
The basic idea is to track if summed squared error over
all examples (line 1) is increasing or decreasing (lines 1-
2) by subtracting the previous squared error ξ` from the
current squared error ζ. If the error is decreasing, then we
increase the learning rate by a factor of cup, while if error
is decreasing, then we decrease the learning rate by a factor
of cdown (lines 6 and 8, respectively). Bad numerical values
cause the learning rate to be re-initialized to cγ . We also
bound the maximum and minimum values that the learning
rate is allowed to take (line 9). In our experiments we set
cmax = cγ ∗ 10 and cmin = cγ/100 in order to reduce the
number of tuning parameters to three (cγ , cmin, and cmax).

Algorithm 14: tune learning rate(γ, ε, `, h) (stochastic
heuristic Hessian version)

1 ∆←
∑

(Fi,h)∈T (εh` )2 −
∑

(Fi,h)∈T ξh`
2 ξh` ← (εh` )2

3 if ∆ = NaN then
4 γnew

` ← cγ

5 else if ∆ > 0 then
6 γnew

` ← cupγ`

7 else
8 γnew

` ← cdownγ`

9 γnew
` ← min(cmax,min(cmin, γ

new
` ))

10 return (1/H)γnew
` + (1− 1/H)γ`

Algorithm 14 shows the heuristic Hessian learning
rate method that is designed for use with stochastic
backpropagation. It is very similar to the batch version
(Algorithm 13), except that it is designed to work given
data about a single training example h and layer ` instead
of accounting for all examples and layers at the same time.
This difference means that we must store the previous
squared error for each neuron and example (line 2). A
running average based on H is used to combine updates
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from different training examples over multiple calls to the
subroutine.

Algorithm 15: training error()

1 return 1
LH

∑
(Fi,h)∈T

∑L
`=1 ε

h
`

Algorithm 15 shows the calculation used to determine the
current training error. In practice a robot stops training when
this value falls below the user-defined TARGET ERROR.

Low Level Data Packaging used with Kilobots

Algorithm 16: get neural data()

1 payload{1} ← τ
2 ctotal ← L+ LH + (L− 1)H|N |
3 payload{2} ← (η + 1) mod ctotal
4 for k ← 3, . . . , payload size do
5 η ← (η + 1) mod ctotal
6 if η < L then
7 h← 0
8 `← η // ` ∈ [0, L− 1]

9 payload{k} ← sn,h`

10 else if η < L+ LH then
11 h← 1 + (η − L) mod H // h ∈ [1, H]
12 `← b(η − L)/Hc // ` ∈ [0, L− 1]

13 payload{k} ← sn,h`

14 else
15 c← b(η − L− LH)/|N |c
16 m← (η − L−LH) mod |N | // m∈ [0, |N | − 1]
17 h← 1 + c mod H // h ∈ [1, H]
18 `← bc/Hc // ` ∈ [1, L− 1]

19 payload{k} ← {m, h , ` , um,h` wnm` }

20 return payload

Due to practical hardware constraints of the Kilobot
platform, message payload size is limited to 9 bytes and
a message ID provides 1 additional byte of information
capacity. As a result, we must break signal and training
data into pieces and send multiple messages in order to
get data from robot n to its neighbors and vice versa. The
pseudocode presented in Algorithms 16 and 17 outline the
basic technique that we use to respectively pack and unpack
neural signal and training data to/from a message payload.
In order to keep our presentation at a high level, we use
the notation payload{k} to denote the k-th piece of data
contained in the payload, ignoring the number of bytes
required.

In general, robot n cycles between broadcasting real-
time signal data, forward messages for training, and
backward messages for training (Algorithm 16, lines 6-
9, lines 10-13, and lines 14-19, respectively. There are
L+ LH + (L− 1)H|N | different pieces of information
that need to be sent. L real-time signal messages and LH
forward messages need to be sent to all neighbors of robot
n. Although each of the (L− 1)H|N | backward messages
is destined for (only) a single neighbor, we are constrained

such that broadcasting is the only way to transmit data.
Therefore, the destination robot is included along with
backward messaging data (line 19). We use a single index
η to cycle through all possible messages, sending each in
turn (lines 5,6,10,14). We have included comments in the
algorithm to show how incriminating η cycles through all
combinations of h, n, and `.

Algorithm 17: update group mind(m, payload)

1 τsender ← payload{1}
2 ctotal ← L+ LH + (L− 1)H|N |
3 η ← payload{2}
4 for k ← 3 : payload size do
5 if η < L then
6 h← 0
7 `← η // ` ∈ [0, L− 1]

8 sm,h` ← payload{k}
9 else if η < L+ LH then

10 h← 1 + (η − L) mod H // h ∈ [1, H]
11 `← b(η − L)/Hc // ` ∈ [0, L− 1]

12 sm,h` ← payload{k}
13 forwardτm,h` ← τsender

14 else
15 intended destination← payload{k}{1}
16 if n = intended destination then
17 h← payload{k}{2}
18 `← payload{k}{3}
19 um,h` wnm` ← payload{k}{4}
20 backwardτm,h` ← τsender

21 η ← (η + 1) mod ctotal

Algorithm 17 is the receiving counterpart to Algorithm
16 and uses the same form of index compression. Data is
extracted from the message payload and saved locally to
facilitate model use and training. Backward messages are
only saved when they are relevant to the receiving robot
(lines 16-20). If a message contains forward or backward
data, then we store the sender’s current iteration number
τsender in forwardτm,h` or backwardτm,h` , respectively (lines 1,
13, 20).

The pseudocode in Algorithms 17 and 16 ignores a few
tricks that we use to further compress the data that is sent.
These tricks amount to low-level bit toggling that allows
the compression of more than one piece of information
in a byte (e.g., two different numbers between 0 and 15
can be stored in the upper and lower bits of a byte).
Finally, in our presentation we have left um,h` wnm` as the
product of two separate quantities to keep the notation in
Algorithms 9-11 consistent with standard implementation of
backpropagation; however, in practice this multiplication is
performed on the sending robot and the product sent (the
receiving robot always uses the product um,h` wnm` , and not
um,h` or wnm` individually).

Finally, we implement a custom floating point data struc-
ture that fits in a signal byte and represents numbers of the
form ±1.25z and 0, for integer z ∈ [−64, 64]; i.e., numbers
in the set [−1.2564,−1.25−64] ∪ {0} ∪ [1.25−641.2564].
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This means that numbers in the ranges [−1.2564,−1.25−64]
and [1.25−641.2564] are represented with at most 25% rela-
tive error. This single byte float is used only to store and send
the products um,h` wnm` , with other floating point values such
as signals sent using standard 32 bit (4 byte) data structures.
This compression was deemed necessary for backward mes-
sages due to the fact that they are bandwidth expensive††,
and because we have found the quantity um,h` wnm` to be
tolerant to small changes, in practice. We attribute the latter
robustness to the fact that the most important piece of
information, with respect to the intended use of um,h` wnm` , is
its sign (positive vs. negative). Rounding occurs toward 0 and
thus using this compression amounts to learning at slightly a
slower rate.

Appendix B: Swarm behaviors and Actions
used in experiments with stationary robots
(small swarms)
Here we outline the different swarm behaviors and robot
actions used in the repeated experiments with small swarms.
The overall state machine used in state Act for this
experiment is shown if Figure 18.

Different behavior sets are defined by different LED light
patterns, as follows:

• B0 = collectively display red.
• B1 = collectively display blue.
• B2 = collectively display teal.
• B3 = collectively display yellow.

The low level robot actions all involve robots outputting
different LED colors (or no color):

• z1 = Red LED.
• z2 = Blue LED.
• z3 = Teal LED.
• z4 = Yellow LED.

All valid behaviors are of the form Bk ∈ Bk are of the
form {α1 = zk, . . . , αn = zk} = Bk.

Appendix C: Additional Related work from
other technical fields
The group mind overlaps with a number of other technical
ideas that have previously appeared in the literature. This
section is dedicated to describing these other ideas and their
relationship to the group mind. Much of this discussion is
tabulated in Table 2.

Surveys of related concepts that cut across disciplines
include Tumer and Wolpert (2004) and Tolksdorf (2000).
Tumer and Wolpert (2004) study the idea of collectives
defined as “such systems, where each agent aims to optimize
its own performance, but where there is a well-defined
set of system-level performance criteria.” Tolksdorf (2000)
investigates different forms of coordination.

Getting multiple robots to work together—or even near
each other—necessarily involves some form of coordination.
The Group Mind can be used as a tool for coordination.
Many coordination strategies have previously been studied,
including: centralization (Schwartz and Sharir 1983),
voting (Utete et al. 1999), prioritization (Buckley 1989),

decentralization (Lumelsky and Harinarayan 1997), traffic
rules (Kato et al. 1992), dynamic teams (Clark et al. 2003),
and distributed control (Schwager et al. 2011; Soltero et al.
2014; Schwager et al. 2015). Centralization and prioritization
seem capable of solving “trained at runtime heterogeneous
response problems” that involve tens of robots or less;
however, these classes of methods do not scale to large
number of robots. Voting and traffic rules are complementary
to the group mind and to each other; nothing prevents a
swarm from using voting, traffic rules, and the group mind
ideas simultaneously. The group mind may be considered
a dynamic team and can be used to facilitate distributed
control.

Biologically inspired robotics (Guillot 2008) is an area
in which the design of robotic hardware and software is
motivated by solutions and technologies found in nature.
Artificial swarms is a sub-field of biologically inspired
robotics that focuses on systems with large numbers of
simple robots that can communicate with each other and/or
interact with their environment. Methods inspired by insect
swarm behavior have been studied as far back as Amkraut
et al. (1985); Reynolds (1987). The group mind is both
biologically inspired and designed to run on an artificial
swarm.

For a comprehensive survey of swarm concepts we suggest
Trianni (2006). Sub-genres of swarm research include
the study of emergent behavior (Matarić 1992), collective
intelligence (Bonabeau et al. 1999), task partitioning (Pini
et al. 2011), task allocation (Matsumoto et al. 1990),
stability and control (Tanner et al. 2007; Becker et al. 2013;
Brogan and Hodgins 1997; Gazi and Passino 2003), and
heterogeneity (Dorigo et al. 2013). The group mind can
be used as a tool to enable emergent behavior, collective
intelligence, task partitioning, task allocation, and behavior
that is heterogeneous. The group mind can be used to assign
robot actions related to the stability and control of a swarm.

Emergent behavior is concerned with complex swarm
behavior resulting from the interaction between many robots.
A selection of topics includes: flocking (Reynolds 1987;
Ferrante et al. 2012), self organization (Beni 1988; Ueyama
and Fukuda 1993; Yoshida et al. 1994), adaptive behavior
(Yamaguchi 1997), and self assembly (Rubenstein et al.
2014). The group mind uses self-organization and can
potentially be used as a tool to enable flocking, adaptive
behavior, self assembly, assembly, and other emergent swarm
behaviors.

Other topics related to swarm behavior that have
previously been studied include: assembly (Werfel et al.
2014), collective transport (Wilson et al. 2014), foraging
(Steels 1990), box-pushing (Becker et al. 2013), sorting
(Lane 1999; OrHai and Teuscher 2011), convergence (de Oca
et al. 2011), path finding (Berridge and Seitzer 2005), and
formation (Balch and Arkin 1998; Barca and Sekercioglu
2011). These are some of the potential swarm behaviors
that might be selected by the group mind in response to
environmental data.

††Each backward message is destined for only a single recipient; thus, the
local ID of the recipient must be included, and the act of broadcasting a
backward message uses bandwidth shared by many robots that will not
benefit from receiving that message.
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Figure 18. The various actions used in the experiment with a small swarm (4 robots) that does not involve movement (and so the
group mind remains intact as long as the swarm is deployed). Depicted is the portion of the high-level state machine that connects
robot actions with the overall state-machine described in Figure 7. Each action requires the robot to display a particular color (red,
blue, green, or yellow LED). Each state automatically transitions back to the state Observe so that the swarm can update its
collective behavior as the group mind detects different environmental feature patterns (e.g., as they change in the environment as
the swarm is deployed). The environmental feature patterns used in the experiment are shown in Figure 11.

Other tools that have been used to facilitate collective
swarm behavior include: local communication (Ferrante
et al. 2014; Yoshida et al. 1994), local sensing (Ferrante
et al. 2012), global signaling (Becker et al. 2013), stigmergy
(Lane 1999), field-following, predefined schemata (Balch
and Arkin 1998), and partial control (Çelikkanat and Şahin
2010). The group mind uses local communication, local (and
global) sensing, and global signaling. A swarm that hosts a
group mind can potentially use any of these tools as part of
an output swarm behavior.

A self reconfigurable robot is a single robot composed
of multiple smaller robots that can alter their arrangement,
e.g., to provide different forms of locomotion (Yim et al.
2007a; Rus and Vona 2001). Robotic self-assembly (Groß

et al. 2006) happens when either a self reconfigurable
robot or a meta-robot spontaneously constructs itself via the
unification of smaller robots, and without the help of an
outside actor (Rubenstein et al. 2014; Yim et al. 2007b). Self-
assembling reconfigurable robots solve the closely related
problem of creating a physical entity out of a set of robots.
The difference between the group mind and robotic self-
assembly is analogous to the difference between mind and
body. There is nothing preventing a self assembling (or
reconfigurable) robot from using a group mind, but this has
not yet been done.

Smart materials are able to reason about and/or respond
to external stimuli. While most common smart materials
react to stimuli in a purely analog fashion (e.g., ferrofluids),
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group mind X [X] X X X X X
group mind + swarm X X X X X X [X] X X X X X X

self-reconfigurable robot X X Y Y Y
Robotic self-assembly X X [X] X Y Y [Y] [Y]

Amorphous computing X X X random X X X X X X
Embodied computation Y Y Y Y Y X [X] X X X X

Smart materials (structure) X X X Y X X
Smart materials (actuation) X X Y X no meta exists X

Programmable Matter X X X X X no meta exists X X
X Defining characteristics of a method.

[X] Defining characteristics that are occasionally absent in selected works.
Y Common characteristics of a method that are not required.

[Y] Characteristics that occasionally show up in a method.
Table 2. Summary comparison between the group mind and other work from robotics and other related fields.

a growing number also contain digital processing elements
that can be used to perform sensing and computation. The
latter variety are called programmable matter and share
similarities with both the group mind and self-reconfigurable
robotics (e.g., intelligent scaffolding (Komendera et al.
2011), distributed sensing, etc.). A distinguishing feature
of smart materials is that their constituent elements remain
mostly assembled once the material is fabricated. A sampling
of programmable matter research that is related to the group
mind from a computational point of view includes: smart
walls (Hosseinmardi et al. 2015), smart sand (Gilpin et al.
2010), smart paint (Butera 2002), sensing skins (Someya
et al. 2004), and smart clothes (Profita et al. 2015). Smart
materials are another potential host for a group mind.

Amorphous computing “considers the problem of con-
trolling millions of spatially distributed unreliable devices
which communicate only with nearby neighbors” (Beal
2005); our group mind is thus a form of amorphous com-
puting. In general the term is used to indicate distributed
computation among a network of nodes in which organi-
zation emerges organically from local communication and
random, haphazard, and/or ubiquitous node placement, and
with the assumption that algorithms should scale to millions
or billions of nodes. Examples of amorphous computing
include: node specialization (Abelson et al. 2000), emergent
hierarchy (Beal 2003), visual display/art (Heaton 2000),
pervasive/ubiquitous computing (Servat and Drogoul 2002;
Ma et al. 2006), spray computers (Zambonelli et al. 2004),
and blob computers (Gruau et al. 2004). The major differ-
ence between the group mind and the vast majority of this
previous work, is that the group mind involves creating a
fully-functioning deliberative meta-computer out of a set of
fully-functioning deliberative participant robots.

Embodied computation is defined as a multi-level
computational model in which the robots at the micro-
level are loosely coupled and have limited abilities, while

the macro-level behavior emerges from self-organization
and environmental interaction/computation (Hamann and
Wörn 2007). The group mind swarm we investigate fits this
definition (as do all artificial swarms and some types of
programmable matter). The main philosophical distinction
between embodied computation as defined by Hamann and
Wörn (2007) and our group mind swarm is that, in the
group mind, the meta-entity fits the (narrow) definition of
a deliberative computational entity, e.g., a user can interact
with or reprogram the group mind directly. Hamann and
Wörn (2007) allows a broader definition of computation that
is rooted in the state change (in the robots/environment)
that emerges due to the local interaction of the micro-level
devices. Our work differs from (Hamann and Wörn 2007)
in that we use real robots and teach the group mind to
recognize patterns in the environment; in contrast, Hamann
and Wörn (2007) use simulation and perform experiments
building Steiner trees and two-class density detection.

Appendix D: Additional related work on
parallel neural networks
Neural Networks have been studied since the 1870s (Bain
1894), and artificial networks implemented on computers as
early as the 1950s (Farley and Clark 1954). More recently,
they have experienced at least two major resurgences. The
first, in the 1980s after the discovery of the backpropagation
algorithm (Rumelhart et al. 1986) enabled better training.
The current “deep learning” revolution has arguably been
enabled by faster computers and inexpensive distributed
computing resources (Cireşan et al. 2010, 2012).

Three fundamentally different approaches have previously
been studied for parallelizing neural network computation:
(1) model parallelism, (2) data parallelism, (3) numerical
parallelism. These ideas are complimentary, and many state
of the art methods use multiple forms of parallelism in the
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(A)

non-parallel

(B)

slice-wise parallel

(C)

layer-wise parallel

Figure 19. Common computational models in neural networks.
Colors illustrate how computation is distributed across multiple
CPUs. (A) All computation happens on a single CPU. (B)
slice-wise parallelism gives each of N CPUs responsibility for
1/N nodes in each layer. (C) layer-wise parallelism gives each
of N CPUs responsibility for 1/N of the layers.

same algorithm (Suri et al. 2002; Dean et al. 2012; Heigold
et al. 2014); Figure 19 illustrates the differences between
these types.

A neural network is essentially a graph G = (V,E)
of nodes V (neurons) and weighted edges E (signal
connections), in which information flows through the edges
and is modified by the nodes. The computation at each node
depends only on the signals sent along its incoming edges.
Model parallelism divides responsibility for the network
amongN CPUs by making each CPU responsible for |V |/N
nodes. Signals are stored in shared memory or sent as
messages between CPUs.

Standard multi-layer perception neural networks are most
often parallelized ‘slice-wise’ (see Figure 19-B), where each
of N CPUs is responsible for 1/N of the neurons in each
layer ` (Farber and Asanovic 1997; Rogers and Skillicorn
1998; Dean et al. 2012). Most methods reduce unnecessary
overhead by attempting to minimize the number of messages
sent between CPUs by assigning downstream nodes to the
same CPU as much as possible (this obviously breaks if the
connections between layers are dense).

A less common alternative (Petrowski et al. 1993; Chen
et al. 2012b; Dean et al. 2012) is to parallelize the network
‘layer-wise’ in which each CPU is responsible for all neurons
on L/N contiguous layers, where 1 ≤ ` ≤ L and L is the
depth of the network (see Figure 19-C).

Model parallelism without regard to the specific graph
structure has also been investigated, wherein each node’s
computation is farmed out to the next available CPU (Rogers
and Skillicorn 1998).

Network topology and computer architecture will largely
dictate which form of model parallelism is used in practice.
If the standard forward-pass and backpropagation training
iteration is used, then the gradients used at layers ` will
be b(L− `)/Nc iterations out of date when ‘layer-wise’
propagation is used. Theoretical results show that using
delayed updates still converges well (Langford et al. 2009),
in general, and experimental results demonstrate that this is
not a problem in practice (Chen et al. 2012b).

Training any non-trivial neural network involves a set T
of training examples where |T | > 1. Data parallelism is
achieved by duplicating the entire network on N CPUs, and
then making each CPU responsible for training the model vs.
|T |/N of the training examples (Witbrock and Zagha 1990;

Farber and Asanovic 1997; Rogers and Skillicorn 1998; Dahl
et al. 2008; Cireşan et al. 2012; Paine et al. 2013; Zhang et al.
2013; Noel and Osindero 2014). In practice, a parameter
server is often used to accumulate and redistribute all updates
to the model weights, but broadcast messages have also been
used.

Rich theoretical results exist for the practical case that the
most recent weights are asynchronously distributed to the
CPUs (note that, when the backpropagation algorithm is used
then this form of learning is a special case of asynchronous
stochastic gradient descent). Tsitsiklis et al. (1986) provide
convergence criteria for a variety of asynchronous stochastic
computational models, in general, while Bottou (1991)
provides the first convergence results of stochastic gradient
descent in neural networks. Langford et al. (2009) perform
stochastic gradient descent with outdated (by no more than
τ iterations) updates, and show that this causes a model to
train no more than τ times as slowly. Agarwal and Duchi
(2011) show that asynchronous distributed gradient based
optimization for stochastic problems scales asymptotically
as O(1/

√
ητ), where τ is iteration number and η = |T |/N

is the number of training examples given to each CPU. This
is similar to the known result for synchronous algorithms.
Recht et al. (2011) shows that distributed stochastic gradient
descent without locking will also converge if each iteration
only modifies a small portion of the decision variable. This
is an important result because it enables the elimination of a
computational bottleneck. Noel and Osindero (2014) extend
the work of Recht et al. (2011) to GPUs with asynchronous
gradient streaming between nodes. Seide et al. (2014) give
bounds on speedup one can expect for data parallelism (as
well as model parallelism).

A final type of neural network parallelism involves
representing the network and weights in matrix form,
and then replacing the necessary linear algebra calls with
standard parallel implementation of the same (Suri et al.
2002).

The group mind uses a variant of model slice-wise
parallelism that is necessitated by the relatively high cost
of passing messages between CPUs (robots). In particular,
we pack all current signal messages for a robot’s slice
(across all training examples plus the real-time sensor data)
into a single message‡‡ that includes both forward and
backward propagation data. As a result, the gradient data
use by our method is N − ` iterations outdated at depth
` (similar to many model layer-wise parallel algorithms).
Thus our method shares both similarities and differences
with previous slice-wise (Petrowski et al. 1993; Chen
et al. 2012b; Dean et al. 2012) and layer-wise (Farber and
Asanovic 1997; Rogers and Skillicorn 1998; Dean et al.
2012) implementations.

Both (Srivastava et al. 2014) and (Vincent et al. 2010)
intentionally drop messages at internal layers of the neural
network to make the model more robust to noise. While
our messages are dropped unintentionally due to packet
collisions and environmental interference, this related work
shows that moderate message loss (e.g., 50%) can actually

‡‡In our experiments, this single message is broken into multiple packets
for transmission between Kilobots.
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make the learning algorithm more robust. On a somewhat
related note, Paine et al. (2013) synchronize weights only
every 600 training iterations due to the fact that getting data
into the GPU buffer is expensive; demonstrating that even
moderate weight update delays do not prevent models from
training in practice.
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