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Abstract. We present RRTX, the first asymptotically optimal sampling-
based motion planning algorithm for real-time navigation in dynamic en-
vironments (containing obstacles that unpredictably appear, disappear,
and move). Whenever obstacle changes are observed, e.g., by onboard
sensors, a graph rewiring cascade quickly updates the search-graph and
repairs its shortest-path-to-goal subtree. Both graph and tree are built di-
rectly in the robot’s state space, respect the kinematics of the robot, and
continue to improve during navigation. RRTX is also competitive in static
environments—where it has the same amortized per iteration runtime as
RRT and RRT* Θ (logn) and is faster than RRT# ω

(
log2 n

)
. In order

to achieve O (logn) iteration time, each node maintains a set of O (logn)
expected neighbors, and the search graph maintains ε-consistency for a
predefined ε.

Keywords: real-time, asymptotically optimal, graph consistency, mo-
tion planning, replanning, dynamic environments, shortest-path

1 Introduction

Replanning algorithms find a motion plan and then repair that plan on-the-fly
if/when changes to the obstacle set are detected during navigation. We present
RRTX, the first asymptotically optimal sampling-based replanning algorithm.
RRTX enables real-time kinodynamic navigation in dynamic environments, i.e.,
in environments with obstacles that unpredictably appear, move, and vanish.
RRTX refines, updates, and remodels a single graph and its shortest-path subtree
over the entire duration of navigation. Both graph and subtree exist in the
robot’s state space, and the tree is rooted at the goal state (allowing it to remain
valid as the robot’s state changes during navigation). Whenever obstacle changes
are detected, e.g., via the robot’s sensors, rewiring operations cascade down
the affected branches of the tree in order to repair the graph and remodel the
shortest-path tree.

Although RRTX is designed for dynamic environments, it is also competitive
in static environments—where it is asymptotically optimal and has an expected
amortized per iteration runtime of Θ (log n) for graphs with n nodes. This is
similar to RRT and RRT* Θ (log n) and faster than RRT# Θ

(
log2 n

)
.
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Fig. 1: Dubins robot (white circle) using RRTX to move from start to goal (white
square) while repairing its shortest-path tree (light-gray) vs. obstacle changes.
Color is cost-to-goal. Planned/executed paths are white/red. Obstacles are black
with white outlines. Time (in seconds) appears above each sub-figure. Tree edges
are drawn (not Dubins trajectories). See http://tinyurl.com/l53gzgd for video.

The expected Θ (log n) time is achieved, despite rewiring cascades, by using
two new graph rewiring strategies: (1) Rewiring cascades are aborted once the
graph becomes ε-consistent1, for a predefined ε > 0. (2) Graph connectivity in-
formation is maintained in local neighbor sets stored at each node, and the usual

1“ε-consistency” means that the cost-to-goal stored at each node is within ε of its
look-ahead cost-to-goal, where the latter is the minimum sum of distance-to-neighbor
plus neighbor’s cost-to-goal.



edge symmetry is allowed to be broken, i.e., the directed edge (u,w) will even-
tually be forgotten by u but not by w or vice versa. In particular, node v always
remembers the original neighbors that were calculated upon its insertion into
the search-graph. However, each of those original neighbors will forget its con-
nection to v once it is no longer within an RRT*-like shrinking D-ball centered
at v (with the exception that connections within the shortest-path subtree are
also remembered). This guarantees: (A) each node maintains expected O (log n)
neighbors, (B) the RRT* solution is always a realizable sub-graph of the RRTX

graph—providing an upper-bound on path length, (C) all “edges” are remem-
bered by at least one node. Although (1) and (2) have obvious side-effects2,
they significantly decrease reaction time (i.e, iteration time vs. RRT# and cost
propagation time vs. RRT*) without hindering asymptotic convergence to the
optimal solution.

A YouTube play-list of RRTX movies at http://tinyurl.com/l53gzgd shows
RRTX solving a variety of motion problems in different spaces [13].

1.1 Related Work

In general, RRTX differs from previous work in that it is the first asymptotically
optimal sampling-based replanning3 algorithm.

Previous sampling-based replanning algorithms (e.g., ERRT [2], DRRT [3],
multipartite RRT [19], LRF [4]) are concerned with finding a feasible path. Pre-
vious methods also delete nodes/edges whenever they are invalidated by dy-
namic obstacles (detached subtrees/nodes/edges not in collision may be checked
for future reconnection). Besides the fact that RRTX is a shortest-path plan-
ning algorithm, it also rewires the shortest-path subtree to temporarily exclude
edges/nodes that are currently in collision (if the edges/nodes cease to be in
collision, then RRTX rewires them back into the shortest-path subtree).

RRT# [1] is the only other sampling-based algorithm that uses a rewiring
cascade; in particular, after the cost-to-goal of an old node is decreased by the
addition of a new node. RRT# is designed for static environments (obstacle
appearances, in particular, break the algorithm). In Section 3 we prove that in
static environments the asymptotic expected runtime to build a graph with n
nodes is Θ (n log n) for RRTX and ω

(
n log2 n

)
for RRT#.

PRM [6] is the first asymptotically optimal sampling-based motion planning
algorithm. PRM*/RRT* [5] are the first with Θ (log n) expected per iteration
time. PRM/PRM*/RRT* assume a static environment, and RRT* uses “Lazy-
propagation” to spread information through an inconsistent graph (i.e., data is
transferred only via new node insertions).

D* [17], Lifelong-A* [7], and D*-Lite [8] are discrete graph replanning algo-
rithms designed to repair an A*-like solution after edge weights have changed.

2(1) Allows graph inconsistency. (2) Prevents the practical realization of some paths.
3Replanning algorithms find a sequence of solutions to the same goal state “on-

the-fly” vs. an evolving obstacle configuration and start state, and are distinct from
multi-query algorithms (e.g., PRM [6]) and single-query algorithms (e.g., RRT [10]).



These algorithms traditionally plan/replan over a grid embedded in the robot’s
workspace, and thus find geometric paths that are suboptimal with respect to the
robot’s state space—and potentially impossible to follow given its kinematics.

Any-Time SPRT [14] is an asymptotically optimal sampling-based motion
planning algorithm that maintains a consistent graph; however, it assumes a
static environment and requires O (n) time per iteration.

LBT-RRT [16] is designed for static environments and maintains a “lower-
bound” graph that returns asymptotically 1 + ε̂ “near-optimal” solutions. Note
that tuning ε̂ changes the performance of LBT-RRT along the spectrum between
RRT and RRT*, while tuning ε changes the graph consistency of RRTX along
the spectrum between that of RRT* and RRT# (i.e., in static environments).

Recent work [12] prunes sampling-based roadmaps down to a sparse subgraph
spanner that maintains near-optimality while using significantly fewer nodes.
This is similar, in spirit, to how RRTX limits each nodes neighbor set to O (log n).

Feedback planners generate a continuous control policy over the state space
(i.e. instead of embedding a graph in the state space). Most feedback planners do
not consider obstacles [18, 15], while those that do [11] assume that obstacles are
both static and easily representable in the state space (sampling-based motion
planning algorithms do not).

1.2 Preliminaries

Let X denote the robot’s D-dimensional state space. X is a measurable metric
space that has finite measure. Formally, L (X ) = c, for some c < ∞ and L (·)
is the Lebesgue measure; assuming d(x1, x2) is a distance function on X , then
d(x1, x2) ≥ 0 and d(x1, x3) ≤ d(x1, x2) + d(x2, x3) and d(x1, x2) = d(x2, x1)
for all x1, x2, x3 ∈ X . We assume the boundary of X is both locally Lipschitz-
continuous and has finite measure. The obstacle space Xobs ⊂ X is the open
subset of X in which the robot is “in collision” with obstacles or itself. The free
space Xfree = X \ Xobs is the closed subset of X that the robot can reach. We
assume Xobs is defined by a set O of a finite number of obstacles O, each with a
boundary that is both locally Lipschitz-continuous and has finite measure.

The robot’s start and goal states are xstart and xgoal, respectively. At time t
the location of the robot is xbot(t), where xbot : [t0, tcur]→ X is the traversed
path of the robot from the start time t0 to the current time tcur, and is undefined
for t > tcur. The obstacle space (and free space) may change as a function of
time and/or robot location, i.e. ∆Xobs = f(t, xbot). For example, if there are
unpredictably moving obstacles, inaccuracies in a priori belief of Xobs, and/or a
subset of Xfree must be “discovered” via the robot’s sensors.

A movement trajectory π(x1, x2) is the curve defined by a continuous map-
ping π : [0, 1]→ X such that 0 7→ x1 and 1 7→ x2. A trajectory is valid iff both
π(x1, x2) ∩ Xobs = ∅ and it is possible for the robot to follow π(x1, x2) given its
kinodynamic and other constraints. dπ(x1, x2) is the length of π(x1, x2).



1.3 Environments: Static vs. Dynamic and Related Assumptions

A static environment has an obstacle set that changes deterministically vs. t
and xbot, i.e., ∆Xobs = f(t, xbot) for f known a priori. In the simplest case,
∆Xobs ≡ ∅. In contrast, a dynamic4 environment has an unpredictably changing
obstacle set, i.e., f is a “black-box” that cannot be known a priori. The assump-
tion of incomplete prior knowledge of ∆Xobs guarantees myopia; this assumption
is the defining characteristic of replanning algorithms, in general. While nothing
prevents us from estimating ∆Xobs based on prior data and/or online observa-
tions, we cannot guarantee that any such estimate will be correct. Note that
∆Xobs 6= ∅ is not a sufficient condition for X to be dynamic5.

1.4 Problem Statement of “Shortest-Path Replanning”

Given X , Xobs, xgoal, xbot(0) = xstart, and unknown ∆Xobs = f(t, xbot), find
π∗(xbot, xgoal) and, until xbot(t) = xgoal, simultaneously update xbot(t) along
π∗(xbot, xgoal) while recalculating π∗(xbot, xgoal) whenever ∆Xobs 6= ∅, where

π∗(xbot, xgoal) = arg min
π(xbot,xgoal)∈Xfree

dπ(xbot, xgoal)

1.5 Additional Notation Used for the Algorithm and its Analysis

RRTX constructs a graph G := (V,E) embedded in X , where V is the node set
and E is the edge set. With a slight abuse of notation we will allow v ∈ V to be
used in place of v’s corresponding state x ∈ X , e.g., as a direct input into distance
functions. Thus, the robot starts at vstart and goes to vgoal. The “shortest-path”
subtree of G is T := (VT , ET ), where T is rooted at vgoal, VT ⊂ V , and ET ⊂ E.
The set of ‘orphan nodes’ is defined V c

T = V \ VT and contains all nodes that
have become disconnected from T due to ∆Xobs (c denotes the set compliment
of VT with respect to V and not the set of nodes in the compliment graph of T ).
G is built, in part, by drawing nodes at random from a random sample se-

quence S = {v1, v2, . . .}. We assume vi is drawn i.i.d from a uniform distribution
over X ; however, this can be relaxed to any distribution with a finite probability
density for all v ∈ Xfree. We use Vn, Gn, Tn to denote the node set, graph,
and tree when the node set contains n nodes, e.g., Gn = G s.t. |V | = n. Note
mi = |Vmi

| at iteration i, but mi 6= i in general because samples may not always
be connectable to G. Indexing on m (and not i) simplifies the analysis.

En (·) denotes the expected value of ‘·’ over the set S of all such sample
sequences, conditioned on the event that n = |V |. The expectation En,vx (·) is
conditioned on both n = |V | and Vn \ Vn−1 = {vx} for vx at a particular x ∈ X .

4The use of the term “dynamic” to indicate that an environment is “unpredictably
changing” comes from the artificial intelligence literature. It should not be confused
with the “dynamics” of classical mechanics.

5For example, if X ⊂ Rd space, T is time, and obstacle movement is known a priori,
obstacles are stationary with respect to X̂ ⊂

(
Rd × T

)
space-time.
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Fig. 2: Neighbor sets of/with node v. Left: v is inserted when r = r1. Right: later
r = r2 < r1. Solid: neighbors known to v. Black solid: original in- N−0 (v) and
out-neighbors N+

0 (v) of v. Colored solid: running in- N−r (v) and out-neighbors
N+
r (v) of v. Dotted: v is neighbor of vi 6= v. Dotted colored: v is an original

neighbor of vi. Bold: edge in shortest-path subtree. Dashed: other sub-path.

RRTX uses a number of neighbor sets for each node v, see Figure 2. Edges
are directed (u, v) 6= (v, u), and we use a superscript ‘−’ and ‘+’ to denote
association with incoming and outgoing edges, respectively. ‘Incoming neighbors’
of v is the set N−(v) s.t. v knows about (u, v). ‘Outgoing neighbors’ of v is the set
N+(v) s.t. v knows about (v, u). At any instant N+(v) = N+

0 (v) ∪N+
r (v) and

N−(v) = N−0 (v) ∪N−r (v), where N−0 (v) and N+
0 (v) are the original PRM*-like

in/out-neighbors (which v always keeps), andN−r (v) andN+
r (v) are the ‘running’

in/out-neighbors (which v culls as r decreases). The set of all neighbors of v is
N(v) = N+(v) ∪N−(v). Because T is rooted at vgoal, the parent of v is denoted
p+T (v) and the child set of v is denoted C−T (v).

g(v) is the (ε-consistent) cost-to-goal of reaching vgoal from v through T . The
look-ahead estimate of cost-to-goal is lmc(v). Note that the algorithm stores both
g(v) and lmc(v) at each node, and updates lmc(v)← minu∈N+(v) dπ(v, u) + lmc(u)
when appropriate conditions have been met. v is ‘ε-consistent’ iff g(v)− lmc(v) < ε.
gm(v) is the cost-to-goal of v given Tm. Recall that π∗X (v, vgoal) is the optimal
path from v to vgoal through X ; the length of π∗X (v, vgoal) is g∗(v).

Q is the priority queue that is used to determine the order in which nodes be-
come ε-consistent during the rewiring cascades. The key that is used for Q is the
ordered pair

(
min(g(v), lmc(v)), g(v)

)
nodes with smaller keys are popped from

Q before nodes with larger keys, where (a, b) < (c, d) iff a < c ∨ (a = c ∧ b < d).

2 The RRTX Algorithm

RRTX appears in Algorithm 1 and its major subroutines in Algorithms 2-6
(minor subroutines appear on the last page). The main control loop, lines 3-
17, terminates once the robot reaches the goal state. Each pass begins by up-
dating the RRT*-like neighborhood radius r (line 4), and then accounting for



Algorithm 1: RRTX(X , S)
V ← {vgoal}1

vbot ← vstart2

while vbot 6= vgoal do3

r ← shrinkingBallRadius()4

if obstacles have changed then5

updateObstacles()6

if robot is moving then7

vbot ← updateRobot(vbot)8

v ← randomNode(S)9

vnearest ← nearest(v)10

if d(v, vnearest) > δ then11

v ← saturate(v, vnearest)12

if v 6∈ Xobs then13

extend(v, r)14

if v ∈ V then15

rewireNeighbors(v)16

reduceInconsistency()17

Algorithm 2: extend(v, r)

Vnear ← near(v, r)1

findParent(v, Vnear)2

if p+T (v) = ∅ then3

return4

V ← V ∪ {v}5

C−T (p
+
T (v))← C−T (p

+
T (v)) ∪ {v}6

forall u ∈ Vnear do7

if π(v, u) ∩ Xobs = ∅ then8

N+
0 (v)← N+

0 (v) ∪ {u}9

N−r (u)← N−r (u) ∪ {v}10

if π(u, v) ∩ Xobs = ∅ then11

N+
r (u)← N+

r (u) ∪ {v}12

N−0 (v)← N−0 (v) ∪ {u}13

Algorithm 3: cullNeighbors(v, r)

forall u ∈ N+
r (v) do1

if r < dπ(v, u) and p+T (v) 6= u then2

N+
r (v)← N+

r (v) \ {u}3

N−r (u)← N−r (u) \ {v}4

Algorithm 4: rewireNeighbors(v)

if g(v)− lmc(v) > ε then1

cullNeighbors(v, r)2

forall u ∈ N−(v) \ {p+T (v)} do3

if lmc(u) > dπ(u, v) + lmc(v) then4

lmc(u)← dπ(u, v) + lmc(v)5

makeParentOf(v, u)6

if g(u)− lmc(u) > ε then7

verrifyQueue(u)8

Algorithm 5: reduceInconsistency()

while size(Q) > 0 and1 (
keyLess(top(Q), vbot) or lmc(vbot) 6= g(vbot)
or g(vbot) =∞ or Q 3 vbot

)
do

v ← pop(Q)2

if g(v)− lmc(v) > ε then3

updateLMC(v)4

rewireNeighbors(v)5

g(v)← lmc(v)6

Algorithm 6: findParent(v, U)

forall u ∈ U do1

π(v, u)← computeTrajectory(X , v, u)2

if dπ(v, u) ≤ r and3

lmc(v) > dπ(v, u) + lmc(u) and π(v, u) 6= ∅
and Xobs ∩ π(v, u) = ∅ then

p+T (v)← u4

lmc(v)← dπ(v, u) + lmc(u)5

obstacle and/or robot changes (lines 5-8). “Standard” sampling-based motion
planning operations improve and refine the graph by drawing new samples and
then connecting them to the graph if possible (lines 9-14). RRT*-like graph
rewiring (line 16) guarantees asymptotic optimality, while rewiring cascades en-
force ε-consistency (line 17, and also on line 6 as part of updateObstacles()).
saturate(v, vnearest), line 12, repositions v to be δ away from vnearest.

extend(v, r) attempts to insert node v into G and T (line 5). If a connection
is possible then v is added to its parent’s child set (line 6). The edge sets of v
and its neighbors are updated (lines 7-13). For each new neighbor u of v, u is
added to v’s initial neighbors sets N+

0 (v) and N−0 (v), while v is added to u’s
running neighbor sets N+

r (u) and N−r (u). This Differentiation allows RRTX to
maintain O (log n) edges at each node, while ensuring T is no worse than the
tree created by RRT* given the same sample sequence.



cullNeighbors(v, r) updates N−r (v), and N+
r (v) to allow only edges that

are shorter than r—with the exceptions that we do not remove edges that are
part of T . RRTX inherits asymptotic optimality and probabilistic completeness
from PRM*/RRT* by never culling N−0 (v) or N+

0 (v).
rewireNeighbors(v) rewires v’s in-neighbors u ∈ N−(v) to use v as their

parent, if doing so results in a better cost-to-goal at u (lines 3-6). This rewiring
is similar to RRT*’s rewiring, except that here we verify that ε-inconsistent
neighbors are in the priority queue (lines 7-8) in order to set off a rewiring
cascade during the next call to reduceInconsistency().

reduceInconsistency() manages the rewiring cascade that propagates cost-
to-goal information and maintains ε-consistency in G (at least up to the level-set
of lmc(·) containing vbot). It is similar to its namesake from RRT#, except that
in RRTX the cascade only continues through v’s neighbors if v is ε-inconsistent
(lines 3-5). This is one reason why RRTX is faster than RRT#. Note that v is
always made locally 0-consistent (line 6).

updateLMC(v) updates lmc(v) based on v’s out-neighborsN+(v) (as in RRT#).
findParent(v, U) finds the best parent for v from the node set U .
propogateDescendants() performs a cost-to-goal increase cascade leaf-ward
through T after an obstacle has been added; the cascade starts at nodes with
edge trajectories made invalid by the obstacle and is necessary to ensure that
the decrease cascade in reduceInconsistency() reaches all relevant portions of
T (as in D*). updateObstacles() updates G given ∆Xobs; affected by nodes
are added to Q or V c

T , respectively, and then reduceInconsistency() and/or
propogateDescendants() are called to invoke rewiring cascade(s).

3 Runtime Analysis of RRT, RRT*, RRTX, and RRT#

In 3.1-3.3 we prove bounds on the time required by RRT, RRT*, RRTX, and
RRT# to build a search-graph containing n nodes in the static case ∆Xobs = ∅.
In 3.4 we discuss the extra operations required by RRTX when ∆Xobs 6= ∅.
Lemma 1.

∑n
j=1 log j = Θ (n log n).

Proof. log (j + 1)− log j ≤ 1 for all j ≥ 1. Therefore, by construction:
−n +

∫ n
1

log x dx ≤ ∑n
j=1 log j ≤ n +

∫ n
1

log x dx for all n ≥ 1. Calculus gives:

−n+ 1−n
ln 2 + n log n ≤∑n

j=1 log j ≤ n+ 1−n
ln 2 + n log n ut

Slight modifications to the proof of Lemma 1 yield the following corollaries:

Corollary 1.
∑n
j=1

log j
j = Θ

(
log2 n

)
.

Corollary 2.
∑n
j=1 log2 j = Θ

(
n log2 n

)
.

Let fRRTi and fRRT∗i denote the runtime of the ith iteration of RRT and
RRT*, respectively, assuming samples are drawn uniformly at random from
X according to the sequence S = {v1, v2, . . .}. Let fRRT (n), fRRT∗(n), and

fRRT
X

(n) denote the cumulative time until n = |Vn|, i.e., the graph contains n
nodes, using RRT, RRT*, and RRTX, respectively.



vx

p

r

dπ(vx, p)

g∗(vx)

g∗(p)

gn(p)

gn(vx) = gn(p) + dπ(vx, p)

Fig. 3: Node vx at x is inserted when
n = |Vn|. The parent of vx is p. dπ(vx, p)
is the distance from vx to p along the (red)
trajectory. gn(vx) and gn(p) are the cost-
to-goals of vx and p when n = |Vn|, while
g∗(vx) and g∗(p) are their optimal cost-to-
goals, respectively. The neighbor ball (blue)
has radius r. Obstacles are not drawn.

3.1 Expected Time until |V | = n for RRT and RRT*

[10] and [5] give the following propositions, respectively:

Proposition 1. fRRTi = Θ (logmi) for i ≥ 0, where mi = |Vmi
| at iteration i.

Proposition 2. E
(
fRRT∗i

)
= Θ

(
fRRTi

)
for all i ≥ 0.

The dominating term in both RRT and RRT* is due to a nearest neighbor
search. The following corollaries are straightforward to prove given Lemma 1
and Propositions 1 and 2 (proofs are omitted here due to space limitations).

Corollary 3. E
(
fRRT (n)

)
= Θ (n log n).

Corollary 4. E
(
fRRT∗(n)

)
= Θ (n log n).

3.2 Expected Amortized Time until |V | = n for RRTX (Static X )

In this section we prove: En
(
fRRT

X

(n)
)

= Θ (n log n). The proof involves a

comparison to RRT* and proceeds in the following three steps:

1. RRT* cost-to-goal values approach optimality, in the limit as n→∞.

2. For RRT*, the summed total difference (i.e., over all nodes) between initial
and optimal cost-to-goal values is O (εn); thus, when n = |Vn|, RRTX will
have performed at most O (n) cost propagations of size ε given the same S.

3. For RRTX, each propagation of size ε requires the same order amortized time
as inserting a new node (which is the same order for RRT* and RRTX).

By construction RRTX inherits the asymptotically optimal convergence of
RRT* (we assume the planning problem, cost function, and ball parameter are
defined appropriately). Theorem 38 from [5] has two relevant corollaries:

Corollary 5. P ({lim supn→∞ gn(v) = g∗(v)}) = 1 for all v : v ∈ Vn<∞.

Corollary 6. limn→∞ En (gn(v)− g∗(v)) = 0 for all v : v ∈ Vn≤∞.



Consider the case of adding vx as the nth node in RRT* (Figure 3), where vx
is located at x. The RRT* parent of vx is p and d(vx, p) is the distance from vx to
p. The length of the trajectory from vx to p is dπ(vx, p). The radius of the shrink-
ing neighborhood ball is r. By construction d(vx, p) < r and dπ(vx, p) < r. Let

d̂(vx, p) be a stand in for both d(vx, p) and dπ(vx, p). The following proposition
comes from the fact that limn→∞ r = 0.

Proposition 3. limn→∞ En,vx
(

d̂(vx, p)
)

= 0, where p is RRT* parent of vx.

Lemma 2. limn→∞ En,vx (gn(vx)− g∗(vx)) = 0.

Proof. By the triangle inequality g∗(vx) + d(p, vx) ≥ g∗(p). Rearranging and
then adding gn(vx) to either side:

gn(vx)− g∗(vx) ≤ gn(vx)− g∗(p) + d(p, vx). (1)

(1) holds over all S ∈ {Ŝ : Vn \ Vn−1 = {vx}} ⊂ S, thus

En,vx (gn(vx)− g∗(vx)) ≤ En,vx (gn(vx)− g∗(p) + d(p, vx)) . (2)

By construction gn(vx) = gn(p) + dπ(vx, p). Substituting into (2), using the lin-
earity of expectation, and taking the limit of either side:

lim
n→∞

En,vx (gn(vx)− g∗(vx)) ≤

lim
n→∞

En,vx (gn(p)− g∗(p)) + lim
n→∞

En,vx (dπ(vx, p)) + lim
n→∞

En,vx (d(p, vx)) .

The law of large numbers guarantees that x (i.e., location of vx) becomes uncor-
related with the cost-to-goal of p, in the limit as n → ∞. Thus, consequently:
limn→∞ En,vx (gn(p)− g∗(p)) = limn→∞ En (gn(p)− g∗(p)). Using Corollary 6
and Proposition 3 (twice) finishes the proof. ut

Applying the law of total expectation yields the following corollary regarding
the nth node added to V , and completes step 1 of the overall proof.

Corollary 7. limn→∞ En (gn(v)− g∗(v)) = 0, where Vn \ Vn−1 = {v}.

Lemma 3.
∑n
m=1 Em (gm(vm)− g∗(vm)) = O (εn) for all n such that

1 ≤ n <∞ and where Vm \ Vm−1 = {vm} for all m s.t. 1 ≤ m ≤ ∞.

Proof. Using the definition of a limit with Corollary 7 shows that for any c1 > 0
there must exist some nc <∞ such that En (gn(v)− g∗(v)) < c1 for all n > nc.
We choose c1 = ε and define c2 =

∑nc

m=1 Em (gm(vm)− g∗(vm)) so that by con-
struction

∑n
m=1 Em (gm(vn)− g∗(vn)) ≤ c2 + εn for all n s.t. 1 ≤ n <∞. ut

Let fpr(n) denote the total number of cost propagations that occur (i.e.,
through any and all nodes) in RRTX as a function of n = |Vn|.
Lemma 4. En (fpr(n)) = O (n)



Proof. When m = |Vm| a propagation is possible only if there exists some node
v such that gm(v)−g∗(v) > ε. Assuming RRT* and RRTX use the same S, then
by construction gm(v) for RRT* is an upper bound on gm(v) for RRTX for all
v ∈ Vm andm such that 1 ≤ m <∞. Thus, fpr(n) ≤ (1/ε)

∑n
m=1 gm(vm)− g∗(vm),

where gm(vm) is the RRT*-value of this quantity. Using the linearity of expec-
tation to apply Lemma 3 we find that En (fpr(n)) ≤ (1/ε)O (εn). ut

Corollary 8. lim
n→∞

En(f
pr(n))
cn ≤ 1 for some constant c <∞.

Corollary 8 concludes step two of the overall proof. The following Lemma 5
uses the notion of runtime amortization6. Let f̂single(n) denote the amortized
time to propagate an ε-cost reduction from node v to N(v) when n = |Vn|.

Lemma 5. P
(
{ lim
n→∞

f̂single(n)
c logn ≤ 1}

)
= 1 for some constant c <∞.

Proof. By construction, a single propagation through v requires interaction with
|N(v)| neighbors. Each interaction normally requires Θ (1) time–except when the
interaction results in u ∈ N(v) receiving an ε-cost decrease. In the latter case
u is added/updated in the priority queue in O (log n) time; however, we add
this O (log n) time to u’s next propagation time, so that the current propaga-
tion from v only incurs Θ (1) amortized time per each u ∈ N(v). To be fair, v
must account for any similar O (log n) time that it has absorbed from each of
the c1 nodes that have given it an ε-cost reduction since the last propagation
from v. But, for c1 ≥ 1 the current propagation from v is at least c1ε and so
we can count it as c1 different ε-cost decreases from v to N(v) (and v only

touches each u ∈ N(v) once). Hence, c1f̂
single(n) = |N(v)|+ c1O (log n). By the

law of large numbers, P ({limn→∞ |N(v)| = c2 log n)} = 1, for some constant

c2 s.t. 0 < c2 <∞. Hence, P
(
{limn→∞ f̂single(n) ≤ (c2/c1) log n+ log n}

)
= 1,

setting c = 1 + c2/c1 finishes the proof. ut

Corollary 9. lim
n→∞

En(f̂single(n))
c logn ≤ 1 for some constant c <∞.

Let fall(n) denote the total runtime associated with cost propagations by the

iteration that n = |Vn|, where fall(n) =
∑fpr(n)
j=1 f̂single(mj) for a particular run

of RRTX resulting in n = |Vn| and fpr(n) individual ε-cost decreases.

Lemma 6. lim
n→∞

En(fall(n))
cn logn < 1 for c ≤ ∞.

Proof. limn→∞ En (fpr(n)) 6= 0 and limn→∞ En
(
f̂single(n)

)
6= 0, so obviously

lim
n→∞

En(f
pr(n))En(f̂single(n))

En(fpr(n))En(f̂single(n))
= 1. Although f̂single(n) and fpr(n) are mutually

6In particular, if a node u receives an ε-cost decrease > ε via another node v, then
u agrees to take responsibility for the runtime associated with that exchange (i.e.,
including it as part u’s next propagation time).



dependent, in general, they become independent7 in the limit as n→∞. Thus,

lim
n→∞

En(fpr(n)f̂single(n))
En(fpr(n))En(f̂single(n))

= lim
n→∞

En(f
pr(n))En(f̂single(n))

En(fpr(n))En(f̂single(n))
= 1. Note that the

previous step would not have been allowed outside the limit. Using algebra:

lim
n→∞

En

(∑fpr(n)
j=1 f̂single(n)

)
En(fpr(n))En(f̂single(n))

= 1. Using Corollaries 8 and 9:

lim
n→∞

En

(∑fpr(n)
j=1 f̂single(n)

)
c1c2n logn ≤ lim

n→∞

En

(∑fpr(n)
j=1 f̂single(n)

)
En(fpr(n))En(f̂single(n))

= 1 for some c1, c2 <∞.

Using algebra and defining c = c1c2 finishes the proof. ut

Corollary 10. En
(
fall(n)

)
= O (n log n) .

Theorem 1. En
(
fRRT

X

(n)
)

= Θ (n log n).

Proof. When ∆Xobs = ∅, RRTX differs from RRT* in 3 ways: (1) ε-cost propa-
gation, (2) neighbor list storage, and (3) neighbor list culling8. RRTX runtime is
found by adding the extra time of (1), (2), and (3) to that of RRT*. Corollary 10
gives the asymptotic time of (1). (2) and (3) are O (|N(v)|), the same as finding a

new node’s neighbors in RRT*. Therefore, En
(
fRRT

X

(n)
)

= En
(
fRRT∗(n)

)
+

En
(
fall(n)

)
. Trivially: En

(
fRRT∗(n)

)
= Θ

(
En
(
fRRT∗(n)

))
, and by Corollar-

ies 4 and 10: En
(
fRRT

X

(n)
)

= Θ (n log n) +O (n log n) = Θ (n log n) ut

3.3 Expected Time until |V | = n for RRT#

RRT# does not cull neighbors (in contrast to RRTX) and so all nodes continue
to accumulate neighbors forever.

Lemma 7. En (|N(v)|) = Θ
(
log2 n

)
for all v s.t. v ∈ Vm for some m < n <∞.

Proof. Assuming v is inserted when m = |Vm|, the expected value of En (|N(v)|),
where n = |Vn| for some n > m is:

En (|N(v)|) = c logm+
∑n
j=m+1

c log j
j = c

(
logm+

(∑n
j=1

log j
j

)
−
(∑m

j=1
log j
j

))
where c is constant. Corollary 1 finishes the proof. ut

RRT# propagates all cost changes (in contrast, RRTX only propagates those
larger than ε). Thus, any cost decrease at v is propagated to all descendants
of v, plus any additional nodes that become new descendants of v due to the
propagation. Let fpr#(n) be the number of propagations (i.e., through a single
node) that have occurred in RRT# by the iteration that n = |Vn|.

Lemma 8. P(limn→∞
n

fpr#(n)
= 0) = 1 with respect to S.

7i.e., because the number of neighbors of a node converges to the function logn
with probability 1 (as explained in Lemma 5)

8Note that neighbors that are not removed during a cull are touched again during
the RRT*-like rewiring operation that necessarily follows a cull operation.



Proof. By contradiction. Assume that P(limn→∞
n

fpr#(n)
= 0) = c1 < 1. Then

there exists some c2 and c3 such that P(limn→∞
n

fpr#(n)
≥ c2 > 0) = c3 > 0

and therefore E(limn→∞
n

fpr#(n)
) ≥ c2c3 > 0, and the expected number of cost

propagations to each v s.t. v ∈ Vn is c4 = 1
c2c3

<∞, in the limit as n→∞. This
is a contradiction because v experiences an infinite number of cost decreases with
probability 1 as a result of RRT#’s asymptotic optimal convergence, and each
decrease (at a non-leaf node) causes at least one propagation. ut

The runtime of RRT# can be expressed in terms of the runtime of RRT*
plus the extra work required to keep the graph consistent (cost propagations):

f
RRT#
mi = Θ

(
fRRT∗mi

)
+
∑fpr#(mi)
j=1 fpr#j . (3)

Here, fpr#(mi) is the total number of cost propagations (i.e., through a single

node) by iteration i when mi = |V |, and fpr#j is the time required for the jth

propagation (i.e., through a single node). Obviously fpr#j > c for all j, where
c > 0. Also, for all j ≥ 1 and all m the following holds, due to non-decreasing
expected neighbor set size vs. j:

Em
(
fpr#j

)
≤ Em

(
fpr#j+1

)
(4)

Lemma 9. lim
n→∞

n log2 n

En

(∑fpr#(n)
j=1 fpr#

j

) = 0.

Proof. lim
n→∞

En(
∑n

j=1 f
pr#
j )

En

(∑fpr#(n)
j=n+1 fpr#

j

) = 0 because the ratio between the number of terms

in the numerator vs. denominator approaches 0, in the limit, by Lemma 8, and
the smallest term in the denominator is no smaller than the largest term in the

numerator, by (4). Obviously, lim
n→∞

En(
∑n

j=1 f
pr#
j )

En

(∑fpr#(n)
j=1 fpr#

j

) ≤ lim
n→∞

En(
∑n

j=1 f
pr#
j )

En

(∑fpr#(n)
j=n+1 fpr#

j

) = 0.

Rearranging: lim
n→∞

∑n
j=1 Emj (fpr#

j )

En

(∑fpr#(n)
j=1 fpr#

j

) = 0. By Lemma 7: lim
n→∞

∑n
j=1 Emj (c log2mj)∑n

j=1 Emj (fpr#
j )

= 1

for some constant c such that 0 < c <∞. Hence,

lim
n→∞

∑n
j=1 Emj (fpr#

j )

En

(∑fpr#(n)
j=1 fpr#

j

) ∑n
j=1 Emj (c log2mj)∑n

j=1 Emj (fpr#
j )

=
c
∑n

j=1 Emj (log2mj)

En

(∑fpr#(n)
j=1 fpr#

j

) = 0

Corollary 2 with the linearity of expectation finishes the proof. ut
Corollary 11. En

(∑fpr#(n)
j=1 fpr#j

)
= ω

(
n log2 n

)
.

In the above, ω
(
n log2 n

)
is a stronger statement than Ω

(
n log2 n

)
. We are now

ready to prove the asymptotic runtime of RRT#.

Theorem 2. En
(
f
RRT#
n

)
= ω

(
n log2 n

)
Proof. Taking the limit (as mi = n→∞) of the expectation of either side of (3)
and then using Corollaries 4 and 11, we see that the expected runtime of RRT#

is dominated by propagations: En
(
f
RRT#
n

)
= Θ (n log n) + ω

(
n log2 n

)
. ut



3.4 RRTX Obstacle Addition/Removal in Dynamic Environments

The addition of an obstacle requires finding Vobs, the set of all nodes with tra-
jectories through the obstacle, and takes expected O (|D(Vobs)| log n) time. The
resulting call to reduceInconsistency() interacts with each u ∈ D(Vobs), where
D(Vobs) is the set of all descendants of all u ∈ Vobs, and each interaction takes
expected time O (log n) due to neighbor sets and heap operations. Thus, adding
an obstacle requires expected time O (|D(Vobs)| log n). Removing an obstacle re-
quires similar operations and thus the same order of expected time. In the special
case that the obstacle has existed since t0, then D(Vobs) = ∅ and time is O (1).

4 Simulation: Dubins Vehicle in a Dynamic Environment

We have tested RRTX on a variety of problems and state spaces, including
unpredictably moving obstacles; we encourage readers to watch the videos we
have posted online at [13]. However, due to space limitations, we constrain the
focus of the current paper to how RRTX can be used to solve a Dubins vehicle
problem in a dynamic environment.

The state space is defined X ⊂ R2 × S1. The robot moves at a constant
speed and has a predefined minimum turning radius rmin [9]. Distance between

two points x, y ∈ X is defined d(x, y) =
√
cθ(xθ − yθ)2 +

∑2
i=1(xi − yi)2, where

xθ is heading and xi is the coordinate of x with respect to the ith dimension
of R2, and assuming the identity θ = θ + 2π is obeyed. The constant cθ deter-
mines the cost trade-off between a difference in location vs. heading. d(x, y) is
the length of the geodesic between x and y through R2 × S1. dπ(x, y) is the
length of the Dubins trajectory that moves the robot from x to y. In general,
dπ(x, y) 6= d(x, y); however, by defining cθ appropriately (e.g., cθ = 1) we can
guarantee dπ(x, y) ≥ d(x, y) so that d(x, y) is an admissible heuristic on dπ(x, y).

Figure 1 shows a simulation. rmin = 2m, speed = 20 m/s, sensor range = 10m.
The robot plans for 10s before moving, but must react on-the-fly to ∆Xobs.

5 Discussion

RRTX is the first asymptotically optimal algorithm designed for kinodynamic
replanning in environments with unpredictably changing obstacles. Analysis and
simulations suggest that it can be used for effective real-time navigation. That
said, the myopia inherent in dynamic environments makes it impossible for any
algorithm/agent to avoid collisions with obstacles that can overwhelm finite
agility and/or information (e.g., appear at a location that cannot be avoided).

Analysis shows that RRTX is competitive with all state-of-the-art motion
planning algorithms in static environments. RRTX has the same order expected
runtime as RRT and RRT*, and is quicker than RRT#. RRTX inherits proba-
bilistic completeness and asymptotic optimality from RRT*. By maintaining a
ε-consistent graph, RRTX has similar behavior to RRT# for cost changes larger
than ε; which translates into faster convergence than RRT* in practice.



Algorithm 7: updateObstacles()

if ∃O : O ∈ O ∧O has vanished then1

forall O : O ∈ O ∧O has vanished do2

removeObstacle(O)3

reduceInconsistency()4

if ∃O : O 6∈ O ∧O has appeared then5

forall O : O 6∈ O ∧O has appeared do6

addNewObstacle(O)7

propogateDescendants()8

verrifyQueue(vbot)9

reduceInconsistency()10

Algorithm 8: propogateDescendants()

forall v ∈ V c
T do1

V c
T ← V c

T ∪ C−T (v)2

forall v ∈ V c
T do3

forall u ∈
(
N+(v) ∪ {p+T (v)}

)
\ V c
T do4

g(u)←∞5

verrifyQueue(u)6

forall v ∈ V c
T do7

V c
T ← V c

T \ {v}8

g(v)←∞9

lmc(v)←∞10

if p+T (v) 6= ∅ then11

C−T (p
+
T (v))← C−T (p

+
T (v)) \ {v}12

p+T (v)← ∅13

Algorithm 9: verrifyOrphan(v)

if v ∈ Q then remove(Q, v)1

V c
T ← V c

T ∪ {v}2

Algorithm 10: removeObstacle(O)

EO ← {(v, u) ∈ E : π(v, u) ∩O 6= ∅}1

O ← O \ {O}2

EO ← EO \ {(v, u) ∈ E : π(v, u) ∩O′ 6= ∅3

for some O′ ∈ O}
VO ← {v : (v, u) ∈ EO}4

forall v ∈ VO do5

forall u : (v, u) ∈ EO do6

dπ(v, u)← recalculate dπ(v, u)7

updateLMC(v)8

if lmc(v) 6= g(v) then verrifyQueue(v)9

Algorithm 11: addNewObstacle(O)

O ← O ∪ {O}1

EO ← {(v, u) ∈ E : π(v, u) ∩O 6= ∅}2

forall (v, u) ∈ EO do3

dπ(v, u)←∞4

if p+T (v) = u then verrifyOrphan(v)5

if vbot ∈ π(v, u) then πbot = ∅6

Algorithm 12: verrifyQueue(v)

if v ∈ Q then update(Q, v)1

else add(Q, v)2

Algorithm 13: updateLMC(v)

cullNeighbors(v, r)1

forall u ∈ N+(v) \ V c
T : p+T (u) 6= v do2

if lmc(v) > dπ(v, u) + lmc(u) then3

p′ ← u4

makeParentOf(p′, v)5

The consistency parameter ε must be greater than 0 to guarantee Θ (log n)
expected iteration time. It should be small enough such that a rewiring cascade
is triggered whenever obstacle changes require a course correction by the robot.
For example, in a Euclidean space (and assuming the robot’s position is defined
as its center point) we suggest using an ε no larger than 1/2 the robot width.

6 Conclusions

We present RRTX, the first asymptotically optimal sampling-based replanning
algorithm. RRTX facilitates real-time navigation in unpredictably changing en-
vironments by rewiring the same search tree for the duration of navigation,
continually repairing it as changes to the state space are detected. Resulting
motion plans are both valid, with respect to the dynamics of the robot, and
asymptotically optimal in static environments. The robot is also able to improve
its plan while it is in the process of executing it. Analysis and simulations show
that RRTX works well in both unpredictably changing and static environments.
In static environments the runtime of RRTX is competitive with RRT and RRT*
and faster than RRT#.
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