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Abstract— We present an any-com algorithm that enables a
decentralized team of robots to share the work of collision
checking while each robot independently calculates its own
motion plan. In our method “safety-certificates” (i.e., bounds on
the collision-free subspace around each collision-checked point
[1]), are shared among the team so that all robots can benefit
from their encoded knowledge. Future points drawn from
within a certificate are guaranteed to be safe; therefore, sharing
certificates among team members reduces collision checking for
all robots. Experiments demonstrate that our algorithm scales
well vs. both team size and vs. communication quality.

I. INTRODUCTION

Achieving faster collision checking is a key hurdle to
enabling more sophisticated real-time motion planning [3].
Robots that operate in a shared environment face similar
collision checking problems. In general, it makes sense for all
robots facing a mutual and computationally complex problem
to pool their computational resources in order to solve it.
Any-com1 algorithms [4], [5] provide a robust framework
for facilitating this type of computational collaboration given
realistic communication constraints between robots, e.g.,
when communication quality is imperfect, unknown a priori,
and/or changing with time. In this paper we present an
any-com algorithm that extends the collision checking
certificate idea from [1] to work with decentralized2 multi-
robot teams.

v

dobs

v

u

(A) (B) (C) (D)

Fig. 1. Our single-robot collision certificate method from [1]. A: Collision
checked nodes v store “safety certificates” (blue) defined by dobs the
distance to the nearest obstacle (black). B: Future nodes u within a
certificate can forgo collision checking. C: Pointers (red-dotted lines) are
maintained to certifying nodes. D: The ratio of collision checks vs. all nodes
approaches zero in the limit vs. graph size. Note, this particular graphic
originally appeared in [2].
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1An any-com algorithm is a distributed algorithm that gracefully tol-
erates communication failure between computational nodes. Better/quicker
solutions are found as communication quality increases, but communication
failure does not prevent a solution from being found.

2In decentralized planning each robot computes its own motion without
full knowledge of the other robots’ plans. Decentralized methods are
incomplete (may fail to find a solution when one exists) but are significantly
faster than centralized methods and often used in practice.
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Robots A, B, and C (blue, red, and green, respectively) plan paths between
their own start (large opaque dots) and goal (‘x’) locations. No collision
checking is necessary within safety certificates (semi-transparent discs).

Sharing safety certificates among robots during planning allows each to
perform less collision checking. Shared certificate nodes (white) are inserted
into the nearest-neighbor database (e.g., kd-tree), but not the search graph.

As the search continues, shared certificate nodes are added to the search
graph if they certify new graph-nodes; new certificates continue to be shared.

Fig. 2. Overview of the any-com distributed multi-robot collision checking
algorithm presented in the current paper.

In [1] we show that collision checking operations can be
significantly reduced for single-robot planning in a metric
space by using “safety certificates” that record dobs, the
distance of (explicitly collision-checked) point v to the
nearest obstacle, see Figure 1. If a new node u is drawn
from within an existing certificate (i.e., ‖v − u‖ < dobs),
then u cannot possibly be in collision and a new check
(for u) is unnecessary. u then stores a pointer to v so that
future nodes drawn near u can also check their status vs. the
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certificate stored at v. In practice, certificates can be stored
within a kd-tree (which is already a common subroutine
in motion planning algorithms, e.g., [6], [7], [8]), and so
our method can be used without increasing the run-time
complexity of many common motion planning algorithms.
Moreover, the expected proportion of collision checks vs. all
samples approaches zero as the number of samples increases
to infinity (see [1] for details).

In the current paper we investigate an any-com algorithm
that allows a decentralized team of robots to share the work
of collision checking their shared environment, see Figure 2.
There are three robots labeled A, B, and C. If a particular
robot R ∈ {A,B,C} adds a point v to its search graph such
that R calculated v.dobs (the safety certificate of v) then
R broadcasts v (including v.dobs) to {A,B,C} \ {R} so
that the other robots can add it to their graph and thus avoid
collision checks for all points u such that ‖v − u‖ < v.dobs.
Full details are provided in Section III.

The any-com properties of the algorithm are due to the
fact that dropped messages do not prohibit any robot from
eventually finding a solution, while successful messages
enable the receiving robot to perform less collision checking.

The rest of this paper is organized as follows: Section II
contains related work. The details of our algorithm are
presented in Section III. Run-time analysis appears in Sec-
tion IV. Section V contains a series of experiments designed
to test both the any-com properties of our algorithm and its
performance vs. team size. Section VI contains a discussion
of our results, and conclusions appear in Section VII.

II. RELATED WORK

Sampling-based algorithms3 are often used for solving
high-dimensional motion planning problems in robotics,
computer graphics, and synthetic biology [9], [10], [11]. The
main idea is to construct a graph of collision-free trajectories
through the configuration space, thereby avoiding an explicit
(and often computationally prohibitive) representation of the
obstacles in that space. However, building the graph in this
way requires collision checking in order to test which new
trajectories can safely be attached to the existing graph.

The idea of using “safety-certificates” to reduce collision
checking first appeared in [1], which focused on collision
checking in the context of a single robot. In [2] we extend
the idea from [1] to centralized4 multi-robot teams; however,
[2] is significantly different from the current paper because

3In general, sampling-based algorithms are either single- or multi-query,
depending on if they solve problems requiring a single path or multiple
different paths through a particular configuration space, respectively (e.g.,
the Rapidly-exploring Random Tree (RRT) [6] vs. Probabilistic RoadMap
(PRM) [7] algorithms, respectively). Feasible-path algorithms are concerned
with returning a valid solution, whereas shortest-path algorithms search
for the “best” solution with respect to a distance-metric (e.g., RRT [6] vs.
RRT* [8], respectively).

4In a centralized implementation a single computational entity searches
for a collision-free path through the Cartesian product of all individual
robots’ configuration spaces. While this approach is probabilistically com-
plete (i.e., if a solution exists, then the probability of finding it approaches
1 as the computation time approaches infinity), the search complexity of
centralized motion planning algorithms scales exponentially vs. team size,
making them impractical whenever team size is not small.

it focuses on the centralized-specific problem of planning
in a high-dimensional Cartesian product of nearly-identical
individual-robot configuration spaces. Further, it does not
attempt to leverage the combined computational resources
available in a multi-robot team. In contrast, the current paper
focuses on using certificates with a decentralized team; it
does attempt to leverage the team’s combined computational
resources; and it also contains an investigation into the any-
com properties of the certificate method.

When (explicit) collision checking must be done, a va-
riety of approaches exist to minimize its computational
burden, such as those in [12], [13] or modern techniques
taking advantage of parallel architectures such as [14], [15].
However, the main difference between these and certificate
methods is that the former seek to perform collision checking
efficiently, while the latter attempt to avoid collision checking
as much as possible. It is important to note that the ideas
are complementary and should not be considered mutually
exclusive. Indeed, we recommend using safety certificates
in conjunction with an efficient collision checking data-
structure so that the number of explicit checks is minimized,
while those that must happen do so as efficiently as possible.

The study of any-com algorithms was introduced in [4]
and then extended in [5] and [16]. The main difference
between [4], [5], [16] and the current work is that the
former focus on any-com multi-robot path planning while the
latter focus on multi-robot collision checking. In particular,
[4], [5], [16] investigate an any-com algorithm in which
all robots simultaneously plan between the same start and
goal locations in a centralized problem, while sharing the
best paths found by any robot in order help the team (as
a whole) find better paths more quickly. The current work
differs because it considers a decentralized problem in which
robots plan between different start and goal locations, while
sharing safety certificates in order to help the team avoid
collision checks. Moreover, [4], [5], [16] assumed a single-
query shortest-path planning problem, while the current work
can be applied to either feasible- or shortest-path planning
and either single- or multi-query problems.

III. ALGORITHM

Our algorithm can be summarized as follows: a set of
robots, each individually planning a different path through
the same environment, share the computational burden of
collision checking the configuration space of that environ-
ment by broadcasting safety certificates as they plan. This
idea can be applied to all sampling-based motion planning
problems that assume a metric space, and in conjunction
with all popular sampling-based algorithms that require
collision checking. However, in the current paper we will
concern ourselves with the particular implementation of our
certificate method in the context of RRT [6] and RRT* [8].
Extensions to PRM [7], PRM* [8], RRT-sharp [17], etc. are
straightforward, requiring only the usual modifications, but
are omitted due to space limitations.

We assume all robots are identical, but note that our
algorithm can be modified for use by a homogeneous set
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Fig. 3. Left: Depiction of when certifies(v,u) returns true (two
possibilities). Right: when kiss(v,u) returns true.

planningAlgorithm()

1: while not stoppingCriteriaMet() do
2: while top(Vreceived) 6= ∅ do
3: insertSharedNode(Ĝ,pop(Vreceived))
4: insertNewNode(Ĝ)

Fig. 4.

certifies(v,u)

1: return ‖v.c− u‖ < v.c.dobs

Fig. 5.

of robots by calculating and sending safety certificates for
point-robots, and then having each robot calculate dobs by
subtracting its own size (ignoring any certificate for which
dobs ≤ 0).

We make a distinction between the set of all nodes
in the search graph G and all nodes in the kd-tree Ĝ,
where G ⊂ Ĝ, because we allow nodes containing shared
certificates to be inserted into the kd-tree even if they cannot
be connected to the current search graph. This is done so
that the knowledge represented in a safety certificate can
be stored until it is eventually needed, i.e., when the search
graph expands into regions of the configuration space that
have only been explored by other robots. Note that we call
a node v an orphan if v ∈ Ĝ \G. In practice, we find that
it is easier to store only Ĝ. Nodes v ∈ Ĝ can be extracted
using standard kd-tree interface functions, while v ∈ G are
obtained using modified versions of the kd-functions that
ignore v ∈ Ĝ \G (See Appendix).

The major subroutines of our algorithm are presented
in Figures 4-10, and the rest of this section contains a
line-by-line description of each. The main planning loop
is located in planningAlgorithm() (Figure 4). This is a
stand-in for either RRT or RRT*. Planning continues until
the stopping criteria are met (i.e., stoppingCriteriaMet()
returns true, line 1). Examples of possible stopping criteria
include ‘a valid path has been found’ or ‘no more planning
time remains’ depending on if RRT or RRT* is being
used, respectively. Vreceived is the set of all nodes that
have recently been passed to the current robot from other
robots. In practice Vreceived should be a first-in-first-out
queue, in order to preserve the mutual visibility of shared
certificates. Shared nodes (i.e., the nodes that contain the
shared certificate data) are inserted into the current robot’s
data structures using insertSharedNode(), line 2-3, until
Vreceived is empty. Note that top() and pop() are the usual
queue functions of those names.

The subroutine certifies(v,u), Figure 5, returns true

kiss(v,u)

1: return (v.dobs > 0 and u.dobs > 0 and
certifies(u, saturate(u,v,v.dobs)))

Fig. 6.

insertNewNode(Ĝ)

1: v = randomNode()
2: v.dobs = −1
3: vnear = nearestGraphNode(Ĝ,v)
4: v = saturate(v,vnear, δ)
5: if not certifies(vnear,v) then
6: v.dobs = explicitNodeCert(v)
7: if v.dobs ≤ 0 then
8: return
9: v.c = v

10: insert(Ĝ,v,vnear)

Fig. 7.

insertSharedNode(Ĝ,v)

1: v.parent = ∅
2: v.g =∞ /* RRT* only */
3: vnear = nearestGraphNode(Ĝ,v)
4: if certifies(vnear,v) or certifies(v,vnear) then
5: insert(Ĝ,v,vnear)
6: else if ‖vnear − v‖ > v.dobs then
7: addOrphanKD(Ĝ,v,vnear)
8: else if kiss(vnear,v) then
9: insert(Ĝ,v,vnear)

10: else
11: addOrphanKD(Ĝ,v,vnear)

Fig. 8.

if the safety of u can be guaranteed by v. Figure 3-Left
illustrates the two possible ways this can happen (either v
certifies u itself, or the node that certifies v also certifies u).

The subroutine kiss(v,u), Figure 6, returns true if v
and u have overlapping certificates. This is accomplished
by checking if the particular point between v and u that is
on the edge of v’s certificate is also in u’s certificate, see
Figure 3-Right.

New nodes v are evaluated for insertion into the graph
using insertNewNode(Ĝ), Figure 7. randomNode()
returns a random node from the configuration space, line
1. The certificate radius of the new node v.dobs is initialized
to −1 (on line 2). vnear the nearest node to v that is already
in the search graph G is found (line 3). Following the con-
vention started in RRT and continued in RRT* the new node
is repositioned a distance δ away from vnear in the direction
of the original random sample using saturate(v,vnear, δ),
line 4. If v is certified safe by vnear, then it is inserted into
the graph (according to the convention of whatever algorithm
is being used, e.g., RRT) with insert(Ĝ,v,vnear), line 10.
Otherwise, we must perform an explicit point-collision check
to determine if v is safe (and calculate its certificate in the
process), line 6. If v is not safe then it is ignored, lines 7-8.
If v is safe then we recording that it certifies itself, line 9,
and insert it into the graph, line 10.

Nodes v that have been shared (and received) are eval-
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insertRRT(Ĝ,v,vnear)

1: v̂near = nearest(Ĝ,v,vnear)
2: if certifies(vnear,v) or certifies(v,vnear) or

(v̂near 6= vnear and certifies(v̂near,vnear) and
certifies(v̂near,v))
or kiss(vnear,v) then

3: C =
⋃

c : c ∈ {v.c,vnear.c, v̂near.c}∧‖v−c‖ < c.dobs

4: v.c = arg maxc∈C(c.dobs)
5: else if explicitEdgeCollision(vnear,v) then
6: return
7: v.parent = vnear

8: addKD(Ĝ,v,vnear)
9: if v.c = v then

10: broadcast(v)
11: if v̂near.parent = ∅ and

(certifies(v, v̂near) or certifies(v̂near,v)) then
12: C =

⋃
c : c ∈ {v.c, v̂near.c} ∧ ‖v̂near − c‖ < c.dobs

13: v̂near.c = arg maxc∈C(c.dobs)
14: v̂near.parent = v
15: deOrphanKD(Ĝ, v̂near)

Fig. 9.

uated for insertion into the graph and/or kd-tree using
insertSharedNode(Ĝ,v), Figure 8. The parent of v is
set as undefined, and (assuming RRT*) its graph cost is set
to ∞, line 2. The nearest node in the search graph is found,
line 3; note that we do not modify the position of the shared
node to be closer to vnear as in the standard implementation
of RRT. This is because we are provided with its certificate—
which would be invalidated by any movement of the node
itself. Instead, we perform a series of tests to determine
if the edge between v and vnear is guaranteed to be safe
given the certificates known to v and vnear. If either v or
vnear certifies the other, then v is inserted into the graph
(according to the convention of whatever algorithm is being
used), lines 4-5. If not, then kiss(vnear,v) checks if the
edge between v and vnear can be certified as safe using a
combination of their certificates, lines 8-9; if so, then vnear

is also inserted into the search graph. Otherwise, v is inserted
as an orphan (inserted into the kd-tree, but not the search-
graph), lines 10-11.

The RRT version of insert, i.e., insertRRT(Ĝ,v,vnear),
appears in Figure 9. In addition to the original vnear (the
potential parent of v from the search graph) we also query
the kd-tree for the nearest node v̂near (i.e., that may not
be in the search-graph, and thus may be an orphan node
containing a shared certificate), line 1. If some combination
of certificates among v, vnear, and v̂near can certify the
edge between v and vnear, then an explicit edge collision
check can be avoided—and the certifier of v is determined to
be the member of {v.c, v̂near.c} with the largest certificate,
lines 2-3. Note that the largest certificate is used because, in
expectation, it will allow for the most future nodes near v to
be certified as safe. If the edge between v and vnear cannot
be implicitly certified as safe, then it must be explicitly
checked, line 5. If a collision is found then v is ignored,
line 6; otherwise, vnear is made the parent of v, line 7, and

insertRRT∗(Ĝ,v,vnear)

1: rball = neighborBallRad(|G|, η)
2: rsafe = v.dobs ; v.parent = ∅ ; v.g =∞, Vsafe = ∅
3: Vnear = near(Ĝ,v, rball,vnear)
4: for all vi ∈ Vnear do
5: if certifies(v,vi) or certifies(vi,v) then
6: Vsafe = Vsafe ∪ {vi}
7: rsafe = max(rsafe,vi.c.dobs − ‖v − vi.c‖)
8: if rsafe > rball then
9: break

10: for all vi ∈ Vnear do
11: bsafe = true
12: if rsafe > rball or vi ∈ Vsafe then
13: Vsafe = Vsafe ∪ {vi}
14: else if v.dobs < 0 then
15: v.dobs = explicitNodeCert(v)
16: rsafe = max(rsafe,v.dobs)
17: if not certifies(v,vi) then
18: bsafe = false
19: else
20: bsafe = false
21: if not bsafe then
22: if explicitEdgeCollision(vi,v) then
23: continue
24: C =

⋃
c : c ∈ {v.c,vi.c} ∧ ‖v − c‖ < c.dobs

25: v.c = arg maxc∈C(c.dobs)
26: if v.g > ‖vi,v‖+ vi.g then
27: v.g = ‖vi,v‖+ vi.g
28: v.parent = vi

29: if v.parent 6= ∅ then
30: addKD(Ĝ,v,vnear)
31: if v.c = v then
32: broadcast(v)
33: for all vi ∈ Vsafe \ {v.parent} do
34: if vi.g > ‖vi,v‖+ v.g then
35: if vi.parent = ∅ then
36: deOrphanKD(Ĝ,vi)
37: vi.g = ‖vi,v‖+ v.g
38: vi.parent = v

Fig. 10.

v is added to the kd-tree5, line 8. If v certifies itself, then it
is broadcast to the other robots using broadcast(v), lines
9-10. If v̂near has no parent (i.e., it is an orphan node) and
the edge (v̂near,v) is implicitly safe, then v̂near is inserted
into the search-graph using v as its parent, line 11-15 (note
that we never explicitly check an orphan node). On line
13 we reset v̂near be certified by v.c if the latter has a
larger certificate—because v̂near is an orphan it has not yet
certified any other nodes, and therefore doing this does not
affect the status of any nodes in the search graph. Finally, we
change the kd-tree status of v̂near to reflect the fact that it is
now in Ĝ and not Ĝ \G using deOrphanKD(Ĝ, v̂near),
line 15.

The RRT* version of insert appears in Figure 10. The
radius rball of the shrinking hyper-ball is calculated on line 1
and then used to find Vnear the set of v’s potential neighbors
on line 3, see [8] for more information. Note that we allow

5Note that addKD(Ĝ,v,vnear) seeds its search for the (kd-tree)
insertion location of v using vnear ; we find that this can provide consid-
erable speedup in practice
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all nodes (even orphaned nodes) to be part of Vnear. The
variable rsafe keeps track of the largest safe ball around v
that we can calculate given all of the neighbors in the near
set, and is initialized to v.dobs, line 2. The parent and graph-
cost of v are initialized to undefined and ∞, line 2. Vsafe

will be populated with those members of Vnear that can be
connected to v, it is initialized to the empty set on, line 2.

Lines 4-9 contain an initial iteration through the members
of Vnear to determine if any vi ∈ Vnear certifies v, line
5, as well as to get the largest “cheap” estimate of rsafe
(i.e., while doing no explicit checks), line 7. rsafe is the
largest ball centered at v that is completely contained in a
certificate. If rsafe ever gets larger than rball then we know
that all remaining nodes in Vnear have implicitly safe edges
to v, lines 8-9, 12.

Lines 10-28 contain a second iteration through the mem-
bers of Vnear. The Boolean bsafe is used to remember if
the current vi can safely be connected to v, lines 11, 18,
20, 21. If a node vi exists for which the edge (v,vi) is
not implicitly safe (line 14–and note the second half of the
check on line 12), then v performs an explicit node check to
calculate its own certificate, line 15. If this certificate does
not contain vi, then a full explicit edge check is required,
line 22. Nodes that cannot be connected to v are not added
Vsafe, line 23. Care is taken to remember the best certifying
node (i.e., the node with the largest certificate that contains
v) of v, lines 24-25. With respect to graph search, we seek
to find the best parent of v that exists in Vsafe (i.e., the
node that minimizes v cost of reaching the goal and that
can be safely connected to v), lines 26-28. Note that if vi

is an orphan then vi.g ≡ ∞ and so it will not be made a
parent of v, line 26.

Assuming we can connect v to the graph, line 29, then
it is added to the kd-tree, line 30. If v certifies itself, then
it is broadcast to the other robots, lines 31-31. Finally, any
neighbor vi with a valid edge to v (except v.parent) is
re-wired to use v as its parent if doing so can reduce vi.g
(and orphan nodes that are added to the graph are marked
as such), lines 33-38.

IV. RUN-TIME ANALYSIS

Let |Ĝi| be the size of the kd-tree of the i-th robot.
By inspection we see that all kd-tree insert and search
operations retain their usual run-time complexity vs. |Ĝi|. In
particular, our modifications to addKD(Ĝi,v,vnear) and
addOrphanKD(Ĝi,v,vnear) involve running at most
twice the usual number of kd-searches, and also going back
up the tree in addOrphanKD(Ĝi,v,vnear) and again
at most once per node in deOrphanKD(Ĝ,vi). Sim-
ilarly, the search functions nearestGraphNode(Ĝi,v)
and near(Ĝi,v, rball,vnear) retain the usual expected
search time vs. |Ĝi| (ignoring orphan nodes in the former
does not affect the run-time vs. |Ĝi|). Both adding a new
node and a nearest-node query require the normal expected
time O(log(|Ĝi|)), while searching for a set of near nodes
requires time O(k̂ log(|Ĝi|)), where k̂ is the expected num-
ber of nodes within the shrinking hyper-ball used by RRT*

when the search is conducted.
Let Ci be the set of certificates shared by robot i.

In the worst case, all robots cover the entire space with
certificates, yet this only increases the total expected number
of certificates on a single robot by a constant factor. The
limiting ratio between all certificates and the total nodes on
a single robot follows directly from the analysis in [1]. In
particular,

lim
|Gi|→∞

|
⋃

i∈{1,...,r} Ci|
|Gi|

= 0

It is also insightful to evaluate how our algorithm af-
fects kd-tree run-time complexity when |Ĝi| is small. For
this we assume that all robots share approximately the
same number of nodes. Formally, we assume |Ci|

|Cj | < κ

for all robots i, j ∈ {1, ..., r} and some ‘small’ κ, e.g.,
κ = 10. It is easy to see that the number of nodes shared
by any particular robot i is bounded by that robot’s
search graph size |Gi|. In a normal implementation of
RRT or RRT* Gi = Ĝi, but in our algorithm Gi ⊂ Ĝi.
However, given our assumptions |Ĝi| < rκ|Gi|, and
so log(|Ĝi|) < log(rκ|Gi|) = log(rκ) + log(|Gi|). Thus,
when rκ < |Gi| kd-tree insertion retains its usual expected
run-time of O(log(|Gi|)) and kd-tree search retains its run-
time of O(log(|Gi|)) or O(k̂ log(|Gi|)), depending on if the
nearest-node or a set of near nodes is desired. By inspection
we see that there are no other changes that significantly affect
run-time complexity; therefore sharing certificates does not
affect per-iteration run-time complexity of the overall motion
planning algorithm.

V. EXPERIMENTS

We perform three experiments to evaluate the performance
of our algorithm vs. different team sizes, communication
qualities, and in conjunction with both RRT and RRT*.

Experiment 1 uses certificate sharing on five laptop com-
puters (Intel atom with 2GB of RAM) that communicate
using UDP messages over an ad-hoc wireless 802.11b net-
work. This experiment is designed to verify that our
algorithm can work in a practical any-com scenario
using an unreliable wireless communication protocol. The
environment depicted in Figure 11-Top is used.

We evaluate the performance of a particular robot (the red
robot) as team size ranges from 1 to 5. The choice to use the
red robot is arbitrary and other robots give similar results.
Increasing team sizes are created by adding robots in the
order: red, blue, light-green, teal, magenta. Our evaluation
metric is (the red robot’s) graph-size |G| vs. time (G does
not include orphan nodes). We use this metric because larger
graph size correlates with better path quality and higher rate
of success for any particular sampling-based shortest-path or
feasible-path planning algorithm, respectively. Results appear
in Figure 12, which shows normalized values vs. results
obtained by (the red robot) using certificates without sharing
(e.g., a value of 2 means that sharing certificates produced
results that were twice as good as using certificates without
sharing). Also plotted are the results of (the red robot) using
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Fig. 11. The randomly generated environments used in our experiments.
Obstacles are black, robots are drawn as circles at their starting locations,
and goal locations are designated with an ‘X’ of the same color (note: robots
are depicted 5X their actual size). The red robot is the particular robot for
which statistics are collected.

standard RRT or RRT* without certificates. Each data-point
represents the mean value over 10 trials. Communication
quality was above 95% in all trials.

Experiment 2 evaluates performance (of the red-robot) vs.
larger team sizes in simulation (up to 16 robots). All ‘robots’
are simulated on the same computer and the communication
protocol is also simulated. Note that we use simulation
because we wish to evaluate the performance of team
sizes larger than the number of wireless laptops that we
own. Teams containing up to 16 robots are tested on the
environment depicted in Figure 11-Bottom. The obstacles
in Figure 11-Bottom have four times as many edges as
those in Figure 11-Top in order to strain the relatively
large computational power of the simulation computer (Intel
i7 chip with 16GB of RAM). Robots are added in the
order: red, blue, light-green, teal, magenta, lavender, orange,
dark-green—followed by the same colors outlined in black.
Communication quality was set to 100% for this experiment.

Experiment 3 evaluates performance (of the red robot)
as a function of communication quality when a 16 robot
team uses certificate sharing. This experiment is run in
simulation so that we can control communication quality.
Communication quality is calculated as the ratio of received
packets vs. sent packets. Packet success/failure is governed
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Fig. 12. Search graph size vs. time given different team sizes, for robots
communicating over an ad-hoc wireless network. The results are depicted
as scaled relative to a single robot using certificates in isolation—higher
values are more desirable. Solid markers denote team size, while ‘x’s show
a comparison to a single robot using a standard collision checker without
certificates (e.g., a value of 2 means that a particular method had twice as
many nodes in the tree at a given time, compared to a single robot using the
certificate method without sharing). Each point represents the mean value
over 10 trials. Higher values are better.
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Fig. 13. Search graph size vs. time given different team sizes. The
results are depicted as scaled relative to a single robot using certificates in
isolation—higher values are more desirable. Solid markers denote team size,
while ‘x’s show a comparison to a single robot using a standard collision
checker without certificates. Each point represents the mean value over 10
trials. Higher values are better.

by a Bernoulli distribution, and we perform different runs
for message-success probability p fixed at 1.0, 0.8, 0.4,
0.2, 0.1, or 0.05. As in the previous experiment results are
depicted normalized vs. results obtained by (the red robot)
using certificates without sharing, and the results of running
standard RRT (or RRT*) without certificates are also shown,
‘x’s. We ran similar experiments for team sizes between 2
and 15 (omitted due to space constraints) and found that
results were exactly what one would expect given the results
of Experiment 2, i.e., the red robot’s |G| was smaller when
smaller teams were used, but certificate sharing still enabled
an increase in |G| for all p > 0.

VI. DISCUSSION

A. Performance vs. team-size

We observe that the number of nodes that each robot is
able to add to its own search graph increases significantly
vs. the number of robots that are sharing certificates. The
increase in |Gi| appears to be sub-linear vs. team-size, and
given the relatively modest size of our teams, we are unable
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Fig. 14. Search graph size vs. time for a 16 robot team experiencing
different communication qualities (color). Results are depicted as scaled
relative to a single robot using certificates but not communicating (‘+’s).
Results from a single robot using a standard collision checker without
certificates are also shown (‘x’s). Each point represents the mean value
over 10 trials. Higher values are better.

to conclude whether or not the practical performance gains
of sharing certificates will continue to increase for very large
number of robots (e.g., 1000s). That said, our results suggest
that certificate sharing can be quite beneficial when used with
small to moderately sized teams. The results in Figures 12
and 13 show that sharing certificates among a team can
provide a significant advantage vs. using certificates alone
without sharing and also vs. not using certificates at all. Note
that sharing among an 8 robot team increases average graph
size by the same factor as using certificates in the first place.

Another trend that can be seen in Figures 12 and 13 is
that sharing certificates appears to provide an extra advantage
early in the search—with the notable exception of the two-
robot team in the ad-hoc wireless experiment. We attribute
the former result to the fact that most of the space is explored
(e.g., with respect to sampling dispersion) early-on—which
means that the largest and most beneficial certificates tend
to be found near the beginning of the search. We believe the
latter exception (i.e., that the two-robot team experiences an
early dip in performance) is due to the relative expense of
wireless communication vs. the the cumulative benefits of
certificate sharing—which are small at the beginning of the
run but increase vs. time. Larger teams receive enough initial
benefits that this is not an issue.

B. Performance vs. communication quality

Experiment 3 indicates that certificate sharing has good
any-com properties. Figure 14 shows that performance de-
clines gracefully as communication quality deteriorates. Even
when communication quality is very poor (e.g., p = 0.05),
|Gi| does not fall below what would be obtained if the robot
decided to abstain from sharing. We reiterate that there was
an exception to this trend in Experiment 1, but that it was
only observed for very small team sizes (≤ 2 robots).

C. Wireless communication vs. simulation

Any comparison between Experiment 1 (wireless commu-
nication) and Experiment 2 (simulation) must acknowledge

the fact that experiments 1 and 2 were run on different hard-
ware and solved a different planning problem; nonetheless,
we are pleased that the overall trends appear qualitatively
similar. Besides the aforementioned early performance dip
in the 2 robot team in Experiment 1, another difference is an
early advantage of not using certificates vs. very small teams
(≤ 2 robots) in Experiment 1. We are unable to explain why
this occurs at this time. A final difference is that certificate
sharing provided more advantage to RRT* than to RRT in
Experiment 1 (ad-hoc wireless), but the reverse is true in
Experiment 2 (simulation).

VII. SUMMARY AND CONCLUSIONS

Robots that operate in a shared environment must collision
check against many of the same obstacles. In [1] it was
shown that single-robot motion planning could be expedited
by using “safety-certificates” to avoid collision checking in
areas already known to be safe. We extend this idea to
decentralized multi-robot teams. In particular, we present an
any-com algorithm in which a set of robots share safety-
certificates as they are found. This enables all robots to
increase the rate at which space is certified as “collision-
free” and thereby increase the rate of search-graph growth
and exploration.

Our method retains the same asymptotic properties of
the original certificate method. In particular, the number
of certificates vs. graph points is expected to approach 0,
in the limit, as the number of graph points approaches
infinity. Further, the per-iteration run-time complexity is
the same as the original certificate method—and therefore
also the “normal” (non-certificate) versions of the motion
planning algorithms with which it is used. That said, as
with all collision checking certificate methods, the proposed
algorithm should only be used when collision checking is
relatively time-consuming vs. nearest neighbors search; in
other words, our method is not expected to be useful on
easy-to-collision-check environments.

Certificate sharing has good any-com properties in the
sense that better communication provides increased benefits
to all robots (e.g., better communication enables quicker
graph growth and exploration), and poor communication
does not appear to hinder overall search progress. The algo-
rithm also scales well—at least for the small to moderately
sized sets of robots that we investigate. That is, when more
robots participate in certificate sharing, then the benefits to
all robots increase. For instance, even switching from 15 to
16 robots noticeably improves the rate that each individual
robot is able to plan.
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addOrphanKD(Ĝ,v,vnear)

1: while u.pkd 6= ∅ and ‖v,u.pkd.φkd‖ < ‖v,u.φkd‖ do
2: v = v.pkd

3: search down the kd-tree to find the appropriate leaf for v
4: link v to its appropriate parent
5: v.borphan = true
6: v.boroot = true

Fig. 15. addOrphanKD(Ĝ,v,vnear) adds v to the kd-tree Ĝ with
the understanding that v 6∈ G (that is, v is an orphan and not in the search
graph). The search is seeded with vnear (note, this can be the root of the
kd-tree if no better information exists). On lines 1-2 we walk up the kd-tree
until we reach the root of the appropriate sub-tree in which to insert v. Next,
we proceed exactly as in a standard kd-tree insertion, lines 3-4. Finally, we
mark that v is both an orphan and the root of an orphan sub-tree, lines 5-6.

addKD(Ĝ,v,u)

1: addOrphanKD(Ĝ,v,vnear)
2: deOrphanKD(Ĝ,v)

Fig. 16. addKD(Ĝ,v,vnear) adds v to the kd-tree Ĝ with
the understanding that v ∈ G (v is not an orphan). As with
addOrphanKD(Ĝ,v,vnear) the search can be seeded with vnear .
First we add v to the kd-tree as if it were an orphan, line 1, then we
explicitly mark it as not an orphan using deOrphanKD(Ĝ,v), line 2.

APPENDIX

This appendix contains an overview of the kd-tree modifi-
cations necessary to store G and Ĝ in the same kd-tree. This
is done by marking orphan nodes, i.e., any v ∈ Ĝ \G, as
such, and also keeping track of which sub-trees contain only
orphan nodes, so that we can avoid searching them when
calling nearestGraphNode(Ĝ,v). Descriptions of the
subroutines appear in the captions of the figures containing
the subroutines themselves (Figures 15-18). We assume that
the reader is familiar with kd-trees (if not, then see [18] for
details). For brevity we use high-level language to describe
the “standard” parts of the kd-tree implementation. v.pkd

and v.lkd and v.rkd, are the parent and left- and right-
children of v within the kd-tree. ‖vu.φkd‖ is the minimum
distance from v to the splitting plane φkd 3 u (i.e., the
splitting plane stored at, associated with, and containing node
u). v.borphan is a Boolean value that is true when v is an
orphan, and v.boroot is a Boolean value that is true if v
and all of its descendants are orphans.
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