
RAPID: An Algorithm for Quick Replanning
under Changed Dynamical Constraints

Sharan Nayak and Michael W. Otte

Department of Aerospace Engineering,
University of Maryland, College Park, Maryland 20742, USA

snayak18@umd.edu, otte@umd.edu

Abstract. There are many scenarios where the dynamical constraints
of a vehicle may change mid-mission either due to added payload, vehicle
damage or changes to the environment. The vehicle may need to come
back to the base safely without undergoing collisions with obstacles. We
present RAPID (RApid Planning for Interchanged Dynamics), a sam-
pling based motion planning algorithm for quick replanning when the
dynamical constraints associated with a vehicle change. RAPID uses the
planning information associated with the original dynamics as a heuris-
tic for quick replanning. RAPID is useful when a vehicle must replan
to account for changes to its dynamics but does not have enough time
or resources to run a whole planning algorithm (like RRT or SST) from
scratch. We compare RAPID with brute-force replan using RRT and
SST using a combination of hardware and software experiments. The
hardware experiments are performed using a modified Parrot Bebop 2
quadrotor fitted with an Intel UP board traversing an obstacle course.
Our experimental results demonstrate RAPID provides considerable im-
provements over planning from scratch (RRT, SST) in solution comple-
tion time, path length, and flight time performance metrics.

Keywords: Planning and control, Mobile robots, Unmanned aerial vehicles.

1 Introduction

We present RAPID (RApid Planning for Interchanged Dynamics), a sampling-
based motion planning algorithm for performing quick replan back to base when
the dynamical constraints of a vehicle change. There are many situations in
which the maneuvers available to a vehicle may change mid-mission, e.g., due
to added payload [1] or damage to the vehicle [2]. After the change, the inbuilt
controller may be unable to execute maneuvers along the original plan. In such
a case it is imperative that the vehicle quickly replan to account for its new
dynamical constraints so that it may return safety to base (for repair, payload
delivery, etc.) without colliding with obstacles.

A naive replanning approach is to re-run the whole planning algorithm (like
RRT [3] or SST [4]) with the new dynamical constraints and find a new path.
However, in high stakes missions, the vehicle may not have enough time or

2 Sharan Nayak and Michael W. Otte

Original Planning Rapid Replanning

Original Trajectories Trajectories Using Altered Dynamics

Original Tree
Original Path Replan Path

Replan TreeFree Space
Obstacle Space

BaseBase

Planning using original trajectories Planning using replan trajectories

Fig. 1: Left image shows a
quadrotor using its origi-
nal trajectories to plan and
move towards a sealed pack-
age of uneven weight. The
right image shows the same
quadrotor lifting the pack-
age and experiencing a dy-
namics change due to change
in mass and shifted center
of gravity and using RAPID
algorithm to perform quick
replanning and move back
to the base location. Trajec-
tories at 20° increments are
shaded black for clarity.

resources to perform replanning from scratch. Instead, our method is able to
quickly repair the old plan to respect the vehicle’s new dynamics by leverag-
ing the topological information gained about the environment during the initial
plan. RAPID uses the original tree’s cost information as a heuristic for quick re-
planning. Fig. 1 depicts a case where a quadrotor undergoes a dynamics change
due to lifting a package that causes uneven weight distribution; using RAPID,
the vehicle quickly replans a valid return path to the base location.

A benefit of using RAPID is that it can be used for vehicles for which the
solution to the two-point Boundary Value Problem (BVP) [5] is computationally
expensive or not available. This is important because even though the two-point
BVP may be solvable for the vehicle’s original dynamics, there is no guarantee
that the vehicle’s dynamics change in a way such that two-point BVP is still
solvable. We compare RAPID with brute force replan using RRT [3] and SST[4]
as these are two standard algorithms that are used when two-point BVP cannot
be computed.

In our work, we focus on the motion replanning aspects and assume that
vehicle automatically detects changes to its dynamics. We model the vehicle’s
movement using trajectory libraries [6][7] and assume that these libraries exists
for vehicle’s common configurations and malfunctions.

2 Related Work

A survey of the sampling-based motion planning literature reveals limited work
on replanning under changed dynamical constraints but numerous existing work
on replanning under changed dynamic environments. For example, Bekris et al.
[8] present a tree-based planner that deals with evolving configuration spaces
by incrementally updating a tree-based data structure retained from previous
steps and then biasing the search with a greedy and probabilistic complete ex-
ploration approach. Ferguson et al. [9] make repairs to an already existing RRT

RAPID Algorithm 3

tree, removing invalid parts and then growing the changed tree until a new so-
lution is found to account for the changed configuration space. Yoshida et al.
[10] present a reactive method that uses a combination of path replanning and
path deformation to account for changed environments. Otte et al. [11] present
RRT-X, the first asymptotically optimal sampling based algorithm in dynamic
environments that uses ideas from the D* algorithm for quick replanning. While
such algorithms work for replanning in evolving configuration spaces, they are
not directly applicable to replanning in response to changing vehicle dynam-
ics. Nonetheless, our method is inspired by the same high-level idea of using an
existing but outdated solution to speed up the replanning process.

Several existing works show the power of using heuristics to improve the
speed and efficiency of searches. Urmson et al.[12] modify RRT to create the
heuristically-guided RRT using a quality measure to balance exploration vs ex-
ploitation search leading to low cost solutions. Otte et al. [13] and Gammell
et al. [14] use the ellipsoidal heuristic to perform rejection sampling and direct
sampling respectively to speed up the process of generating improved solutions.
Straub et al. [15] use the cost-to-go heuristic obtained from an asymmmetric
bidirectional search with the reverse search tree produced using Lifelong Plan-
ning A* (LFA*) to speed up the planning process. Littlefield et al. [16] modify
SST to produce the Informed-SST algorithm which uses domain-specific user de-
fined heuristics to improve the efficiency of SST. In keeping with this trend, our
replanning algorithm uses the cost-to-start heuristic obtained from the original
search tree to improve the efficiency of the replan search.

Our work uses trajectory libraries to model the motion of vehicles incorpo-
rating dynamical constraints. The idea of using trajectory libraries to represent
vehicle motion is not something new. Go et al. [6] presents a method using tra-
jectory libraries and real time motion planning to synthesize animations of au-
tonomous space, water, and land-based vehicles in interactive simulations. They
also provide a method for efficient storage of trajectories in memory using only
about 40 bytes per path. Frazzoli et al. [7] use trim trajectories and maneuvers
to perform autonomous helicopter flight. The advantage of using trajectory li-
braries as noted in [17] is that no online time is wasted in calculating trajectories
that a robot cannot carry out.

3 Problem Definition

In this section, we formally define the problem. Let X be the D-dimensional
configuration space of a robot. Let Xobs be the obstacle space of X . Then the
free space Xfree is defined as Xobs n X . Let the home base configuration of the
robot be denoted by xbase 2 Xbase where Xbase � Xfree. Let Xend be the end
region with Xend � Xfree. Let � be a feasible path with � : [0; 1] ! Xfree

such that �(0) = xbase and �(1) = xend where xend � Xend. Let � 2 (0; 1) and
� (�) = xreplan be the configuration where the dynamics of the robot changes.
Problem: Find feasible path back to base incorporating dynamical changes.

4 Sharan Nayak and Michael W. Otte

Given the triple (Xf ree ; x replan ; Xbase), �nd a feasible path : [0; 1] ! X f ree

such that (0) = x replan and (1) � X base if one exists.

4 Technical Approach

The main idea behind RAPID is the use of topological information gained from
original search tree for quick replanning. Although the edges in the original
tree correspond to old dynamical maneuvers, the nodes are still valid obstacle
free con�gurations which can be used to bias the replan towards obstacle free
regions of the search space. At every iteration, RAPID greedily selects the most
promising node from the original search tree to replan towards. This guides
RAPID's replan away from obstacles and toward the home base.

Algorithm 1: RAPID(vstart ; vend ; Gorig ; Treplan ; � v ; � end)

1 Greplan f V f vstart g; E fgg
2 Q fg ; vcur vstart ; Eproc fg
3 for i 1 to M iter do
4 if vcur 6= NULL then
5 V near getNearestNodes(vcur ; Gorig ; � v)
6 updatePriorityQ (Q; vcur ; V near)

7 vdst pop(Q)
8 if vdst 6= NULLthen
9 vcur NULL

10 vsrc findClosestNode (vdst ; Greplan ; Eproc)
11 if vsrc 6= NULLthen
12 Enew Propagate(vsrc ; vdst ; Treplan ; V)
13 if Ecur 6= NULLthen
14 vnew E new :getFinalNode ()
15 V V [f vnew g
16 E E [fE new g
17 if endReached(vend ; vnew ; � end) then
18 return OutputPath (vstart ; vnew)

19 vcur vnew

20 Eproc Eproc [(vsrc ; vdst)

21 else
22 break

23 return PerformBaseAlgorithm (vstart ; vcur ; Treplan ; � end)

Fig. 2: New edge addition to
RAPID tree

The input parameters to RAPID (Algorithm 1) are start node vstart (robot's
current location), end node vend (home base), original search treeGorig (gener-
ated using RRT or SST), replan trajectory library Treplan , neighbor radius � v

and end radius � end . The replan search treeGreplan is initialized using a node
list V (initialized to vstart) and an empty edge listE (line 1). We use a priority
queueQ to store a list of potential original search trees to guide replan expan-
sion. The current node vcur , which is used for selecting nodes ofGorig to add
to Q is initialized to vstart (line 2). We maintain a list Eproc to keep track of
processed edges to prevent cycles inGreplan (line 1).

The execution of one iteration of RAPID occurs as follows: Whilevcur 6=
NULL, (line 4), the algorithm uses getNearestNodes (Algorithm 2) to �nd all
nodes within a radius � v from Gorig centered at vcur and assigns it to setV near

RAPID Algorithm 5

Algorithm 2: getNearestNodes(vcur ; Gorig ; � v)

1 V near G orig :Nodes()
2 V near f v 2 V near j kv � vcur k � � v g
3 return V near

Algorithm 3: updatePriorityQ (Q; vcur ; V near)

1 for v in V near do
2 Q::update (v; g(vcur) + d(vcur ; v) + �h (v))

Algorithm 4: findClosestNode (vdst ; Greplan ; Eproc)

1 Vreplan G replan :Nodes()
2 vclosest min

kv � vdst k
f v 2 V replan g

3 if (vclosest ; vdst) 2 Eproc then
4 vclosest NULL

5 return vclosest

Algorithm 5: Propogate(vsrc ; vdst ; Treplan ; V)

1 Treplan tf Transform (vsrc ; Treplan)
2 Tsort sort

kE :finalNode () � vdst k
f E 2 T replan tf g

3 Tsort best select best
N

f E 2 T sort g

4 for E in Tsort best do
5 vf in E new :finalNode ()
6 if not (vf in 2 V or Collision (E)) then
7 return E

8 return NULL

(line 5). The algorithm uses updatePriorityQ (Algorithm 3) to update Q with
the nearest nodesV near (line 6). The algorithm then uses vdst popped from Q
(line 7) to �nd the closest node vsrc in Greplan (line 10) using findClosestNode
(Algorithm 4). We perform forward search using Propogate (Algorithm 5) to
�nd the best edge Enew from vsrc to vdst (line 12) (Fig. 2). If Enew 6= NULL,
then the new edgeEnew and new nodevnew (�nal node of Enew) are updated
in V (line 15) and E (line 16) respectively. If the end is reached (checked using
endReached), the output path Pout is generated usingOutputPath (line 18). If
RAPID is unable to quick replan, then the brute-force replan using the algorithm
from the original plan (line 23) (or any other sampling-based planning algorithm)
is run to get the output path as a fallback option.

Note that the quick replanning part of RAPID is deterministic and the
fallback option (assuming a sampling-based algorithm is used) is probabilistic.
Hence the condition for RAPID algorithm to be probabilistic complete is that
the base algorithm should be probablisitic complete.

The function getNearestNodes (Algorithm 2) performs the task of getting
the nearest nodes tovcur in Gorig within a ball of radius � v (line 2). The metric
de�ned on the con�guration space is used to calculate the distancekv � vcur k
where vcur 2 V near (set of all nodes ofGorig). All nodes V near that lie within
distance � v are returned.

The function updatePriorityQ (Algorithm 3) updates the priority queue Q
with the nodes v 2 V near using the key [18]ctotal = g(vcur) + d(vcur ; v) + �h (v)
whereg(vcur) is the cost-from-start, d(vcur ; v) is the cost from vcur to v 2 V near ,
h(v) is the cost-to-end heuristic, and� is the weight factor [19]. We chooseg(vcur)
and h(v) as the corresponding path costs,d(vcur ; v) as the euclidean distance
betweenvcur and v and set � to 1.

The function findClosestNode (Algorithm 4) �nds the closest node vclosest

to vdst in Greplan (line 2). The node pair (vclosest ; vdst) is checked to make sure
that is not already in the edge processed list to ensure the same pair of edge
nodes is not processed again (line 3). If this condition is satis�ed, thenvclosest

is set to NULL(line 4).

6 Sharan Nayak and Michael W. Otte

The function Propogate (Algorithm 5) returns the best path that connects
vsrc to vdst . The best path is generated by �rst transforming (translation and ro-
tation) the trajectory library Treplan (line 1) using vsrc and then sorting the tra-
jectoriesE in Treplan tf using the distance metrickE:finalNode () � vdst k (line 2).
The N best sorted trajectories are selected fromTsort and assigned toTsort best

(line 3). For each of the sorted trajectoriesE, we check if vf in (last node of E)
is already in the node list V and if the edge E is collision with the obstacles
(line 6). If both of these conditions are not satis�ed, then E is returned.

4.1 Selection of neighbor radius � v

The RAPID algorithm has a tuning parameter � v that a�ects its performance.
This parameter dictates the number of original tree nodes that gets pushed toQ.
A low value chosen increases the prospect of many importantGorig nodes being
not considered. A high value selected increases the chances of addingGorig nodes
that are blocked by obstacles which might lead to considering more trajectories
for expansion that collide with obstacles. In our experiments, we choose a value
that is equal to or slightly greater than twice the length of the largest trajectory.

5 Experiments

We run multiple experiments in hardware and software to test the performance
of RAPID. We compare RAPID with brute-force replan using RRT and SST,
each having two di�erent variants. The �rst variant is using the extend-operation
[20] for node expansion while the second variant is using random propagation
[4]. The extend operation (in our implementation) extends the nearest node in
the existing tree by a distance � to a node vextend in the direction of the new
sampled con�guration. We then select the trajectory in correspondingT (Treplan

for replan and Torig for original) that minimizes kvextend � vi k where vi is �nal
node ofEi 2 T . The di�erent variants are used to test the durability of RAPID
in using di�erent original tree structures for its planning. All variants have a
goal bias [3] of 5% to speed up solution generation.

In our experiments, we choose the algorithm used to run the original plan as
the base algorithm if RAPID is unable to quickly replan. We choose solution path
length L p, algorithm completion time Tc and ight time Tf (only hardware) as
the performance metrics. We generate the trajectories in the trajectory libraries
such that their start and end velocities are zero. This is done to limit the number
of trajectories in the trajectory libraries and is not required to use RAPID.

The hardware experiments are performed using a modi�ed Bebop 2 (PRG
Husky [21]) quadrotor on an obstacle course (Fig. 3) using parameters shown in
Table 1. The quadrotor is �tted with Intel UP board (Fig. 6) having Intel Atom
x5-z8350 4-core, 1.44GHz CPU with 4GB RAM to run the algorithms and navi-
gation stack. The obstacle course has 4 obstacles (Fig. 4) and they are modeled
using bounding circles for easy collision detection. The bounding circle radii are
increased by 20cm to account for non-zero vehicle size, vehicle drift and errors.

RAPID Algorithm 7

Parameter Value (m)
(Hardware)

Value (m)
(Software)

Map size 5 � 4 100 � 100

Base/Replan start area radius (� end) 0.3 5

Neighbor radius (� v) 2.2 10

Max iterations (M iter) 2500 2500

Propagate Trajectory Count (N) 5 5

Table 1: Experiment parameters Fig. 3: Quadrotor in obstacle course

The base and replan start locations are set at (0:2; 2) and (4:2; 2) respectively.
The quadrotor control is limited to performing maneuvers in the horizontal plane
at a �xed height. We use a Proportional-Derivative (PD) controller for position
tracking and a Vicon motion capture system for state information. The dynamics
change for the quadrotor is represented by changing the gains of PD controller
from nominal to one-third of the nominal gains. The trajectories (Fig. 4), both
original and altered, are learned by providing a reference 1m away from origin
in 10° increments over 4s and then taking the mean of the trajectories over 10
iterations. We use these trajectories to run 10 trials and record the performance
metrics. We set � to 0.8 and 0.65 when using original and replanning libraries
respectively.

The software experiments are performed in 2D space using parameters shown
in Table 1. The obstacles are modeled as circles with uniformly sampled radii in
[5, 8]. The base, replan start and obstacle center locations for each scenario are
uniform randomly sampled from the parameter ranges ([1, 100], [1, 100]) such
that they do not overlap each other and the obstacle surfaces are within the
map area. The minimum distance between base and replan start locations is set
to 70. We run 100 scenarios for each obstacle numberf 0; 5; 15; 25; 35g with each
scenario having 3 trials. We run experiments for a unicycle model [22] with the
dynamics change represented by changed reference peak linear velocity (8m/s
to 4m/s) and a quadrotor model [1] with a dynamics change represented by
changed mass (1 kg to 1.1kg) and shift in the center of gravity (4cm and 1cm
parallel to the x- and y-axes). We set � to 4 (for both original and replan) for
quadrotor and 4 (original) and 2.5 (replan) for unicycle. The experiments are
performed on a system with Intel i7-7700 4-core CPU with 32GB RAM. The
stopping criterion for both algorithms in all experiments is when a path is found
between the replan start and base locations.

6 Results

The replan paths generated during comparison of RAPID vs. RRT for two trials
of hardware experiments with actual path (Vicon) overlaid are shown in Fig. 4.
The mean and standard deviation for 10 trials of hardware experiments are
shown in Table 2. The replan paths produced during comparison of RAPID vs.
RRT-Extend and RAPID vs. SST-Random for one of our software test scenarios
are shown in Fig. 7. We have not shown examples of replan paths produced
during comparison RAPID vs. RRT-Random and RAPID vs. RRT-Extend due

	RAPID: An Algorithm for Quick Replanning under Changed Dynamical Constraints

