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A Heuristic-Guided Dynamical Multi-Rover Motion
Planning Framework for Planetary Surface Missions

Sharan Nayak , Graduate Student Member, IEEE, Michael Paton, and Michael W. Otte , Member, IEEE

Abstract—We present a heuristic-guided multi-robot motion
planning framework that solves the problem of n dynamical agents
visiting m unlabeled targets in a partially known environment for
planetary surface missions without solving the two-point boundary
value problem (BVP). The framework design is motivated by typi-
cal planetary surface mission constraints of limited power, limited
computation, and limited communication. The framework main-
tains a centralized, dynamically updated probabilistic roadmap
(PRM) that incorporates new obstacle updates as the agents move
in the environment. The dynamic roadmap captures the changing
obstacle topology and provides updated cost-to-go heuristics to
accelerate each agent’s independent single-query motion-planning
process. The agents use a feasible sampling-based motion planner
without computing the BVP while leveraging the roadmap heuris-
tics to quickly plan and visit their assigned target. The agents han-
dle robot-robot and robot-obstacle collision avoidance in a decen-
tralized fashion. We conduct multiple simulation experiments using
robots with non-linear dynamics to show our planner performs
better in overall planning time and mission time than approaches
not using the roadmap heuristic. We also field our algorithm on
prototype rovers and demonstrate the viability of implementing
our algorithm on real-world hardware platforms.

Index Terms—Path planning for multiple mobile robots, motion
planning, and dynamics.

I. INTRODUCTION

MULTI-ROBOT teams have been proposed for planetary
surface exploration missions. These missions typically

require team members to coordinate, plan motions, and move
to specific locations of interest (targets) in communication-
restricted environments. Often, these robots have partial or no
information about the environment at the mission onset. More-
over, the robots may have constrained dynamics making it hard
or impossible to compute the two-point boundary value problem
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(BVP) solution [1] for their motion planning. In this work, we
propose a multi-robot feasible motion planning framework that
considers partially known planetary surface environments and
complex robot dynamics to coordinate robots to visit multiple
unlabeled targets without solving the two-point BVP. The frame-
work choice is motivated by limited power, computation and
communication – constraints that are typical for a multi-robot
planetary surface mission.

Using robot teams for planetary surface exploration is gaining
popularity. Recently, NASA announced the Cooperative Au-
tonomous Distributed Robotic Explorers (CADRE) technology
demonstration [2] that proposes using robot teams to explore the
lunar surface. Prior terrestrial information (e.g., low-resolution
images) obtained from the orbiting Lunar Reconnaissance Or-
biter (LRO) can be used to accelerate robot motion planning by
providing information about obstacles.

Probabilistic Roadmaps (PRM) [3] sample valid configura-
tions in the robot’s free space and use trajectories that respect the
robot’s dynamics to connect them to form motion graphs, which
are useful for path planning. Computing a dynamical trajectory
that exactly connects two sampled nodes requires a solution to
the two-point BVP. However, computing the two-point BVP for
robots with complex dynamics is challenging, and closed-form
solutions are often hard to come by. Nevertheless, previous
work [4], [5] has shown that it is possible to use roadmaps
computed offline and built in a lower-dimensional subspace of
the state space (where the two-point BVP can be solved) to speed
up online motion planning.

In our work, we have a central entity called the base station
that maintains a dynamic roadmap that is updated as new ob-
stacles information is received from the robots. The base station
model makes sense in lander missions where robots remain in
the lander vicinity; in other cases, any robot can take the role of
the central entity. Motion planning on each individual robot is
accelerated by using focusing heuristics derived from the base
station’s roadmap (Fig. 1).

With multi-robot motion planning, there is also the question of
which entity computes each robot’s plans. Many previous works
have focused on a centralized approach [6], [7] where a central
entity calculates each agent’s motion plan. The problem with this
approach is that the central entity has to transmit the whole path
to each agent at the cost of additional communication. Moreover,
all robots must wait for the central entity to send them a path
before they are able to move. In our work, we design a hybrid
centralized-decentralized approach where the target assignment
is done on the base station, yet each robot calculates its own
path to the target (using the roadmap heuristic), removing the
need to send ‘path’ messages and leading to a better distribu-
tion of computational load among the individual robots. It is
possible to make our approach fully decentralized by having
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Fig. 1. (1) A base station creates a centralized roadmap considering known
obstacles and then assigns targets to rovers. Rovers compute feasible paths to
their assigned targets using the roadmap focusing heuristic as a guide without
computing the two-point BVP. (2) Rover 1 detects an unknown obstacle and
informs Rover 2 (through the base station). Both compute safety trajectories to
come to rest. (3) Base station updates the roadmap and its heuristics to account
for the new obstacle. (4) Rovers find paths to their newly assigned targets using
the updated heuristic. (5) Rovers reach their assigned targets.

each agent maintain its own copy of the roadmap. However, the
decentralized approach usually involves more communication
links (fully connected (n2)) than the centralized approach (star
(n)).

The letter’s main contribution is a heuristic-guided multi-
robot feasible motion planning framework that solves the
problem of n robots (with dynamics) visiting m unlabeled tar-
get locations in a partially known environment for planetary-
surface missions. The word unlabeled implies that it does not
matter which robot visits what target as long as all targets are
visited. Additional contributions include:

1) Simulation experiments using three different scenarios
and two dynamical systems to show that our planner
improves overall planning time and mission time than
approaches not using a roadmap heuristic.

2) Implementation on prototype rovers at NASA JPL Lunar
Mini-yard to show the viability of using our proposed
approach on real-world hardware.

3) An analysis of the overall planning time variation vs.
number of initial PRM nodes for two dynamical systems.

4) A scalability experiment analysis showing the variation of
total planning time and mission time with increase in the
number of robots and targets.

The rest of the article is organized as follows. Section II
discusses related work. Section III contains the preliminaries.
Section IV provides a formal definition of our work. Section V
discusses our proposed motion planning framework. Section VI
describes the setup used for running experiments. Section VII
presents the experiment results. Section VIII concludes by sum-
marizing the contributions and main results.

II. RELATED WORK

A. Roadmap-Based Methods for Multi-Robot Motion Planning

Švestka et al. [8] use a centralized approach for roadmap-
based multi-robot path planning. They plan on an explicit
higher-dimensional composite roadmap created by taking the
cartesian product of individual robot roadmaps. Wagner et al. [9]
improve this work by showing it is sufficient to use an efficient
implicit composite roadmap representation and apply their M*

algorithm [10] to calculate paths. dRRT [11] and dRRT* [12]
further use this implicit representation to perform an RRT-like
search in discrete space to find robot paths efficiently. But, these
approaches do not work for complex robot dynamics when the
two-point BVP cannot be solved.

Van der Berg and Overmars [13] use a local planner that
encodes dynamic constraints while employing A* to calculate
global paths on a pre-computed roadmap. They use a prioritized
planning scheme where each robot is assigned a priority, with
motion planning prioritized for robots with decreasing priority.
Le and Plaku introduced various centralized approaches for
multi-robot motion planning for labeled [6], [7], [14], and unla-
beled goals [15] while considering robot dynamics. They build
a motion tree over the composite state space of all robots while
using a lower-dimensional roadmap for each robot to guide the
search. The completed motion tree’s trajectories correspond to
each robot’s feasible paths. However, these approaches assume a
fully known environment at the start of the mission. In contrast,
our work considers partially known settings where new obstacles
are detected as robots move in the environment.

B. Multi-Robot Path Planning in Dynamic Environments

Prior work has employed disparate approaches to handle
dynamic environments. The definition of a “dynamic” environ-
ment varies in the literature but is usually characterized by the
encounter of another robot or an unexpected obstacle, unknown
during initial planning. Shwail et al. [16] construct a roadmap
in the preprocessing step and use A* to find paths for robots
in an offline phase. In the online phase, after each delta time
step, a collision check with other robots is performed, and the
robot executes a bang-bang control along with a wait option
to avoid other robots and reach the goal position. Tordesillas
and How [17] present MADER, where the trajectories of robots
are characterized by an outer polyhedral surrounding them.
MADER introduces linear separability between polyhedra using
planes in an optimization problem for collision avoidance with
other robots and obstacles.

A whole body of work has focused on using machine learning
strategies. Zhu et al. [18] use a recurrent neural network to learn
multi-robot motion behaviors from demonstrated trajectories.
The learned trajectory model is used in conjunction with a model
predictive controller (MPC) to perform robot-robot and robot-
obstacle collision avoidance. PRIMAL [19] uses reinforcement
and imitation learning to learn decentralized robot policies for
robot and obstacle collision avoidance that can extend to any
number of robots. PRIMAL 2 [20] extends this work to lifelong
planning, where robots visit other goals upon reaching their
assigned goal. However, these machine learning strategies do
not encode robot dynamics while planning.

Our multi-robot motion planning framework differs from
previous work in that we consider both robot dynamics and
dynamic environments (unknown static obstacles and moving
robots) limited by planetary exploration mission constraints.

III. PRELIMINARIES

Let the workspace W contain n robots and m unlabeled target
positions with no relative constraints between n and m. Let the
state-space of robot i be denoted by Xi. Let Ui be its input
control space. Let its obstacle space, Xobsi , be an open subset
of Xi. Xobsi is the set of all states where the system is in
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collision with obstacles. The free space Xfreei is defined as
Xfreei = Xi\Xobsi . Xfreei is the closed subset of Xi and the
set of all states that are not defined by obstacle collisions. The
free space changes as agents move in the environment and detect
new obstacles and receive new obstacle updates from each other
via the base station. Because of this, we make a simplifying
assumption that Xfreei is a function of time, i.e., Xfreei(t).
We assume that Xfreei(t) changes unpredictably and cannot
be estimated from its earlier states. Xfreei(t) does not have
smooth properties in general, as the obstacle changes may be
instantaneous. We assume the robot’s sensor radius to be at least
2 ∗ dstop where dstop is the robot’s maximum stopping distance.
dstop is multiplied by two to account for two robots heading
toward each other with maximum velocity.

The robot system dynamics fi satisfies the differential equa-
tion of the form:

ẋi(t) = fi (xi(t), ui(t)) , xi(t) ∈ Xi, ui(t) ∈ Ui. (1)

Collision-free planning involves

xi(t) ∈ Xfreei(t) ∧ OC(xi(t)) �= OC(xj(t)), ∀j,∀t (2)

where OC is the robot’s occupied volume. Let x1 and x2 in
Xi. Then a trajectory Ei(x1, x2) connecting x1 and x2 is de-
fined as the continuous mapping Ei : [0, 1] → Xfreei(t) such
that Ei(0) = x1 and Ei(1) = x2. Although the terms path and
trajectory have been used interchangeably in the literature, we
define a path πi as the concatenation of a sequence of trajec-
tories, i.e. πi � Ei1 ⊕ Ei2 . . .Eil ⊕ Eil+1

. . . such that Eil(1) =Eil+1
(0), where ⊕ is the concatenation operator.

In the rest of the document, we assume homogeneous robots
and all robots know the known obstacles i.e. fi = fj ,Ui = Uj =
U ,Xfreei(t) = Xfreej (t) = Xfree(t) ∀i, j ≤ n.

IV. PROBLEM DEFINITION

Let xsi ∈ Xfree(t) represent the ith robot’s initial position
at the start of the mission. Let xgj be the jth target (goal) and
Xgj its corresponding target region such that xgj ∈ Xgj , and
Xgj ⊂ Xfree(t). Let S ={xs1 , xs2 , xs3 . . .xsn} be the set of
initial positions of the robots and G = {Xg1 ,Xg2 ,Xg3 . . .Xgm}
be the set of target (goal) regions. Let Tcomp represent the time
taken to complete the mission, i.e., visit all targets.

Let robot i be initially assigned a target and let πi1 be the
corresponding path planned. As robot i executes πi1 , it may
require a replan due to changes in Xfree(t) or when it reaches
the assigned target. During replan, it may be assigned the same
target, a different target, or no target. Let πi2 be the new
path planned to reach its next assigned target. Furthermore, let
πci � πi1 ⊕ πi2 . . .πil ⊕ πil+1

. . . represent the combined feasi-
ble path executed by robot i from mission start to end where
πil(1) = πil+1

(0). Correspondingly, let πc1 , πc2 . . . πcn repre-
sent the complete paths executed by the robots 1, 2 . . . n from
the mission start to end, which includes visiting multiple targets.
Let Gπc

denote the set of targets along πc, i.e. Gπc
= {Gs |

(Gs ⊆ G ∧ (∃ t ∈ [0, Tcomp] | πc(t) ∈ Gs))}.
Problem: Multi-robot motion planning with unlabeled targets

in a partially known environment.
Given (S, Xfree(t), G), let robots plan and replan to accom-

modate changes inXfree and find feasible paths, πc1 , πc2 ... πcn ,
such that

Gπc1
∪Gπc2

. . . ∪Gπcn
= G

Fig. 2. The base station creates and maintains a dynamic roadmap and gener-
ates the robot-target assignment. The agent produces feasible paths and handles
robot-obstacle and robot-robot collision avoidance. Communication only hap-
pens between the base station and agents and not among agents themselves.

Algorithm 1: BaseStation (Okwn,S,G, N).

V. FRAMEWORK DESCRIPTION

The main idea behind our multi-robot sampling-based motion
planning framework is to create and maintain a centralized
dynamic roadmap to produce focusing heuristics that each agent
can utilize to accelerate the feasible path creation to its assigned
target without computing a two-point BVP solution. We update
the roadmap and its cost-to-go heuristics when new obstacle
updates are received from individual agents. We additionally
handle the robot-target assignment and collision avoidance
(robot-robot and robot-obstacle) to facilitate robots to visit all
targets promptly without collisions.

In the following subsections, we present our framework com-
ponents: i) Base-station computed dynamic roadmap mainte-
nance and robot-target assignment (Algorithm 1), ii) Agent-
computed feasible path planning and collision avoidance (Al-
gorithms 2–6). A base station-agent communication layout can
be seen in Fig. 2.

A. Framework Component That Runs on the Base Station

The base station (Algorithm 1) initially creates a probabilistic
roadmap Grm = (Vrm,Erm) in a lower-dimensional subspace
of the robot’s state space using a list of known obstacles Okwn

(known obstacles can be large obstacles detected through a prior
map) (line 1). Vrm node list initially contains the robot’s start
and target configurations along with uniform randomly sam-
pled configurations with |Vrm| = N , where N is a user-input
parameter that defines the initial number of roadmap nodes.
Erm includes the edges obtained by attempting to connect a
roadmap node to its k nearest neighbors without collision. Grm

is dynamic [21] and gets updated (line 6) to account for new
obstacles (e.g. obstacles detected by robot’s sensors) as the
mission progresses.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 21,2023 at 18:07:45 UTC from IEEE Xplore.  Restrictions apply. 



NAYAK et al.: HEURISTIC-GUIDED DYNAMICAL MULTI-ROVER MOTION PLANNING FRAMEWORK 2545

Algorithm 2: Agenti (U , δhr, q).

Algorithm 3: HIRRT(xstart,Xgoal,Hrm,U , δhr, q).

Algorithm 4: insertToQ(Hrm,Q, xtree, δhr).

When the base station receives a replan request from an agent,
it updates the roadmap using two steps. First, it adds new valid
edges from the current robot locations Scur to the closest valid
roadmap nodes. Second, it marks as “invalid” all nodes and
edges that intersect with any new obstacles Onew detected by
the replan requesting agent. The base station next updates the
cost-to-go values in the updated roadmap to all unvisited targets
using the function getHeuristics (line 7). This function runs
Dijkstra’s algorithm [22] to compute the cost-to-go values once
for each unvisited target. It outputs H = (H1, . . .Hj , . . .Hm)
where Hj is a tuple list with entry (vrmk

, hj(vrmk
)), where

hj(vrmk
) is the cost-to-go value i.e. the shortest distance

Algorithm 5: Exploit(Hrm,U , xpop, δhr).

Algorithm 6: Explore(Gtree,U).

between roadmap node vrmk
and unvisited target vrmj

in Grm.
Since Dijkstra’s algorithm requires a connected graph, we as-
sume that we sample enough nodes and create edges at the
mission start to maintain a connected roadmap till the mission
end, even though we invalidate some nodes and edges as new
obstacles are found. We believe this is a valid assumption in our
work as the new obstacles tend to be small relative to the size of
the navigable regions. However, if we detected a disconnected
path to a node in our experiments, we set its heuristic to a large
invalid value. Alternatively, we refer the reader to the work by
Kallman et al. [21] of using online calculated RRTs to reconnect
disconnected nodes.

We do not change the central roadmap when a robot detects
another robot for several reasons. First, it helps limit the com-
munication and computational cost necessary for updating the
roadmap. Second, we assume that robots can accurately detect
each other for collision avoidance and build local motion plans
to avoid each other. Finally, the central roadmap is used as a
focusing heuristic for only a percentage of the local roadmap
extensions (other extensions use random sampling).

Finally, the base station generates the robot-target assign-
ment (line 8) utilizing the Hungarian algorithm [23] with the
calculated heuristic as the cost. It then sends each agent i, its
assigned target j, and the corresponding heuristic listHj (line 9).
Lastly, the base station informs all agents of the newly detected
obstacles (line 11).

B. Framework Component That Runs on an Agent

The agent (Algorithm 2) waits (line 2) until it receives the
target assignment (line 3) and heuristic node list (line 4) from
the base station. It quickly generates a feasible motion plan (line
6) while leveraging the roadmap heuristics without solving the
two-point BVP. Once the robot starts moving along its planned
path, it periodically checks if it has reached the assigned target
(line 10), or if there is an impending collision with an unknown
obstacle (line 14) or other robots (line 20). When the robot
encounters any of these three conditions, it executes a safety
trajectory [24] to bring itself to rest (lines 11, 17, 21) and handles
the corresponding condition. In our work, we define a safety
trajectory as a collision-free trajectory with the added constraint
that its end velocities are zero. Bringing the robot to rest ensures
we have enough time to replan and generate a new path to the
assigned target.

In the following subsections, we describe feasible motion
planning, target-reached condition, and collision avoidance.
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Fig. 3. The left figure shows a search tree node xtree pushed to Q (Algorithm
4). The right figure shows the same forward tree node popped out from Q
(designated as xpop) and used in exploit step.

C. Heuristic Guided Feasible Sampling-Based Motion
Planning

Numerous prior works have been proposed for heuristic
guided sampling-based motion planning to improve planning
time [4], [25], [26], [27]. Our proposed Algorithm 2 is gen-
eral enough that any previous work that exploits the roadmap
cost-to-go heuristics without solving the two-point BVP [4],
[26] can be used in line 6 to produce fast feasible plans. In our
experiments, we propose and use a simple roadmap-heuristic
guided planner called Heuristic Informed Rapidly-exploring
Random Tree (HIRRT) (Algorithm 3), which we briefly outline
next. HIRRT uses similar ideas from [4], [26], [27] for heuristic-
guided propagation.

Inputs: The inputs to HIRRT (Algorithm 3) are the start node
xstart, goal region Xgoal, roadmap heuristic tuple list Hrm,
the control input set U , and two user-defined input parameters
δhr and q. The parameter δhr defines the threshold distance
within which nodes from the roadmap have a focusing effect
on the tree. The parameter q defines the balance of exploration
and exploitation strategies performed during search. We use a
priority queue Q to maintain a list of candidate tree nodes for
fast expansion (line 2).

Tree expansion: We use a combination of exploitation (line 9)
and exploration (line 11) strategies to grow the tree Gtree. The
exploitation strategy uses the roadmap’s heuristic for focused
expansion (Fig. 3), whereas the exploration strategy uses random
exploration. q decides whether exploitation (Algorithm 5) or
exploration (Algorithm 6) is performed in the current iteration
by comparing its value against a uniform randomly generated
value crand (line 4). In our experiments, we choose q > 0.5 to
prioritize exploitation to produce fast, feasible paths. However,
a q high value can cause inadequate exploration, potentially
causing the search to get stuck near obstacles. We refer the
reader to algorithms proposed in [27] for a detailed description
of explore and exploit steps.

D. Handling Target-Reached Condition

We assume the target is reached when the robot enters the
goal region (xi ∈ Xgj ). In most cases, the velocities are non-
zero as the robot enters the goal region, as we do not constrain
them during motion planning. Therefore we execute a safety
trajectory to bring the robot to rest (line 11 in Algorithm 2) and
then request the base station to replan and reassign targets (line
13 in Algorithm 2). The replanning ensures that all targets are
visited as quickly as possible. With the new assignment, a robot

previously assigned an unvisited target may not be assigned the
same target anymore or given no target.

E. Robot-Obstacle and Robot-Robot Collision Avoidance

The robot monitors for impending collision with new obsta-
cles (line 14 in Algorithm 2) and/or other robots (line 20 in
Algorithm 2) as it moves along its planned path. The assumption
(Section III) that the sensor radius is at least 2*dstop implies that
the robot has enough time to execute a safety trajectory and bring
it to rest without colliding with obstacles and other previously
detected robots. Although this assumption decreases the proba-
bility of collision, it does not guarantee collision avoidance if the
robot detects a new robot while executing the safety trajectory.
This situation can be fixed by continuously monitoring for other
robots while executing the safety trajectory.

Additionally, for collision avoidance with other robots, we
need to ensure they do not collide when they start moving again.
Any previously proposed methods [28] can be used to handle
this case. However, our experiments use a simple approach sim-
ilar to message collision avoidance in the Ethernet CSMA-CA
protocol [29]. After an agent comes to rest, it waits for a random
amount of time before replanning. Then, if it detects that another
agent is already moving, it again waits for a random amount
of time before it starts planning again. This way, a robot starts
moving again only when it does not detect another moving robot
within its sensor range. We choose to wait a random time rather
than perform a continuous check to reduce deadlocks between
robots and conserve power.

Note that a robot requests a global replan with the base station
when encountering a new obstacle. However, it only performs a
local replan to the assigned target after avoiding another robot.
Finally, the design choice of each robot planning individually
causes our multi-robot framework to sacrifice probabilistic com-
pleteness [1] for our mission constraints of low computational
resources and limited communication. We note that this is a
well-known trade-off [30] that is shared by any multi-robot
motion planning algorithm that solves the centralized planning
problem in the joint state space of the entire team, which be-
comes computationally intractable for mid to large multi-robot
systems.

VI. EXPERIMENTS

We outline our simulation and hardware setups in Sec-
tions VI-A and VI-B, respectively. In both setups, we discretize
the workspace and create an occupancy grid to help maintain and
invalidate edges of the dynamic costmap [21]. The grid also helps
in discretizing obstacles into obstacle cells. We collision-check
an edge by checking if any edge part lies in the obstacle cells. The
cell direct indexing makes the collision check very fast. Finally,
to simplify robot-robot collision avoidance, we exchange the
robot’s position through the base station but note that any robot
detection methods [31] can be used.

A. Simulation Experiments

We use a ROS-based simulation environment of size 25 m ×
25 m of resolution 0.5 m that resembles a planetary surface
with known and unknown obstacles. We create three scenarios
(Fig. 4), each with a different number and layout of targets and
known and unknown obstacles to test different lunar environ-
ments. Scenarios 1, 2, and 3 have the number of targetsm= 6, 7,
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Fig. 4. The pink pixels represent obstacles known prior to simulation onset.
The dark violet pixels represent new (smaller) obstacles not known before. The
agents’ initial paths are shown in different colors.

Fig. 5. Potential safety trajectories for a Treaded robot for different values of
aL and ar with initial vL = vR = 1.0 in positive y direction.

and 8, respectively. We use n= 5 robots in our experiments that
are modeled as rectangles with length 0.5 m and breadth 0.3 m.

We use total planning time and mission time as the perfor-
mance metrics. The total planning time is the sum of the time
taken to run the motion planning algorithm on all robots and for
all replans. The mission time is the time taken to visit all targets
(end of mission) and includes total planning time and traverse
time. We do not add the time taken for roadmap construction
in the performance metrics as it is calculated offline. However,
we include the time taken for the subsequent manipulation of
the roadmap in the mission time. We test our algorithm on two
different 5-D dynamical systems (Car-Like and Treaded) that
are considered viable candidates for the dynamics of planetary
rovers.

1) Car-Like: This vehicle [6] has a state (x, y, θ, v, φ)
where x, y are Cartesian coordinates, θ is the orientation, v
is the linear velocity and φ is the steering angle. The control
space is 2-D, (a, ω), where a is the acceleration and ω is the
steering rate. Its dynamical equations are ẋ = v cos(θ) cos(φ),
ẏ = v sin(θ) cos(φ), θ̇ = v sin(φ)

L , v̇ = a and φ̇ = ω where L is
the distance between the back and front wheels.

2) Treaded: This vehicle [32] has the state (x, y, φ, vL,
vR) where x, y are Cartesian positions, φ is the angle of
vehicle from horizontal, and vL and vR are the velocities of
left and right wheels respectively. The control space is 2-D
(aL, aR) which corresponds to accelerations of the left and
right wheels. Its dynamics is represented by ẋ = vx cos(φ)−
vy sin(φ), ẏ = vx sin(φ)− vy cos(φ), θ̇ = wz , v̇L = aL, v̇R =
aR, where vx = k1vL + k2vR, vy = k3(vL − vR) and ωz =
k4(vL − vR). k1, k2 and k3 are constants that depend on the ve-
hicle’s left and right track’s instantaneous center of rotation [32].
In our experiments, we choose k1 = k2 = 0.2, k3 = 1.0 and k4
= 1.66.

We use a Proportional-Derivative (PD) controller to generate
safety trajectories and bring the robot to rest. We execute a
potential trajectory only if it passes a collision check. We change
initial ω for car-like robots and initial (aL, aR) for treaded
robots (Fig. 5) to get different safety trajectories. We set the

subsequent control inputs (a, ω) as a = −Kp1v −Kd1aprv and
ω = −Kp2φ−Kd2ωprv for car-like vehicle and (aL, aR) as
aL = −Kp3vL −Kd3aLprv

and aR = −Kp4vR −Kd4aRprv

for the treaded vehicle where Kpi = 10 and Kdi = 0.5 are
the PD gains, aprv , aLprv

(left), aRprv
(right) are the previous

accelerations and ωprv is the previous angular velocity.
In our experiments, we compare our proposed framework with

the HIRRT planner against planners that use different heuristics
and show the advantage of deriving heuristics from a centralized
dynamic roadmap. For comparison, we replace HIRRT with
RRT [33] (5% goal bias heuristic), GBRRT [27] (reverse tree
heuristic with dynamics), GABRRT [27] (reverse tree heuristic
with no dynamics), and LE [4] (also uses roadmap heuristic)
in line 6 of Algorithm 2. As RRT, GBRRT, and GABRRT do
not employ roadmap heuristics, we use the euclidean distance
between a robot’s current position and a target as the cost
function in the Hungarian algorithm (line 8) in Algorithm 1. We
append the MR (Multi-Robot) to each comparison algorithm
to indicate that they are being used within the multi-robot
planner framework (Algorithms 1, 2). We include two variants
of MR-HIRRT in the comparison. The first is MR-HIRRT-P,
which uses PRM, and the second is HIRRT-D, which uses a
deterministic roadmap built with nodes on a workspace grid
of resolution 0.5 m. We construct roadmaps on the systems’
2-D (x, y) lower-dimension subspace with the initial number of
PRM nodes, N = 2500. We set HIRRT parameters δhr = 4.5
and q = 0.85. We run 50 trials of each algorithm, with each
trial having a different random seed. We use Runge-Kutta Order
4 (RK-4) for performing numerical integration. We run the
experiments on a system with Intel i7-7700 4-core CPU with
32 GB RAM.

Next, we provide an analysis (Fig. 8) of the initial number
of PRM nodes N vs. total planning time for both car-like and
treaded dynamics for Scenario 2. We vary the initial sampled
nodes from 64 to 4096 in increments of powers of 2.

Finally, we provide a scalability experiment analysis (Fig. 10)
for the ‘car-like’ robot with n varying from 2 to 8 and m varying
from 5 to 25 in increments of 5 in an environment of size 50 m×
50 m. We run 25 trials for each robot-target datapoint reporting
the total planning time and mission time.

B. Hardware Implementation

We run our planner on prototype rovers at the Lunar Mini-yard
at NASA JPL. The mini yard is cluttered with rocks and craters
to resemble the lunar surface. Each rover has a snapdragon
821 processor (4-core, 1.6 GHz) for processing and a stereo
camera for obstacle detection and visual odometry (VO). The
robots run ORB-SLAM2 [34] for mapping and localization. We
use a LIDAR scanner to scan and build a prior environment
map. New obstacles are then placed in the environment to
resemble obstacles not detected through a prior map. We use an
i7-8750H 6-core CPU with 16 GB RAM as the base station that
maintains the centralized dynamic roadmap. The base station
communicates with the agents using 802.11n WiFi. We overlay
a traversability costmap [35] on top of the occupancy grid of
resolution 0.3 m to help with motion planning. The input to the
traversability mapping module is the robot-centric elevation map
output by the elevation mapping module [35] which takes inputs
from the stereo camera. We use a trajectory library (Fig. 6) to
emulate not solving two-point BVP (i.e. constraining motion of
rovers only in certain directions). We use HIRRT to generate
global plans and Timed Elastic Band (TEB) [36] planner as the
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Fig. 6. Trajectory library for hardware experiments to simulate no solution to
two-point BVP. For sideways motion, the rover can turn in place.

Fig. 7. Top row shows total planning time and bottom row shows mission time
(planning time + traverse time) for 50 trials of running each planner for Car-Like
(left) and Treaded (right) dynamics. Our proposed planners are highlighted in
green.

local planner in our experiments. We setN = 2000, δhr = 0.27 m
and q = 0.6.

VII. EXPERIMENT RESULTS

Both MR-HIRRT-P and MR-HIRRT-D (Fig. 7) perform the
best in the planning time metric compared to other planners
in the majority of the scenarios. This result is because of the
more informed heuristic provided by the centralized roadmap
compared to other algorithms. Interestingly, both variants of
MR-HIRRT perform the best in all scenarios in the total mission
time metric. This can be attributed to shorter planning time and
a more focused search toward the targets, which leads to more
straightforward paths to the goal. Both variants perform equally
well in both metrics with no statistical difference. This shows, at
least for the scenarios and dynamical systems we tested, that the
results are invariant to the underlying sampling technique type.
MR-LE [4], which also uses the roadmap heuristic, is faster than
other variants that do not use the roadmap heuristic and performs
best for Treaded-Scenarios 1 and 2. RRT performs the worst of
all algorithms because it uses the least informed heuristic.

The analysis of the planning time vs. the number of roadmap
nodes (Fig. 8) shows that the planning time decreases as the
sampled nodes increase because of the improved heuristic ob-
tained with more nodes. However for large number of nodes,
the planning time slightly increases. This happens because the

Fig. 8. X and y-axis are in log scale. Each point is mean of 25 trials.

Fig. 9. The ROS rviz inset is displayed in bottom-right. The triangle-shaped
regions (colors resemble elevation) represent the sensor footprint of the robot.

Fig. 10. Scalability experiment results for the ‘car-like’ robot with each point
being a mean of 25 scenarios.

TABLE I
HARDWARE EXPERIMENT RESULTS

computation time involved in processing the nodes offsets the
heuristic benefit from them.

The scalability analysis (Fig. 10) shows that the total mission
time generally decreases as the number of robot increases. This
trend is because as the number of robot increases, more robots
co-operatively work to complete the mission faster. However,
the total planning time generally grows as the number of robots
increases. This is because more agents have to replan whenever
an agent reaches a target and because of the higher probability
of robot-robot collision avoidance instances.

We begin our hardware experiments (Table I) by testing MR-
HIRRT using a single robot (n = m = 1) and base station for
the cases of all unknown and some prior known obstacles. As ex-
pected, we noticed a lot more replans for the case of all unknown
obstacles. We next test using multiple robots (n = m = 2), and
the paths found by them are shown in Fig. 9. Although the
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robots could reach their assigned targets, the shadows from the
surrounding buildings (top left part in Fig. 9) caused issues with
the rover’s navigation system requiring manual intervention for
one robot. Thus a robust navigation system is necessary to be
developed that accounts for illumination variations which is
outside the scope of this work. We conclude our experiments
due to expired access to the rovers and testing space.

VIII. CONCLUSION

We present a multi-robot motion planning framework to solve
the problem of m dynamical agents visiting n unlabeled targets
in a partially known environment for rover missions. A base
station maintains a centralized roadmap that dynamically up-
dates when robots detect new obstacles. The base station uses
this roadmap to generate each agent’s cost-to-go heuristic values
and the agent-target assignment. The agents use the calculated
heuristic to speed up dynamical motion planning (without solv-
ing BVP) towards the assigned target. We conduct simulation
and hardware experiments to test our proposed planner. We
present an analysis of the overall planning time vs. the initial
number of PRM nodes. Finally, we provide a scalability experi-
ment analysis with increases in the number of robots and targets.

Our experiments demonstrate that our framework with the
HIRRT planner performs better than other planners for most
scenarios in the chosen performance metrics. Thus our work
shows the advantage of using a centralized dynamic roadmap to
accelerate multi-robot motion planning.
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