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Abstract—We compare the performance of five state of the
art decentralized task allocation algorithms under imperfect
communication conditions. The decentralized algorithms we con-
sider are CBAA, ACBBA, DHBA, HIPC and PI. All algorithms
are evaluated using three different models of communication,
including the Bernoulli model, the Gilbert-Elliot model, and the
Rayleigh Fading model. All 15 of the resulting combinations of
an algorithm with a communication model are evaluated in two
different problem scenarios: (1) Collaborative visit, a scenario in
which the agents have to collaboratively visit known stationary
targets. (2) Collaborative search and visit, a scenario in which the
agents have to collaboratively search for and then visit unknown
stationary target locations. Each algorithm is evaluated in each
scenario using two performance measures: (1) the maximum
distance traveled by any agent (2) the maximum number of
messages sent by any agent. Real-time experimental simulations
show the trade-offs that exists between these five algorithms at
different communication conditions.

Index Terms—Distributed robot systems, task planning, net-
worked robots.

I. INTRODUCTION

TEAMS of Unmanned Aerial Vehicles (UAV) have been
proposed for use in applications such as search and rescue

[1], firefighting [2] and surveillance and reconnaissance [3].
In these applications, the team members or agents need to
communicate in order to coordinate the assignment of tasks
and verify task completion. However, real world wireless
communication is often unreliable, degraded, or constrained,
due to fading, path loss and interference among other issues
[4] which impacts coordination between agents.

The process of assigning tasks to agents in a team is
known as task allocation. There are two groups of task
allocation algorithms — centralized and decentralized [5] [6].
Centralized algorithms use the notion of a “master” agent
who computes and assigns tasks for each agent whereas
decentralized algorithms do not have a master and all agents
participate in computing and assigning tasks. The performance
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Fig. 1: Agents A1, A2, A3 and A4 use decentralized task alloca-
tion (under imperfect communication) to visit all known targets
T1, T2, T3, T4.... The costs represent the distance to targets. Agents
A1, A2, A3 exchange costs (successful communication) and coordi-
nate such that each agent visits a unique target. However, agent A4

visits same target T2 as A1 because of loss of coordination (failed
communication).

of both groups of algorithms degrades under imperfect com-
munication. Centralized algorithms are susceptible to packet
drops between master and agent which has been studied in [7].
However, little analysis has been done on the performance
of decentralized task allocation algorithms under imperfect
communication (Fig. 1).

The main contribution of this paper is a comparison
of five decentralized task allocation algorithms (CBAA
[8], ACBBA [9][10], DHBA [11], HIPC [12][13] and PI
[14]) across many communication quality levels using three
different communication models: Bernoulli [7], Gilbert-
Elliot (G.E.) [15][16] and Rayleigh Fading [17]. This is
useful because it highlights differences in the performance of
the decentralized algorithms across different communication
conditions. Additional contributions include:

1) This is the first systematic comparison of more than two
decentralized algorithms.

2) We compare algorithms on two different scenarios, the
second of which has not been studied extensively: (i)
The Collaborative visit scenario: agents collaboratively
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visit known stationary targets. (ii) The Collaborative
search and visit scenario: agents collaboratively search
for unknown stationary targets and then visit them.

The two performance measures considered in our study are the
maximum (max) distance traveled by any agent and the max
number of messages sent by any agent. All 30 combinations of
algorithm, communication model, and scenario are evaluated
with respect to both performance measures. Assuming constant
velocity, the max distance traveled measure is proportional
to the mission completion time, i.e., time taken by agents to
complete all tasks.

The rest of the paper is organized as follows. Section II
provides a discussion on related work. Section III contains
the problem definition for the two scenarios used in the
experiments. Section IV describes the decentralized algorithms
and communication models. Section V explains the framework
used for running the experiments, the design of experiments,
and determination of optimal parameters for algorithms. Sec-
tion VI contains an analysis of experimental data and a
discussion of results. Section VII concludes the paper by
summarizing our contributions and main results.

II. RELATED WORK

There are a variety of decentralized task allocation al-
gorithms discussed in the existing literature. A majority of
these are market based approaches that use auctions. Two
widely used auction based approaches are Consensus Based
Auction Algorithm (CBAA) and the Consensus Based Bundle
Algorithm (CBBA) [8]. CBAA is single task assignment based
where an agent is assigned a single task at a time. CBBA
is bundle task assignment based where an agent is assigned
multiple tasks.

There have been several improvements made to the CBBA
algorithm, most notably, the Asynchronous Consensus Based
Bundle Algorithm (ACBBA) [9][10], Hybrid Information and
Plan Consensus (HIPC) algorithm [12][13], and Performance
Impact (PI) Algorithm [14]. ACBBA eliminates the need
for coordinated synchronous communication in the consensus
phase of CBBA, thereby minimizing the number of messages
used while retaining the convergence properties of CBBA.
HIPC merges ideas of global situational awareness consensus,
global plan consensus, and local plan consensus, and also
handles cases where the network conditions and mission
objectives are dynamic across the team. PI tries to optimize the
mathematical objective for the problem and provides conflict-
free solutions [14].

Another class of decentralized algorithms use optimization
techniques to solve the task allocation problem. They can
be divided into deterministic or stochastic optimization based
approaches. The Decentralized Hungarian Based Algorithm
(DHBA) [11] is an example of a deterministic optimization
algorithm that uses the Hungarian method [18] to perform
task allocation. In contrast, Wang et al. [19] utilize the
stochastic ant-colony optimization algorithm [20] to solve the
task allocation problem.

A comprehensive comparison of decentralized task alloca-
tion algorithms has yet to appear in the literature. However,

several pairwise comparisons between two different algorithms
exist, which we now survey. Johnson et al. [10] compare
ACBBA with the original CBBA and find that ACBBA uses
less number of messages both in full connected network and
line network topologies. Ismail et al. [11] compare DHBA
and show that unlike CBAA, DHBA always finds the optimal
solution under perfect communication. Johnson et al. [13]
compare HIPC algorithm with CBBA and show that HIPC
outperforms CBBA in terms of the number of messages
exchanged, number of conflicts and number of iterations. Zhao
et al. [14] compare PI algorithm with CBBA in a variety of
scenarios and demonstrate that PI outperforms CBBA. While
many papers have compared their proposed approaches against
CBAA or CBBA, they have not compared against each other.
Our work fills an existing gap in the literature by comparing
five decentralized task allocation algorithms (CBAA, ACBBA,
DHBA, HIPIC and PI) across a variety of communication
conditions, problem scenarios, while using three different
communication models and two different performance metrics.
We choose these algorithms because they are highly cited and
representative of a range of decentralized algorithms available
in literature. Although most of these algorithms are auction
algorithms, they vary in the number of task assignments
required, bid generation, and the type of messages exchanged.

Previous works have used different communication models
for comparing decentralized algorithms. Ismail. et al [11] use
a simple disc communication model where the size of the
workspace area is n × n units and the communication range
is n/2 to compare DHBA and CBAA. Johnson et al. [10] use
two different network topologies — a fully connected and line
network, to compare ACBBA with CBBA. Zhao et al. [14]
use different network topologies like row, star, circular and
mesh networks to simulate different communication scenarios
to test PI. Johnson et al. [13] evaluate HIPC by varying degrees
of network connectivity. Unlike previous works that simulate
varying communication with different network topologies, the
current paper assumes a full mesh topology (in which every
agent attempts to communicate with every other agent) and
then messages are dropped according to the Bernoulli, G.E.,
and Rayleigh Fading models. These models account for path
loss, fading, burst errors, and bandwidth saturation inherent in
many communication channels.

III. PROBLEM DEFINITION

We formulate the decentralized task allocation problem as
follows: Let A = {a1, . . . , an} be the set of agents and T =
{t1, . . . , tm} be the set of tasks. Let Si ⊆ T be a sequence
of l tasks assigned to agent i and let q(Si) be its cost. The
goal of the decentralized task allocation problem is to have the
sequence Si for all agents i satisfy the condition T =

⋃n
i=1 Si.

We define T differently in each of the two sub problems of
decentralized task allocation (Fig. 2) studied in this paper:

1) Collaborative visit Scenario: In this scenario, the tasks
correspond to a set of a priori known stationary targets
U = {u1, . . . , un} that the agents have to visit in a map of
size M ×M . We define T , U and Si to be sequence of
l targets to be visited by agent i. A target is considered to
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be visited if an agent moves within a threshold distance δdT
of the target’s location. The mission is completed when all
targets are visited by at least one of the agents.

2) Collaborative search and visit Scenario: In this scenario,
the tasks corresponds to a set of unknown stationary targets
U = {u1, . . . , un} that the agents have to search and visit in a
map of size M×M . To facilitate searching, the search space is
divided into a set of user defined grid cells G = {g1, . . . , gr}
about which the agents have knowledge a priori. As the agents
move in the map, they are capable of discovering new targets
that lie within their sensor radius Rv . Thus the set U is empty
at the start of the simulation and gets populated as more targets
are found. This is in contrast to the visit scenario where the
elements of U are fully known at the start of the simulation
and do not change. A cell is said to be searched when an agent
reaches the center of the cell, i.e., because the cell is assumed
to be completely within the sensor radius of the agent when
the agent is located at the center of the cell. The agents share
the information about the newly discovered targets with other
agents. We define T , U ∪ G and Si to be the sequence of
l tasks (search and visit) in T that are assigned to agent i.
The mission is completed when all cells are searched and all
targets are visited by at least one of the agents.

The min-max objective O(X ) considered by all agents in
both scenarios is to find a task assignment X ∗ = {S1...Sn}
such that

O(X ∗) = min
X

(
max
i∈A

q(Si)

)
The tasks of searching cells and visiting targets both involve
visiting locations. Thus, completing the task set Si involves
visiting l locations. We define the cost function q(Si) as

q(Si) = Ci +

l∑
k=1

ci(tk)

where Ci is the cost accrued by agent i in reaching its current
location and ci(tk) is agent i’s cost of visiting target tk. In our
work, ci(tk) is defined as the Euclidean distance from agent i
to target tk. Thus, the min-max objective requires minimizing
the maximum distance traveled by any agent.

Assuming constant velocity, the min-max objective corre-
sponds to minimizing the time required by the UAV team to
visit a set of locations (and time is an important consideration
in emergency management and large scale surveillance oper-
ations [21]). A second objective that we consider is the min-
max number of transmitted messages. Min-max transmissions
is a useful metric in scenarios involving limited network
connectivity, bandwidth, or stealth.

IV. PRELIMINARIES

In this section, we outline the algorithms and communica-
tion models used in our analysis.

A. Decentralized task allocation algorithms

We evaluate and compare five decentralized algorithms. The
inputs — target list T , current distance traversed di by agent
i and iteration count I are provided to all algorithms.

Collaborative visit Collaborative search and visit

Agent1 path Agent2 path Agent3 path Agent4 path
Target

Agent1

Agent3

Agent2

Agent4

Visibility boundary

Agent1

Agent3

Agent2

Agent4

Fig. 2: Two scenarios used to compare decentralized algorithms in
imperfect communication conditions.

1) CBAA: This single-task assignment algorithm (Algo-
rithm 1) operates in two phases: the assignment phase and
the consensus phase. The assignment phase (line 4) consists
of each agent determining local bids for all tasks known to
be incomplete and greedily assigning itself the lowest bid task
ti. The agent then updates the winning bids list Wi with the
lowest bid task and sends it to all the other agents (line 5). The
consensus phase (line 6) has each agent receiving the winning
bids list from other agents and updating its bids list with the
lowest bids. The item is awarded to the agent with the best
(lowest) bid.

2) ACBBA: This multi-task assignment algorithm (Algo-
rithm 2) operates in two phases- assignment phase and the
consensus phase. The assignment phase (line 4) is used for
greedily determining an ordered task list/bundle bi (up to size
B) and updating the winning bids list Wi with the bids of the
task list. The winning bids list along with winning time stamps
is sent out to all other agents (line 5). The consensus phase
(line 6) has each agent receiving messages from other agents
and updating its internal bid list. We reset the current task list
whenever a new target is dynamically added (this is also done
for the other bundle assignment algorithms we evaluate).

3) PI: This multi-task assignment heuristic algorithm (Al-
gorithm 3) modifies CBBA to utilize a different bid evaluation
called “significance” that tries to measure the contribution of
a task to the local cost generated by each agent. PI operates in
two phases — the task inclusion phase and the consensus and
task removal phase. The task inclusion phase (line 4) is used
to calculate marginal significance of all tasks not included in
the current task bundle bi and use it to update the task bundle
(up to size B) and significance list Si. This significance list
is then sent to other agents (line 5). The consensus and task
removal phase (line 6) is used for achieving consensus on the
significance values of tasks on each agent and for removing
tasks that has been outbid by another agent. We use ACBBA
consensus rules in our implementation.

4) DHBA: This single-task assignment algorithm (Algo-
rithm 4) first initializes a cost matrix Ci using the current
distance traveled di and current cost of visiting known un-
completed targets (line 3). It then operates in two phases: the
assignment phase and the update phase. The assignment phase
(line 5) consists of each agent running the Hungarian algorithm
[18] on Ci to get an uncompleted task ti. The agent broadcasts
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Algorithm 1 CBAA on agent i

1: procedure CBAA(di,Wi, T , I)
2: ti ← None
3: for k ← 1 to I do
4: (ti,Wi)← Assignment (ti, di,Wi, T )
5: SendBids (Wi)
6: (ti,Wi)← Consensus (ti,Wi)

7: return ti

Algorithm 2 ACBBA on agent i

1: procedure ACBBA(di,Wi, T , I,B)
2: bi ← None
3: for k ← 1 to I do
4: (bi,Wi)← Assignment (bi, di,Wi, T ,B)
5: SendBids (Wi)
6: (bi,Wi)← Consensus (bi,Wi,B)
7: return bi

Algorithm 3 PI on agent i

1: procedure PI(di, Si, T , I,B)
2: bi ← None
3: for k ← 1 to I do
4: (bi, Si)← TaskInclusion (bi, di, Si, T ,B)
5: SendSignificanceList (Si)
6: (bi, Si)← ConsensusAndTaskRem (bi, Si,B)
7: return bi

Algorithm 4 DHBA on agent i

1: procedure DHBA(di, T , I)
2: ti ← None
3: Ci ← InitCostMat(di, T )
4: for k ← 1 to I do
5: ti ← Assignment (Ci)
6: SendCostMatrix (Ci)
7: Ci ← Update (Ci)

8: return Ci

Algorithm 5 HIPC on agent i

1: procedure HIPC(di,Wi, T , I)
2: bi ← None
3: for k ← 1 to I do
4: (bi,Wi)← TAA (bi, di,Wi, T )
5: SendBids (Wi)
6: (bi,Wi)← Consensus (bi,Wi)

7: return bi

G B
𝑝𝐺𝐺

1 − 𝑝𝐺𝐺
𝑝𝐵𝐵

1 − 𝑝𝐵𝐵
𝑝𝐺 𝑝𝐵

Fig. 3: G.E. model. G represents good communication state and B
represents bad communication state.

Ci to all other agents (line 6). The update phase (line 7) has
each agent receiving the cost matrix from other agents and
updating Ci with the costs from other agents.

5) HIPC: This multi-task assignment algorithm (Algo-
rithm 5) is built on top of the original CBBA. Instead of
greedily generating its own task bundle, HIPC tries to solve
the task assignment problem for all agents and uses this
assignment to generate bids on tasks. This algorithm has two
phases — task allocation phase and consensus phase. The
task allocation phase (line 4) consists of each agent running
a full Task Allocation Algorithm (TAA) to generate agent’s
task bundle bi. We use a variation of the nearest neighbors
algorithm [22] modified for min-max objective as our TAA
implementation. The process of sending bids (line 5) and the
consensus phase (line 6) is same as that for ACBBA.

B. Communication Models

We use the following three models to simulate unreliable
communication channels (assuming an unreliable communi-
cation protocol, e.g., like UDP is used):

1) Bernoulli model: This model consists of a single pa-
rameter p (0 ≤ p ≤ 1) which is the probability that a message
sent by an agent is successfully received by another agent.
The communication attempts are independently and identically
distributed (i.i.d).

2) Gilbert-Elliot (G.E.) model: This model is equivalent
to a Markov chain that consists of two states, Good and
Bad. The two states are used to model different degrees
of communication such that the probability of successfully
transmitting a message pG in the good state is greater than in
the bad state pB i.e. pG > pB . The state transition probability
pGG represents the probability of transition from the good
state back to good state and pBB represents the probability of
transition from bad state to bad state (Fig. 3). The G.E. model
can model burst errors and bandwidth saturation [7][16].

Communication
Model

Packet
drop

Fading Distance b/w
agents (path
loss)

Bandwidth
saturation

Bernoulli X × × ×
G.E. X × × X
Rayleigh Fading X X X ×

TABLE I: Communication model comparison

Fig. 4: Figure shows received power PR of a signal attenuated by
Rayleigh fading and path loss. The transmitted power PT = 30 dB
and the sensitivity threshold PS = −65dB. An asterisks ‘*’ represents
packets that are dropped.

3) Rayleigh Fading Model: Fading refers to the process of
variation in the attenuation of a wireless signal due to inter-
ference from objects in the environment. These objects cause
the wireless signal to be propagated along multiple paths with
each path-signal experiencing a different shift in amplitude,
frequency and phase and finally interfering constructively or
destructively at the receiver. In the Rayleigh fading model, the
received channel envelope varies according to the Rayleigh
distribution. We use the Inverse Discrete Fourier Transform
(IDFT) technique [23] to generate the Rayleigh random variate
sequence of size N because of its superlative and efficient
variate generation process. We then randomly select a sample
from the generated variate sequence to describe the fading
power, PF . Besides fading, we also take into account the
attenuation in the transmitted signal due to path loss. The
path loss PPL [24] depends on the distance between the
transmitting and receiving agent, formulated as

PPL = PL0
+ 10γ log10

(
d

d0

)
Where, d is the distance between the transmitter and receiver,
γ is the path loss exponent, PL0

is the path loss at reference
distance, d0. The combined power loss PL due to fading and
path loss is PL = PPL + PF . The total received power is
given by PR = PT − PL where PT is the transmitted power.
PR is compared with a user-defined sensitivity threshold PS .
A message is dropped if PR < PS (Fig. 4).

A comparison of the communication models is provided in
Table I.

V. EXPERIMENTAL SETUP

This section first describes the simulation framework we
use for running experiments, then outlines our experimental
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Fig. 5: Framework used for comparing decentralized task allocation
algorithms under varying communication.

design and finally describes our method for determination of
optimal parameters for algorithms.

A. Simulation Framework

The simulation framework (Fig. 5) consists of two types of
modules: Agent (1 per agent) and Environment (1 total).

Agent: Each agent module represents an independent pro-
cessing unit that runs the decentralized task allocation algo-
rithms. The algorithms are executed through procedure calls
(Section IV) every 0.1s. Each agent communicates with other
agents via a simulation of the communication model. The
communication model and its parameters dictate whether an
incoming message is accepted or dropped. The algorithms are
oblivious to the communication model in use.

Environment simulator: The environment simulator gener-
ates the two dimensional (2D) map for the simulation. The
map consists of agents which are modeled as point robots
with a constant speed As and targets which are modeled as
stationary points. The map has a collision free model for
physical agent-agent interactions. The environment simulator
moves the robots when requested by the agent modules,
represented as actions in Fig. 5. It generates odometry sensor
readings Fig. 5, which are utilized by the agent modules to
determine if an agent has reached a target or not.

The simulation framework is built using the Robot Oper-
ating System (ROS) Kinetic framework [25]. The commu-
nication simulator is written in C++ and the algorithms and
environment simulator are coded in Python.

B. Design of Experiments

We use a randomized design of experiments. An instance
is defined as one random sampling of the parameters from
the ranges mentioned in Table II. These ranges are universal
across all scenarios, communication models and algorithms.

The dimension of the map is M ×M , with M = 100 units.
The target locations in this map are determined by sampling
a 2D Gaussian Mixture Model pgmm

pgmm =
1

K

K∑
i=1

N (µi,Σi)

pgmm represents a spatial probability distribution over the
map created using multiple Gaussian distributions with the
maximum probability at the cluster centers. In this model,

Parameter Range
Number of agents [5,10]
Number of target clusters (K) [1,4]
Initial locations of agents ([0, 100],[0, 100])
Cluster centers (µi) ([0, 100],[0, 100])
Cluster radii (r) [5,50]

TABLE II: Parameter ranges for instance generation.

Com. Model Com. lev-
els

Instances Algorithms
count

Total ex-
periments

Bernoulli 10 50 5 2500
G.E. 9 50 5 2250
Rayleigh 6 50 5 1500

TABLE III: Total number of experiments for each communication
model per scenario.

the number of clusters K is first fixed. The cluster centers
µi are set by randomly sampling for numbers in the range
[0, 100], and the cluster co-variance Σi is set to a diagonal
matrix with square of cluster radius as values on the diagonal.
The clustering of targets is done to get varying realistic
distributions of targets in experiments.

We fix the agent speed As = 6 units/s and threshold distance
δdT = 0.25 units for both scenarios. For collaborative search
and visit scenario, we fix the number of grid cells r = 25 and
sensor radius Rv = 28.28 units (half length of diagonal of grid
cell). For each of the instances, we vary the communication
model parameters as follows:

Bernoulli model: We fix values of p from the range [0, 1−
log10(bi)] with bi varying from 1 to 10 to give a total of 10
communication levels. p = 1 represents high communication
and p = 0 represents low communication.

G.E. model: We assume the good state to have perfect
communication (pG = 1) and the bad state to have no commu-
nication (pB = 0). The state transition probabilities pGG, pBB

are set to either Low (L), Medium (M) or High (H) with
corresponding probabilities of 0.1, 0.5 and 0.9 respectively.
The permutation of these 3 values for the tuple (pGG, pBB)
gives a total of 9 communication levels. On average, the tuples
HL (High, Low) and LH (Low, High) represent high and low
communication respectively. We check for state transitions
every 1s.

Rayleigh Fading Model: We fix the model parameters as
N = 64, chosen as power of 2 for fast computations, d0 =
1 unit, PL0

= 40 dB (calculated using the Friis propagation
model [26] assuming a 2.4 GHz signal commonly used in
many communication networks) and PT = 30 dB. We choose
γ = 2.5 to simulate semi-urban to rural environments (γ ranges
between 2 to 6 with 2 for uncluttered space and 6 for densely
obstructed urban areas [24]). We vary the sensitivity threshold
PS in the range [-25, -75] dB in -10 dB increments for a
total of 6 communication levels. -25 dB and -75 dB represent
low and high communication respectively. We note that PT

and range of PS can be changed by relative offsets without
affecting results.

The total number of experiments conducted per communica-
tion model per scenario is shown in Table III. The experiments
were run on an AMD Ryzen Threadripper 2990WX, 32-core,
3 GHz CPU with 32 GB RAM.
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C. Determination of optimal parameters of algorithms

The parameter space of CBAA, DHBA and HIPC
contains the max iteration count I, and for ACBBA
and PI, it contains both I and max bundle size
B. Values for the I and B tuning parameters are
chosen as follows: for each I ∈ {1, 2, 3, 4, 5, 10, 15, 20}
and B ∈ {1, 2, 3, 4, 5, 10, 15, . . . , 35, 40} (visit scenario) and
B ∈ {1, 2, 3, 4, 5, 10, 15, . . . , 60, 65} (search and visit scene-
rio), we run 10 “tuning” experiments with 7 agents and 22
targets at perfect communication (7 and 22 represent the me-
dian agent and target counts we study across both scenarios).
Agent and target starting locations are randomly determined,
and then used across all points in the parameter space I, or
(I,B) depending on algorithm, to ensure a fair comparison.
We average the results of the 10 experiments separately for
each I, B, algorithm, and performance metric. Next, for each
algorithm, we select the I or (I,B) that yields the lowest
min-max distance, on average, and compare its performance
to those of the other I or (I,B) using the Wilcoxon’s signed
rank test (WSR) [27] at 5% significance level. If a different
I or (I,B) with similar distance distribution (according to
the WSR test) is found, we choose the value that produces
the lowest max message transmission count, on average.
The iteration counts I chosen for CBAA, ACBBA, DHBA,
HIPC, PI are 2, 1, 2, 1, 1, respectively, for visit scenario and
1, 1, 2, 1, 1 for search and visit scenario, respectively. The max
bundle size B for ABBA, PI are 25, 2 for the visit scenario
and 10, 2 for the search and visit scenario respectively.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We visualize the data from our experiments three ways,
including: box plots [28] (Fig. 6), Metrics Trade-off plots
(MTP)(Fig. 8) and WSR test plots [27] (Fig. 7).

The box plots (Fig. 6) show the mean and distribution
of performance data separately for each metric, across all

communication models, communication levels, and scenarios.
Each box-plot represents 50 instances. We believe that the high
interquartile range for min-max distance and messages is due
to the randomized agent and target starting locations.

The WSR plots (Fig. 7) show the statistical significance
between each pair of algorithms with respect to the two
performance metrics. The null hypothesis is that the median
difference in the performance metric between two algorithms
is zero. There are four colors because the null hypothesis may
or may not be rejected for each of the two metrics (2×2 = 4).

The MTP plots (Fig. 8) are an alternative data visualization
that highlight how the best performing algorithms (at each
communication level) have different trade-offs between the
two performance metrics. Data points represent the mean
performance over 50 instances (for each combination of sce-
nario, communication level, and model), and points at the
same communication level are linked with line segments. To
declutter the MTP plots, we only draw points for algorithms
that have the best performance with respect to some linear
combination of the two metrics. Some readers may find the
analogy of a Pareto frontier [29] useful in interpreting the MTP
plot, in this analogy the markers depict the non-dominated
solutions.
Comparison results for the two scenarios

1) Visit Scenario: At high communication, Figs. 6 and 8
show ACBBA, DHBA, HIPC and PI generally perform better
across all communication models. The WSR test for ACBBA
vs. DHBA shows statistical difference for the distance travelled
metric but not the messages transmitted metric (green squares)
for all communication models. In the Bernoulli and Rayleigh
models, we observe the same trend for ACBBA vs. HIPC and
for ACBBA vs. PI. Since ACBBA performs better on average
in terms of min-max distance, we infer that ACBBA performs
best at high communication when using the Bernoulli and
Rayleigh models. However, there exists a statistical difference
for ACBBA vs. PI at high communications (yellow squares)

Fig. 6: Box plots for algorithms across different communication models and scenarios. The Bernoulli p = 0 case has been omitted in this
plot because including the high average distance and message values, for all algorithms at p = 0, distorted the plot beyond usefulness.
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Fig. 7: Wilcoxon tests to determine which algorithms are statistically different across different scenarios and communication models.

Fig. 8: Metrics Trade-off Plot (MTP) across different scenarios and communication models. The hollow circles represent the algorithms
with only the best performing algorithms (non-dominated) shown at each communication level to reduce clutter. The algorithms at the same
communication level are joined by same colored line segments for easy visualization. The plot inside the dashed grey rectangle in the
Bernoulli plots represents the zoomed version of the data points on the left hand side.

for the G.E. model. Hence a trade-off exists between ACBBA
(less distance) and PI (less messages) at high communication.

At low communication, Fig. 6 and Fig. 8 show ACBBA
and PI generally perform better across all communication
models. ACBBA (and/or PI) perform the best at the zero
communication case for the Bernoulli model. At low commu-
nication, there exists a trade-off between ACBBA and HIPC
and ACBBA and PI when using Bernoulli and G.E. model
(yellow squares) respectively. For the lowest communication
level we tested on the Rayleigh model, there is only sta-
tistically significant differences in messages transmitted for
ACBBA vs. CBAA, ACBBA vs. DHBA and ACBBA vs. PI
(blue squares). Since ACBBA, sends the lowest number of
messages, we conclude that ACBBA performs the best given
the lowest communication level tested for the Rayleigh model.
Fig. 8 shows that ACBBA also performs best at next higher

level (-35 dB) of Rayleigh model.
2) Search and Visit Scenario: At high communication,

Fig. 6 and Fig. 8 show ACBBA, HIPC, DHBA and CBAA gen-
erally perform better across all communication models. Given
the G.E. and Rayleigh models, the WSR test for ACBBA vs.
HIPC, ACBBA vs. DHBA and ACBBA vs. CBAA show a
statistical difference in both distance travelled and messages
transmitted (yellow squares). Also, DHBA vs. HIPC shows no
statistical difference (purple squares) and CBAA vs DHBA and
HIPC vs CBAA shows statistical difference in only messages
transmitted (blue squares). This implies CBAA outperforms
HIPC and DHBA since CBAA transmits less messages. This
causes the trade-off to boil down between ACBBA (less
distance) and CBAA (less messages) at high communication.
The same trade-off conclusion between ACBBA and CBAA
can be obtained for the Bernoulli model by using a similar



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

analysis.
At low communication, HIPC and CBAA generally perform

the best across all communication models. Given the Bernoulli
model, CBAA and PI does best at zero communication. At the
next higher communication level, the WSR test for ACBBA
vs CBAA shows statistical difference in only messages trans-
mitted. Since CBAA send lower number of messages, we can
conclude that CBAA does better than ACBBA. For the G.E.
model there is a statistical difference in both performance
metrics between HIPC and CBAA. A trade-off exists in
selecting HIPC (less distance) and CBAA (less messages).
For the Rayleigh model, at -35dB, we find a trade-off exists in
choosing HIPC (less distance) or CBAA (less messages) since
there is significant difference in both metrics. However at the
lowest communication (-25 dB), CBAA performs best as it
sends lower number of messages and there is no significant
difference in distance traveled for DHBA vs CBAA.

VII. CONCLUSION

We compare the performance of five decentralized task
allocation algorithms (CBAA, ACBBA, DHBA, HIPC and
PI) under imperfect communication. We model imperfect
communication using Bernoulli model, Gilbert-Elliot model
and Rayleigh Fading Model. We consider two scenarios in our
experiments: (1) Collaborative visit scenario where the agents
collaboratively visit a priori known targets (2) Collaborative
search and visit scenario where the agents collaboratively
search for and then visit unknown targets. We evaluate perfor-
mance using two metrics: the max distance traveled and max
number of messages sent by any agent.

The results of our experiments suggest that for the collab-
orative visit scenario, ACBBA generally performs better than
other algorithms at high communication levels given either
Bernoulli or Rayleigh models. However, a trade-off with PI
(less messages) when using the Gilbert-Elliot model. For the
Rayleigh model with low communication, ACBBA performs
the best. While for the Bernoulli and Gilbert-Elliot models,
ACBBA (less distance) shows a trade-off with HIPC and PI
(less messages). For the collaborative search and visit scenario,
we find a trade-off exists between ACBBA (less distance)
and CBAA (less messages) at high communication levels. At
low communication levels, CBAA is generally more desirable,
although there is a trade-off with HIPC (in general, if the
Gilbert-Elliot model is used; and for the Ps = -35 dB level of
Rayleigh model).

Possible future directions of our research include: using
different parameter sets, objective functions, and new scenarios
(such as moving and dynamically added targets).
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