
2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3128705, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2021 1

Viscoelastic Fluid-Inspired Swarm Behavior to
Reduce Susceptibility to Local Minima: The Chain

Siphon Algorithm
Loy McGuire1, Tristan Schuler2, Michael Otte3, and Donald Sofge4

Abstract—We present a novel distributed robotic swarm algo-
rithm inspired by the open channel siphon phenomenon displayed
in certain viscoelastic fluids. Self-siphoning viscoelastic fluids
are often able to mitigate the trapping effects of local minima
in the environment. Using a similar strategy, our algorithm
enables a robot swarm to mitigate the trapping effects of local
minima in potential fields. Once a robot senses the goal, local
communication between robots is used to propagate path-to-goal
gradient information through the swarm’s communication graph.
This information is used to augment each agent’s local potential
field, reducing the local minima traps and often eliminating
them. We perform hardware experiments using the Georgia
Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic
platforms as well as Monte Carlo simulations conducted in
the Simulating Collaborative Robots in Massive Multi-Agent
Game Execution (SCRIMMAGE) simulator. We compare the new
method to other potential field based swarm behaviors that both
do and do not incorporate local minima fixes. The distributed
algorithm generates self-siphoning behavior within the robotic
swarm, and this reduces its susceptibility to local minima.

Index Terms—Swarm Robotics, Distributed Robot Systems,
Planning under Uncertainty

I. INTRODUCTION

SWARMS are multi-agent systems that provide benefits
such as collective action, multitasking, and redundancy.

They are useful for tasks such as collective object transporta-
tion and exploration. Swarms may contain an arbitrarily large
number of agents. A defining characteristic of swarm algo-
rithms is continued functionality as swarm size is increased
by orders of magnitude.

One ramification of this scalability requirement is that
artificial swarms are often organised as locally communicating
distributed systems, and swarm algorithms are designed to use
local decision making and local message passing. This organ-
isation facilitates scalability by reducing both computational
complexity and communication requirements, but does not
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guarantee algorithmic completeness. In contrast, centralized
systems that provide algorithmic completeness require global
coordination and communication, which can cause computa-
tional intractability and communication bandwidth saturation
for large numbers of agents.

A variety of methods have been proposed to direct the
movement of swarms. Potential field methods associate all
positions within a workspace with a magnitude. The gradient

Figure 1: Water is trapped by a local minimum as it falls downward (top
panel). A viscoelastic fluid is less susceptible to local minima due to its self
siphoning behavior (second panel). Our distributed chain siphon algorithm,
inspired by viscoelastic fluids, uses a similar siphoning behavior to enable
robots swarms to overcome the local minima that affect potential field methods
(third panel). It is advantageous when at least one robot reaches the goal.
Bottom [1]: We test our algorithm on a swarm of robot blimps.
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of the potential field is then interpreted as a vector field,
imposed on the workspace, and used to control an agent.
Potential fields were originally used by Khatib to control
robot manipulator arms [2], but have also been widely used
to control swarms of agents [3]–[7].

It is well known that potential fields may contain local
minima that can trap agents (illustrated in Figure 1). A local
minimum occurs when a low potential area is surrounded by
higher potentials, causing a local sink (point of attraction)
in the vector field. In nature, certain viscoelastic fluids over-
come local minima using a self-siphoning phenomena: once a
viscoelastic fluid starts pouring out of a container, internal
viscoelastic forces continue to pull more and more of the
material over the container wall (see Figure 1). We present
the Chain Siphon Algorithm, a distributed swarm algorithm
inspired by self-siphoning viscoelastic fluids.

The Chain Siphon Algorithm relies on an assumption that
a large number of agents exist, and then leverages distributed
sensing and local communication to achieve a self-siphoning
effect. First, as more agents become stuck in a local minimum
trap, the trap eventually fills with agents such that additional
agents ‘spill over’ and find the goal. Second, assuming many
agents exist, a queue of local communication is formed from
the agents in the goal to the agents in the local minima traps.
Third, robot order in the queue is used to alter each agent’s
potential field such that the swarm is drawn out of the local
minima and toward the goal.

Running the Chain Siphon Algorithm on all agents simul-
taneously causes an emergent behavior that is similar to a
viscoelastic fluid exhibiting the open channel siphon effect.
This siphoning behavior allows agents that successfully move
around obstacles to pull neighboring agents out of local min-
ima traps. We test the Chain Siphon Algorithm in simulation
(Figure 6) and with real-world robotic experiments using a
swarm of GT-MABs (Figure 4).

The rest of the paper is organized as follows: Section II
discusses related work. Section III details the Chain Siphon
Algorithm, other algorithms we compare to, and necessary
subroutines. Our experiments are presented in Section IV, and
the results from those experiments are discussed in Section V.
Conclusions appear in Section VI.

II. RELATED WORK

Potential fields have long been used to control multi-agent
and swarm robotic systems, dating back to at least 1989
[8]. For example, mathematical relationships such as bivariate
normal functions [3], sigmoid, and normal functions [4] are
used to keep robots in a desired formation as the swarm
follows a global trajectory. A mass-spring-damper model is
used to control agent-agent interactions in spacecraft swarms
[5]. Other work has combined A* global planning with po-
tential fields for formation control and obstacle avoidance
[6], or used sampling-based motion planning to guide agents
to intermediate goals while associating repulsive forces with
dynamic obstacles [7]. In contrast, our method does not require
the swarm as a whole to follow a trajectory. Each agent
individually acts and interacts with its surroundings, which

causes a beneficial global emergent behavior to form across
the swarm.

Potential fields are also useful for balancing multiple ob-
jectives using a single control equation. For example, Particle
Swarm Optimization [9], has been used to optimize which
behaviors are most prevalent in control schemes incorporating
multiple behaviors [10]. Competing objectives of formation
control and collision avoidance are considered in [11]. Virtual
agents, defined a priori, are used as ‘leaders’ for swarm control
in [12]. The Chain Siphon Algorithm shares similarities with
a leader-follower method; however, the Chain Siphon Algo-
rithm’s queue order is based on online swarm position, and
not defined a priori.

Social potential fields [13] are a class of potential field meth-
ods in which agents dynamically influence their neighbors. The
Chain Siphon Algorithm can be considered a social potential
field method.

A variety of multi-agent methods have been used to avoid
local minima traps. Dynamically generating the vector fields
that control agent movement can prevent agents from being
trapped in local minima in certain scenarios [3], [4]. Agents
able to recognize local minima can increase the potentials of
their dynamic internal fields [14] to prevent becoming trapped.
Mabrouk et al. use a swarm leader heuristic where a priori
global knowledge of local minima helps agents escape traps
through random motion [14]. Vortex and Brownian motion
inspired behavior enable agents to escape local minima by
increasing their Brownian motion [15]. Matouri et al. assign
agents’ priorities and then augment speed to avoid collisions
[16]. In contrast to the aforementioned work, the Chain Siphon
Algorithm actively overcomes traps without prior knowledge
of the environment, and without stochastic movement.

Our work is closely related to physicomimetic (physics
mimicking) [17] ideas such as DAEDALUS [18], as well as
biologically inspired ideas such as Boids flocking algorithm
[19]. DAEDALUS uses the Lennard-Jones potential (LJP)
equation to calculate collision avoidance and swarm cohesion
forces [20]. Boids algorithm causes agents to steer away from
neighbors, towards the average heading of neighbors, and
towards the center of mass of local agents. Tanner et al. creates
a Boids-like flocking behavior using separation, alignment, and
cohesion elements but not the Lennard-Jones potential function
[21]–[23].

We used the GT-MABs as the robots for our experiments.
The dynamic model for the blimps was first presented in [24]
[25], and a control system was built around their models for
actuation.

III. METHODOLOGY

Details of the Chain Siphon Algorithm are discussed in
(Section III-A-III-B). The control equations and vectors used
for goal seeking, obstacle avoidance, and the Lennard-Jones
potential flocking behavior are discussed in (Section III-C-
III-D). A description of a leader heuristic method to contrast
with the Chain Siphon Algorithm is in (Section III-D).
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Algorithm 1 Chain Siphon Algorithm
(Runs in parallel on all agents)

1: i← ID of agent currently running algorithm
2: ns ← Total number of agents in the swarm
3: dmin ← Maximum neighbor range
4: loop
5: Csiphon = 0
6: qi = ns % Default position in queue
7: if senseGoal() then
8: qi = 1

9: qmin = ns
10: Ni = queryNeighbors()
11: for all j ∈ Ni do
12: vij = xj − xi % Rel. position vector
13: dij = ‖vij‖
14: if qj < qmin then
15: qmin = qj
16: dmin = dij
17: vlink = vij

18: if qj = qmin and dij < dmin then
19: dmin = dij
20: vlink = vij

21: if qmin < qi then
22: qi = qmin + 1
23: Csiphon = vlink

‖vlink‖

24: if qi > ns then
25: qi = ns
26: broadcast(i, qi)
27: return Csiphon

A. Notation

The total number of agents is denoted ns. The queue value
of a specific agent i is qi, and the minimum queue value
found between agent i and any agent j within the set Ni
of agents neighboring agent i is qmin. The distance between
agent i and object j is dij , where an object may be another
agent or an obstacle, depending on context. The minimum
distance between an agent and the neighboring agents for
which qj = qmin is denoted as dmin. The global position
vector of agent i is xi and can be used to compute the relative
position vector vij between agent i and object j. The vector
that links the agent with the neighbor it is following in the
queue is denoted by vlink. The control equation calculates a
vector V using weights wi and control vectors Ci. The goal
position is denoted xgoal. The set of obstacles sensed by an
agent is Oi.

Parameter a defines the magnitude of the repulsion force
from obstacles. LJPr is the intermolecular potential, σ is
the distance at which ‖V‖ is zero, r is the distance from
atom i to atom j, and ε is a parameter specifying the strength
of their interactions. Parameters b and c define the attractive
and repulsive movement of the agent. The leader heuristic
parameter e determines the magnitude of the bias towards the
leader for neighboring agents. The values of these parameters
are found in Appendix A.
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Figure 2: A visualization of the local chain of communication applied during
chain siphon behavior. The chain begins when an agent is within the region
it can sense the goal and it gives itself a queue number of 1. Agents change
their queue value to 1 more than the agent they are linked to. Note that 2
agents are linked to the agent with a queue value of 5, and the agent with
queue value of 7 has linked with the agent closest to it.

B. Chain Siphon Algorithm Behavior

The pseudocode for the Chain Siphon Algorithm appears in
Algorithm 1. The Chain Siphon Algorithm affects the swarm’s
behavior when at least one agent senses the goal area. The
default queue value for all agents is set to the total number
of agents in the swarm. An agent sensing the goal changes
its queue value to 1 (lines 7-8) to indicate it is at the front
of the queue, as shown in Figure 2. Agents receive queue
values from message broadcasts of neighboring agents within
communication range (line 9) and record the neighbor with
the lowest queue value qmin and shortest local distance dmin
(lines 11-20). If an agent has not found the goal, its queue
value changes to qi = qmin + 1, up to a maximum value of
ns, and it sets Csiphon as the unit vector to the neighbor it
received qmin from for the purposes of control (lines 21-23).
Once the final value for qi is determined, the agent broadcasts
a message containing its ID with qi to neighboring agents (line
26).

This process iterates over the swarm such that all agents
within a chain of local communication become part of the
queue. Agents follow the neighbors ahead of them in the queue
out of any local minimum trap and eventually toward the goal.

Weighting Csiphon more than the other portions of the
control equation causes each agent to follow the nearest
neighbor that is lower in the queue. As wsiphon increases,
behaviors such as adhesion between agents and goal seeking
become negligible. Only control vector magnitudes that tend
toward infinity will have a noticeable effect once the agent
is linked. For example, in Algorithm 2 line 8 as the agent
moves closer to an obstacle, dij approaches 0, causing r to
approach infinity. Similarly, as agents draw near each other
the magnitude of the Lennard-Jones potential flocking r tends
toward negative infinity, preventing collisions.

Use of the Chain Siphon Algorithm requires that several
assumptions hold. First, it assumes there are enough agents
in the swarm to fill local minima, sense the goal, and form
a chain of local communication to agents stuck in the local
minima. Another assumption is that the queryNeighbors()
function in Algorithm 1 cannot “see” through obstacles, i.e.,
so that agents do not link through obstacles to other agents.
This assumption is reasonable if agents require line-of-sight
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Figure 3: Concave obstacle configurations can create a local minimum in the
potential field that may trap agents. As more and more agents head toward the
goal they will tend to fill in the local minimum trap until it is saturated. This
will eventually cause other agents to be repelled from the area due to collision
avoidance from the agents that are stuck in the local minima. Those agents
continue around the obstacle until the agents’ sensors detect the goal. Once
the goal is detected and the chain of communication is able to link back to
agents within the local minimum the chain siphon algorithm causes the swarm
to exhibit the emergent behavior similar to the open channel siphon effect.
The communication links propagate back through the swarm sending queue
values that indicate the goal has been detected and pulling agents around the
obstacles that have trapped them.

for sensors to detect and communicate with other agents. In
our simulations and experiments we enforce this assumption
by increasing obstacle repulsion. Finally, our method assumes
that an agent is able to sense whether or not it has reached a
goal, i.e., the existence of senseGoal().

C. Potential Fields

For showcasing the effect of the Chain Siphon Algorithm,
the algorithm was implemented and tested using a swarm
directed by goal seeking, obstacle avoiding, and flocking be-
haviors (see Figure 3). The flocking behavior uses a derivative
of the Lennard-Jones potential similar to Hettiarachchi et al.
[18]. The full velocity control equation is as follows:

Vcs = wgoal ∗Cgoal + wobstacle ∗Cobstacle

+ wLJP ∗CLJP + wsiphon ∗Csiphon

(1)

where the equation for the velocity vector Vcs contains scalar
weighting factors wi and control vectors Ci for each compo-
nent of their respective behaviors. In addition to the velocity
controller (Equation 1), we find that it can be useful in practice
to limit the maximum speed. If Vcs exceeds the specified
maximum speed it is normalized and multiplied by the scalar
value of the maximum speed, Vcs =

(
Vcs

‖Vcs‖

)
∗ vmax.

An agent’s potential field in the workspace assigns the goal
position as a global minimum potential while obstacles are
given potentials with magnitudes approaching infinity, as seen
by r in Algorithms 2 and 3. Interactions between agents use
the Lennard-Jones potential flocking for viscoelastic fluid-like

Algorithm 2 Obstacle Repulsion

1: a← Obstacle repulsion value
2: loop
3: Oi = senseObstacles()
4: for all j ∈ Oi do
5: vij = xj − xi % Rel. position vector
6: dij = ‖vij‖
7: vij =

vij

‖vij‖
8: r = −vija

d2ij
9: Cobstacle += r

10: return Cobstacle

behaviors. The repulsion factor of the Lennard-Jones potential
flocking acts similar to the incompressibility of the fluid, and
the cohesion of the agents causes the viscous-like forces of
the agents pulling each other when moving around obstacles.

D. Other Behaviors In The Control Equation

The goal seeking vector is determined through the following
equation: Cgoal =

(
xgoal−xi

‖xgoal−xi‖

)
∗ v0. The resulting normal-

ized vector is multiplied by a specified scalar initial velocity
v0 to give the vector a desired magnitude.

The obstacle repulsion algorithm used in all methods (ours
and those we compare to) appears in Algorithm 2. Each agent
finds the vector vij between the position of the agent and
each obstacle sensed (line 5). The vector is normalized and
multiplied by the negative of the repulsion value a and the
inverse distance squared (lines 7-8). This value is added to
the final vector Cobstacle (line 9).

The Lennard-Jones potential flocking is similar to the Boids
model in that it exhibits cohesion and avoidance. To perform
this behavior, the equation is defined as:

LJPr = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (2)

Hettiarachchi and Spears used Equation 2 to find the force of
the interaction between particles to drive their swarm behavior
by taking the negative of its derivative,

F = −
(
d(LJPr)

dr

)
, (3)

which becomes

F = −4ε
[
−12σ12

r13
+
−6σ6

r7

]
, (4)

Taking the derivative of this once more and generalizing gives
the velocities of the agents,

v = 24ε

[
−26bσ12

r14
+

7cσ6

r8

]
, (5)

Algorithm 3 is similar to the one used to compute Cobstacle

with the Lennard-Jones derived velocity component used in
line 10 instead of the inverse squared distance. The control
equation for the Lennard-Jones potential behavior is VLJP =
wgoalCgoal + wobstacleCobstacle + wLJPCLJP.
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Algorithm 3 Lennard-Jones Potential Flocking

1: ε← Magnitude of attraction
2: b← Generalized parameter
3: c← Generalized parameter
4: loop
5: Ni = queryNeighbors()
6: for all j ∈ Ni do
7: vij = xj − xi % Rel. position vector
8: dij = ‖vij‖
9: vij =

vij

‖vij‖

10: r = 24ε

[
−26bσ12

d14ij
+ 7cσ6

d8ij

]
vij

11: CLJP += r

12: return CLJP

Figure 4: A hardware experiment. GT-MABs using the chain siphon algorithm.
Top to bottom show the swarm moving from start to goal.

E. Leader Heuristic Behavior (For Comparison)

We implement a leader heuristic method to compare with
the Chain Siphon Algorithm. The leader heuristic method is
similar to one used by Mabrouk et al. [14] as discussed in
Section II which uses a priori global knowledge of local
minima. Communication distances are limited to the commu-
nication ranges in the Lennard-Jones potential behavior and
Chain Siphon Algorithm experiments. We allow the agents
using the leader heuristic method to use global knowledge of
the local minima, although the other methods examined did not
require that knowledge. The leader heuristic method is similar
to VLJP , except in Algorithm 3 after line 10 an agent senses
if a neighbor is outside of the local minima. If they are, the
agent increases the attraction to that neighbor by multiplying
r by a leader heuristic parameter e.

IV. EXPERIMENTS

We conduct two sets of experiments to evaluate the Chain
Siphon Algorithm and compare it with other methods. One
set of experiments use real-world hardware testbed robotic
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Figure 5: A graphic of the system used in the hardware experiments.

blimps (Figure 4) and run on a centralized system simulating
a decentralized system (Figure 5). These robotic experiments
are run in 2-D and compare the Chain Siphon Algorithm to
the Lennard-Jones potential behavior, using between 8 and
12 blimps (depending on which blimps were functional). The
other set of experiments are run in a simulated environment
using virtual agents (Figure 6), which enables us to run a
large number of Monte Carlo trials. The simulations compare
the Chain Siphon Algorithm to the Lennard-Jones potential
method and the leader heuristic method in both 2-D and 3-D
environments, and using swarms with 1 to 50 agents.

A. Simulations

We use the SCRIMMAGE [26] platform as our swarm
simulator due to the modularity of the system allowing an
easy transition between behaviors and its ease of scaling
homogeneous swarms. For each type of behavior we set up
both 2-D and 3-D simulations with a starting origin area, a
goal area, and obstacles arranged in a cul-de-sac formation
designed to create a local minimum. The obstacle is situated
between the origin and the goal with the concave side facing
the origin.

For the 2-D experiments, the obstacles are arranged in a
V formation. In the 3-D experiments, five obstacles are used.
Four are placed on the same plane in a square and the 5th one
is placed above the empty middle space between them. Both
configurations are shown in Figure 6.

Thirty Monte Carlo trials are run for each combination of
algorithm, environment (2-D and 3-D), and swarm size (one
to fifty agents). In each trial we randomly generate the swarm
agents’ starting formation near the start location. We record
the number of agents that reached the goal and the number
that remain trapped in local minima at the end of the trial.

B. Robotic Experiments

Hardware experiments are used to evaluate how robust the
Chain Siphon Algorithm is in the physical world. The GT-
MABs are a dynamically challenging platform due to their
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Lennard Jones Potential (LJP) Chain Siphon 3D Simulation

Figure 6: SCRIMMAGE simulations showing the Lennard-Jones potential behavior, how the chain siphon algorithm pulls agents from a local minimum trap,
and the 3D simulation environment

near-neutral buoyancy in ambient air. For example, a slight
air flow can cause disturbances in the agents’ positions.

The experiment environment is set up similar to the
simulation—with an initial starting area, a goal area, and a cul-
de-sac obstacle between them. The workspace is artificially
constrained as seen in Figure 4 by the markings on the
floor. The Vicon position data is used for localization in the
controller. ROS is used on a central computer to communicate
between the Vicon system, the controller, and the Xbees that
send motor commands to the blimps, as illustrated in Figure
5.

Experiments are run with swarms containing 8-12 agents.
Similar to the 2-D simulations, obstacles are represented by
3 points of repelling forces placed in a cul-de-sac like con-
figuration. In the real world, stanchions are placed underneath
the positions denoting the obstacles so that visibility is not
obscured by large physical obstacles.

A depiction of the swarm testbed used in our hardware
experiments is presented in Figure 4. Blimps move within the
workspace and position data for each blimp is provided by a
Vicon motion capture system. Each blimp communicates with
a ground station using a separate dedicated Xbee connection.
Data exchange between blimps is limited by a communica-
tion simulator that runs on the ground station. In particular,
communication is restrained such that each blimp is only
allowed access to message and position data from the set of
blimps within its current communication and sensor range. The
movement control of each agent is computed independently on
the ground station using only the message and position data
currently allowed by its relative position within the swarm.
All other sensing and communication happens at a local level.

V. RESULTS

The results from the simulations can be seen in Figure 7. For
the Lennard-Jones potential behavior 2-D simulations, most
of the agents become stuck when using four agents or less
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Figure 7: The mean and the shaded area of one standard deviation of agents
stuck in the local minimum trap for each type of simulation
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in the swarm. The average number of stuck agents appears
to increase as the number of agents in the swarm increases.
This is due to the local minimum trap area becoming saturated
with agents. In order for more agents to get stuck they have
to approach the stuck agents in a way that causes their
cohesion and avoidance behavior to stabilize their position
while not getting destabilized by any other agents passing
nearby. Having the swarm approach the area as a collective
minimizes this stacking, as there are many agents in the
vicinity of the stack that can destabilize it.

The 3-D simulations show similar results to the 2-D simula-
tions. For simulations with 6 agents or less, almost all agents
become trapped in every experiment. The rate at which agents
become stuck begins to decrease at 9 agents as the number of
swarm agents increases.

Using a leader heuristic behavior shows for the 2-D scenario
that once the swarm has grown to 5 agents there is a reduction
in the number of agents getting stuck, seen in Figure 7. This
continues to decrease until an average of between 2 and 3
agents become stuck for every change in swarm size. The 3-
D results in Figure 7 show the same behavior, but the change
in behavior initiates when there are around 7 agents in the
swarm, and decreases more slowly before it levels out.

The 2-D and 3-D Chain Siphon Algorithm simulations show
the same behaviors as the Lennard-Jones potential behavior
simulations for a small number of agents in the swarm, as
expected when the swarm does not have enough agents to
establish the chain of communications back to agents that are
trapped. In the 2-D case, once there are roughly 11 agents in
the swarm it starts to exhibit the siphon effect, and the average
number of agents stuck drastically decreases. At 15 agents it
is able to consistently create a chain of communication and
the average number of stuck agents stabilizes near zero. The
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Figure 8: The means and standard deviations of each type of blimp hardware
experiment (died refers to agents with hardware malfunctions that are not
related to the algorithm type). The K-S test of the data for stuck agents
resulted in a p-value of 0.003.

Chain Siphon Algorithm displays robustness as the swarm size
increases by allowing multiple queues along different paths
to form in the swarm. For the 2D environment in Figure 6,
communication chains simultaneously form above and below
the obstacle to lead agents within the local minima around the
obstruction.

For 3-D agents we see the siphon behavior begins to exhibit
when the swarm is around 10 agents, as the average number of
agents that get stuck start to decrease. This decrease continues
until around 16 agents where it stabilizes at zero.

We perform ten experiments for both the Lennard-Jones
potential behavior and Chain Siphon Algorithm, and the results
are shown in Figure 8. The average number of agents stuck
during the Lennard-Jones potential behavior experiments is
2.7, with a standard deviation of 0.48. Generally 3 agents
become stuck in a stable triangle configuration filling in the
obstacle concavity. An average of 0.3 agents malfunction
during those experiments with a standard deviation of 0.48.

The average number of agents that become stuck for the
Chain Siphon Algorithm experiments is 1.1 with a standard
deviation of 0.88, and 0.7 agents malfunction during those
samples with a standard deviation of 0.67. While the chain of
communication initiates during all of the experiments, factors
such as the blimps drifting due to atmospheric disturbances or
their lack of fine motion control usually cause one to remain
stuck in the local minima.

A K-S test of the two sets of data for stuck agents gives a
p-value of 0.003 (where anything < 0.05 is considered to be
statistically significantly).

VI. CONCLUSION

In this paper we have presented the Chain Siphon
Algorithm: a novel algorithm inspired by the open channel
siphon effect that assists swarms navigating environments with
local minima. The algorithm is designed for implementation
onto distributed systems by using local chains of communica-
tions to relay information throughout the system. Results from
hardware experiments and simulations have shown statistically
significant mitigation of local minima traps compared to the
Lennard-Jones potential behavior and/or a leader heuristic
method.

The results from both the 2-D and 3-D simulations (Figure
7) show a decrease in the number of agents stuck in a local
minimum once the number of agents in the swarm is large
enough to establish a chain of communication. As the swarm
becomes larger it creates the chain of communication more
consistently and shows less agents become stuck compared
to the other methods. The hardware experiment results also
show using the Chain Siphon algorithm decreases the number
of agents stuck in local minima to a significant degree.
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APPENDIX A
PARAMETER SELECTION

Parameters were determined by manually selecting and test-
ing values to find the high and low limits of values that show
desired behaviors. We perform a manual parameter sweep to
determine the final parameter values. Desired behaviors of
each component of the control equation are established and
parameters are chosen that best exhibited those behaviors.

The parameters within the simulation environment are
unitless, although simulated range values are analogous to
distances and speed parameters are analogous to velocities.
We list them here to provide reference to the relative scale
each parameter is given relative to other parameters and to the
parameters of the hardware experiments. The initial speed is
set to 10. The weights for the control equation components
are set to 1, except for the chain siphon component which is
set to 75. The obstacle range is designated as 30 and obstacle
repulsion is set to 1. The neighbor range is assigned 5, ε is
0.25, collision range is set to 2, and maximum speed is limited
to 30.

In the hardware experiments, the maximum speed the mo-
tors enable the blimp to travel is approximately 0.4 m/s. The
controller limits the motor speed to 75% of the maximum
speed while the initial speed is 50% of the maximum speed.
The range an agent senses obstacles is 1.5 m, and the obstacle
repulsion value is set to 10. The range for sensing neighbors
is 2.25 m, ε is given a value of 0.4, and the collision range
is placed at 0.25 m. Weights of 1.0 are set for goal seeking
and obstacle avoidance, while the Lennard-Jones potential
behavior weight is set to 0.05. During Lennard-Jones potential
behavior experiments the Chain Siphon Algorithm weight is
set to 0, but during Chain Siphon Algorithm experiments it is
set to 20.0. A value of 50 is given to a control behavior that
keeps the blimps within the designated workspace.
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