
Adaptive Exploration-Exploitation Active Learning of Gaussian Processes

George P. Kontoudis and Michael Otte

Abstract— Active Learning of Gaussian process (GP) sur-
rogates is an efficient way to model unknown environments
in various applications. In this paper, we propose an adaptive
exploration-exploitation active learning method (ALX) that can
be executed rapidly to facilitate real-time decision making. For
the exploration phase, we formulate an acquisition function
that maximizes the approximated, expected Fisher information.
For the exploitation phase, we employ a closed-form acquisition
function that maximizes the total expected variance reduction of
the search space. The determination of each phase is established
with an exploration condition that measures the predictive
accuracy of GP surrogates. Extensive numerical experiments
in multiple input spaces validate the efficiency of our method.

I. INTRODUCTION

Autonomous agents have received considerable attention
in recent years, due to novel theoretical results in ma-
chine learning and improved computational capabilities. Big
data is employed from numerous autonomous systems, yet
for robotics applications—that require real-time decision
making—the need of scalable algorithms remains an open
research problem. Gaussian processes (GPs) have shown
great success in environmental monitoring [1], precision agri-
culture [2], controller learning [3], coverage planning [4], and
communication quality [5]. The main disadvantage of GPs is
the computational scalability with the size of datasets. Thus,
active learning of GP surrogates seeks to formulate small and
efficient datasets that produce similar prediction accuracy
and uncertainty quantification to big datasets. The objec-
tive of this work is to synthesize an adaptive exploration-
exploitation method that provides accurate predictions at a
scalable time to enable real-time decision making.

Existing active learning methods fit a new GP surrogate
model at every loop, after adding a new input/observation
pair to the dataset [6]–[9]. This is a purely exploration-based
strategy and exploits the GP surrogate only to determine
the next input location, leading to unnecessary computations.
The main idea of the proposed active learning is presented
in Fig. 1. Suppose that the task is to explore an unknown
spatial field and a robot so far has collected observations
from a set of input locations (blue dots). Using a prediction
quality condition, we determine the phase of active learning
(exploration or exploitation). For the exploration phase: we
fit a new GP surrogate model, employ an acquisition function
to find the next sampling input location based on the new
GP surrogate (dashed yellow circle), and predict the output
at the next input using the new surrogate. In the exploitation

G. P. Kontoudis and M. Otte are with the Dept. of Aerospace Engineering,
University of Maryland, College Park, MD, USA. {kont,otte}@umd.edu.

This work was supported by the MRC Postdoctoral Fellowship Program
and the Office of Naval Research via grant N00014-20-1-2712.

Exploitation
1. Use GP modelcurrent
2. Find next input

Yes

No

3. Predict at next input

Exploration
1. Fit GP modelnew
2. Find next input
3. Predict at next input

Sample Input Location
& Update Dataset

Assign New
Input Location

Is the
prediction

good?

Current Dataset

Fig. 1. Adaptive exploration-exploitation active learning of GP surrogates.
The proposed method improves the computational scalability of active
learning methods, while providing accurate predictions.

phase: we employ the current GP surrogate to find the next
input location (dashed green circle) and predict the output at
the next input using the current surrogate. Next, the robot
visits the assigned input, collects a sample, and updates
the dataset. The observation and the predicted value are
compared from the exploration condition to determine the
accuracy of the GP surrogate and decide the next phase of
active learning. For each phase, we use a different acquisition
function to determine the next input, making our approach
adaptive compared to current single-criterion methods [10].

The complexity of a GP involves O(n3) computations for
training and O(n2) for prediction, where n is the size of the
dataset [11]. Recently, approximation methods have attracted
attention as a way to reduce the computational complexity of
GPs [12]–[14]. Another approach to avoid large datasets is
to perform active learning and formulate a small yet efficient
dataset [15, Ch. 6]. The first active learning of GP surrogates
is proposed in [6] and included the active learning MacKay
(ALM) and active learning Cohn (ALC) methods. Previously,
we derived a closed-form gradient for the optimization of
ALC, termed cALC [16]. The difference of each active
learning method lies in the acquisition function that is
optimized to obtain the next input location. In particular,
ALM aims to find the next input by maximizing the Shannon
information, while ALC seeks to find an input location that
minimizes the total expected variance over the entire search
space. In [10], an exploration-exploitation active learning
with theoretical bounds is proposed using mutual information
(ALMI). Another active learning method that intends to
find input locations is by maximizing the expected Fisher
information (ALFI) [17].

Active learning methods are used in various applica-
tions [18], including ALM [19], [20], ALC [7], ALMI [21],

and ALFI [8], [22], [23]. Out of these methods, ALC is
the most accurate non-myopic predictor, but it is compu-
tationally expensive due to the evaluation of a reference
set. On the other hand, ALFI offers rapid updates, but it is
designed for model estimation, ignoring the main objective
of active learning, i.e., accurate predictions. Most of these
methods are exploration-based in that a new GP is fitted
after the acquisition of each new input/observation pair. This
is computationally expensive due to GP training (O(n3))
and unnecessary as a new GP surrogate model is not always
required. ALMI [10] employs the same acquisition function
for both exploration and exploitation phases. Although ALMI
is non-myopic for balancing exploration and exploitation, it
is myopic for uncertainty reduction over the entire space. In
this work, we introduce an adaptive exploration-exploitation
active learning strategy that is scalable for onboard compu-
tations, while ensuring both accurate predictions and model
estimation. The proposed active learning is non-myopic for
uncertainty reduction and it is tailored with different criteria
for each phase to facilitate quicker information gathering.

The contributions of this paper are: i) the synthesis of
an adaptive exploration-exploitation active learning method
(ALX); and ii) the formulation of an acquisition function
with Fisher information (ALFIA) that approximates the like-
lihood function for the exploration phase. In the exploration
phase we seek to acquire data that improve the GP surrogate
model (ALFIA) while in exploitation phase we aim to
collect data that improve the prediction accuracy (ALC).
Numerical examples illustrate computational reduction as
well as prediction accuracy improvement.

II. ACTIVE LEARNING OF GAUSSIAN PROCESSES

In this section, we discuss Gaussian processes, review active
learning, and state the problem.
A. Gaussian Processes

The sampled observations (blue dots in Fig. 1) follow,

y(x) = f(x) + ϵ, (1)

where f(x) ∼ GP(0, kθ(x,x
′)) is a GP with zero-mean

and covariance function kθ : RD × RD → R. The input
is described as x ∈ X ⊂ RD and the sensor noise as
ϵ ∼ N (0, σ2

ϵ), where σ2
ϵ is the variance. We select the

separable squared exponential (SSE) (also known as the
automatic relevance determination (ARD)) that follows,

kθ(x,x
′) = σ2

f exp

{
−1

2

D∑
d=1

pxd − x′
dq

2

l2d

}
, (2)

where ld is the length-scale hyperparameter associated with
the d-th input dimension and σ2

f the signal variance. A
length-scale hyperparameter describes the fluctuation of the
unknown field. In particular, a high length-scale corresponds
to smooth unknown field, while a low value describes highly
uneven field. The SSE assigns a different hyperparameter
value to each input dimension. We seek to predict the field
f given a dataset D = {X,y} with X = {xi}ni=1 the inputs
and y = {yi}ni=1 the outputs. The learning follows: i) train

YesExploration

Acquisition
Function

Initial
Dateset

Next
Input

Location

New
Dataset Exploration

Fit GP
Surrogate

Model

Exploitation

Dataset

GP-based Operation

Transition

Add New Observation

fALFIA
Acquisition

Function

cALC
Acquisition

Function

Initial
Dateset

Next
Input

Location

New
Dataset

Predicted
Dataset

Fit GP
Surrogate

Model

Exploration
Condition

No

GP
Prediction

(a)

(b)

Fig. 2. (a) Current active learning of GP surrogates. (b) Proposed adaptive
exploration-exploitation active learning (ALX) of GP surrogate models.

the hyperparameters θ; and ii) predict at unknown inputs x∗.
Training: The hyperparameter vector is trained by employ-

ing the maximum likelihood estimation (MLE) method with
log-likelihood function,

ln p(y | X) = −1

2
y⊺C−1

n y − 1

2
ln|Cn|−

1

2
n ln 2π,

where Cn = K + σ2
ϵ In is the covariance matrix with

K = kθ(X,X) ∈ Rn×n the correlation matrix and
θ = (l1, . . . , lD, σf , σϵ)

⊺ ∈ RD+2 the hyperparameters.
Prediction: Using the estimated hyperparameters θ̂, the

posterior distribution of an unsampled input x∗ ∈ RD

results in a multi-variate normal distribution p(y∗ | D,x∗) ∼
N (µ(x∗), σ

2(x∗)) with prediction mean and variance,

µfull(x∗) = k⊺
∗C

−1
n y,

σ2
full(x∗) = k∗∗ − k⊺

∗C
−1
n k∗,

where k∗ = kθ(X,x∗) ∈ Rn and k∗∗ = kθ(x∗,x∗) ∈ R.
Complexity: The training entails cubic computa-

tions O(n3) to calculate the inverse of the covariance C−1
n .

At every iteration of the MLE a new inverse of the
covariance is needed as the covariance matrix is a function
of θ. The prediction is executed in quadratic time O(n2).
B. Active Learning

Active learning is a sequential adaptive sampling method that
aims to identify new sampling locations by minimizing an
acquisition function based on a GP surrogate model. The
main idea is to carefully select new informative sampling
locations and form a dataset that achieves high prediction
accuracy even with a small dataset size [24]. Subsequently,
small dataset size leads to reduced computation demands
(e.g., O(n3) for GP training and O(n2) for GP prediction).

A block diagram of the current structure for active learning
of GP surrogate models is presented in Fig. 2-(a). The first
step is to form an initial dataset Dinit = (X init,yinit). The
inputs of the initial dataset X init are pre-selected as a batch,
because small dataset sizes produce low fidelity GP models
and we do not trust them to make decisions for new sampling
locations. Using the initial dataset Dinit, we fit a GP surrogate
model to estimate the hyperparameters θ̂n. The training of
the GP hyperparameters is performed with the MLE method
which is expressed as a constraint optimization problem with
upper and lower bound constraints. Next, the fitted GP surro-
gate model feeds the active learning criterion or acquisition
function to determine the next input location xn+1. There
are numerous active learning criteria that can be used and we
analyze some of the most successful in the next sections. The
next sampling input xn+1 is assigned to an agent which visits
that location to collect an observation yn+1. After collecting
the new observation, the agent updates the dataset by adding
the new observation (dashed line in Fig. 2-(a)). The new
dataset is the union of the previous and current collected
data Dn+1 = Dn ∪ (yn+1,xn+1). Finally, the new dataset
Dn+1 is used to fit a new GP surrogate model. This loop
continues for a predetermined number of iterations.

To avoid unnecessary sampling, we inherit an empirical
rule to determine the initial dataset size that is ten times
the input dimension ninit = 10D [18], [25]. The initial
input locations X init = {xk}10Dk=1 ∈ RD×10D can be
obtained either by randomly sampling the area of interest
(i.e., [xk]ij ∼ U[0,1] for normalized inputs) or by using a
model-free space filling method [15, Ch. 4]. In this work,
we use a space filling sampling method; the Latin hypercube
sampling (LHS) X init = XLHS that has similar properties to
the uniform distribution [26], [27]. Despite the progress in
space filling methods, LHS remains competitive [15], [28].
The Latin hypercube matrix L ∈ RD×10D is composed
by D levels of permutation and 10D columns, where each
entry follows [XLHS]ij = ([L]ij + (D − 1)/2 + [u]ij)/D
with [u]ij ∼ U[0,1] for normalized inputs. After obtaining
the initial inputs X init, the agent samples the input locations
yinit to form the initial dataset Dinit = (X init,yinit).

Notably, every loop of active learning in Fig. 2-(a) is an ex-
ploration loop as the GP surrogate is used only to determine
the next sampling location xn+1. This exploration-based
active learning scheme is expensive for two reasons. First,
the GP training is performed at every loop and entails O(n3)
computations. Second, some active learning criteria (e.g.,
active learning Cohn (ALC)) are also computational expen-
sive as they require evaluation on several locations of the
reference dataset. As a result, the current formulation of
active learning—combines the fit of a GP surrogate model
(i.e., GP training) and the evaluation of specific acquisition
functions—prohibits real-time decision making.

Problem 1: Synthesize an active learning framework that
achieves high prediction accuracy and precise model es-
timation with reduced computations to facilitate real-time
implementation for robotics applications.

III. PROPOSED ACTIVE LEARNING METHOD

A. Active Learning Cohn (ALC)

The active learning Cohn (ALC) employs the negative ex-
pected reduction in variance over the input space as an
acquisition function. In other words, ALC seeks for an input
location that if observed and added to the dataset, it reduces
the variance of the search space more than any other pair
of input/observation. Formally, the acquisition function of
the ALC is defined as JALC(θ̂n;x) := −

∫
X ∆σ2(x) dx,

where ∆σ2(x) = σ2
n(x) − rσ2

n+1(x) is the deduced vari-
ance, with σ2

n(x) the variance using the current dataset,
and rσ2

n+1(x) the approximated variance using the estimated
hyperparameters from the previous step θ̂n and assuming that
the candidate location xn+1 is added in the dataset. Since the
integral of the acquisition function JALC cannot be computed
analytically, we employ an approximation with a summation
over a reference set X ref ∈ RNref×D. The reference set is
formulated as a LHS X ref = XLHS, similarly to the initial
dataset. The ALC optimization problem yields,

xn+1 = arg min
x∈X

{
−
∫
X
∆σ2(x) dx

}
≈ arg min

x∈X

{
− 1

Nref

Nref∑
t=1

∆σ2(x,xt)

}

= arg min
x∈X

{
− 1

Nref

Nref∑
t=1

σ2
n(xt)− rσ2

n+1(x,xt)

}
(3)

The variances σ2
n(xt) and rσ2

n+1(x,xt) are provided by,

σ2
n(xt) = kn − k⊺

n,tC
−1
n kn,t,

rσ2
n+1(x,xt) = kn − k⊺

n+1,tC
−1
n+1kn+1,t,

where kn = kθ(xt,xt) ∈ R, kn,t = kθ(xt,Xn) ∈ Rn,
kn+1,t = kθ(xt,Xn+1) ∈ Rn+1, Cn = kθ(Xn,Xn) ∈
Rn×n, Cn+1 = kθ(Xn+1,Xn+1) ∈ R(n+1)×(n+1)

with Xn+1 = [X⊺
n x]⊺ ∈ Rn+1. The elements of the new

covariance matrix Cn+1 are,

Cn+1 =

„

Cn kn+1

k⊺
n+1 kn+1,n+1

ȷ

,

where kn+1 = kθ(x,Xn) ∈ Rn and kn+1,n+1 =
kθ(x,x) ∈ R.

Proposition 1: [7, Appendix A.1] The ALC acquisition
function of the optimization (3) takes the form of,

JALC(θ̂n;x,xt) = − 1

Nref

Nref∑
t=1

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

.

(4)
˝

Typically, we use the finite difference method (FDM) to
approximate the gradient and solve the optimization problem,

∂J(θ̂n;x,xt)

∂[x]d
≈ J(θ̂n;x+ sd,xt)− J(θ̂n;x− sd,xt)

2s
(5)

where sd = [0⊺
1:d−1 s 0⊺

d+1:D]⊺ ∈ RD. The ALC with

approximated gradient using FDM is termed as fALC. The
fALC is reliable in low dimensional input spaces and when
the spacing parameter s is accurately selected [29, Ch. 7].
However, in high dimensional input spaces fALC is not only
inaccurate, but also computationally expensive as it requires
2D+1 evaluations of the acquisition function at a collocated
grid. In [16], we showed that the gradient of the acquisition
function for the ALC can be computed analytically (cALC).
cALC produces more accurate results than fALC with similar
computations for high dimensional input spaces.

Proposition 2: [16] The closed-form gradient of the
acquisition function (4) for the ALC optimization (3) with
the SSE covariance function (2) yields,

∂J(θ̂n;x,xt)

∂x
=

∇xh(θ̂n;x)
∑Nref

t=1 gt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
−

h(θ̂n;x)
∑Nref

t=1 ∇xgt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
.

The elements h, g, ∇xh, ∇xgt are provided by,

h(θ̂n;x) = kn+1,n+1 − k⊺
n+1C

−1
n kn+1,

∂h(θ̂n;x)

∂x
= 4

`

(1Dk⊺
n+1)⊙ (Λ−1∆X⊺)

˘

C−1
n kn+1,

gt(θ̂n;x,xt) =
`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2
,

∂gt(θ̂n;x,xt)

∂x
= −4

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘

Λ−1×
´

∆X⊺ `

(k⊺
n,tC

−1
n)⊺ ⊙ kn+1

˘

− kθ(x,xt)(x− xt)
¯

,

where ⊙ is the Hadamard product, Λ = diag(l21, l
2
2, . . . , l

2
D),

∆X = [x − [Xn]1, . . . ,x − [Xn]n]
⊺ ∈ Rn×D,

and 1D = [1, . . . , 1]⊺ ∈ RD. ˝

B. Active Learning Fisher Approximation (ALFIA)

The active learning Fisher approximation (ALFIA) uses the
expected Fisher information matrix of the lengthscale hy-
perparameters l from (2) on an approximated log-likelihood
function. Essentially, the Fisher information matrix repre-
sents the expected value of the observed information by com-
puting the negative second derivative of the log-likelihood
function with respect to l. The acquisition function of active
learning with Fisher information (ALFI) is defined as,

JALFI(̂ln;x) := −
ˇ

ˇ

ˇ
Fn+1(̂ln;x)

−1
ˇ

ˇ

ˇ

= −

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

−
∂2Ln+1(yn+1 | l̂n;x)

∂l2

ff−1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (6)

where Fn+1 ∈ RD×D is the total expected Fisher informa-
tion matrix and Ln+1 is the total expected log-likelihood
function if we hypothetically add a pair of input/observation
(xn+1, yn+1) in the dataset Dn. The inverse of the Fisher
information is the lower bound of the Cramér-Rao inequal-
ity [30]. This implies that the maximization of the Fisher
information is optimal as it minimizes the variance of the

lengthscale estimation VAR[̂ln]. When we have multiple
lengthscales the Fisher information is expressed as a ma-
trix and the minimization of its determinant is called D-
optimality. The total expected log-likelihood yields,

Ln+1(yn+1 | l̂n) = ln p(yn+1 | l̂n;Xn,x)

= ln p(yn | l̂n;Xn)p(yn+1 | l̂n;x)
= ln p(yn | l̂n;Xn) + ln p(yn+1 | l̂n;x)
= Ln(̂ln;Xn) + Ln+1(̂ln;x). (7)

Thus, the acquisition function (6) by using (7) yields,

JALFI(̂ln;Xn,x) = −

ˇ

ˇ

ˇ

ˇ

ˇ

E

„

−
ˆ

∂2Ln

∂l2
+

∂2Ln+1

∂l2

˙ȷ−1
ˇ

ˇ

ˇ

ˇ

ˇ

= −

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

E

„

−∂2Ln

∂l2

ȷ

+ E

„

−∂2Ln+1

∂l2

ȷ˙−1
ˇ

ˇ

ˇ

ˇ

ˇ

= −
ˇ

ˇ

ˇ

´

Fn(̂ln;Xn) + Fn+1(̂ln;x)
¯

ˇ

ˇ

ˇ

−1

. (8)

The elements of the first term Fn ∈ RD×D of the total
expected Fisher information matrix Fn+1 are computed by,

rFnsij =

„

E

„

− ∂2Ln

∂li∂lj

ȷȷ

ij

=
1

2
tr

{
C−1

n

ˆ

∂2Cn

∂li∂lj
− ∂Cn

∂lj
C−1

n

∂Cn

∂li

˙}
+

0.5n

y⊺
nC

−1
n yn

y⊺
nC

−1
n

ˆ

2
∂Cn

∂lj
C−1

n

∂Cn

∂li
− ∂2Cn

∂li∂lj

˙

C−1
n yn−

0.5n

(y⊺
nC

−1
n yn)

2

´

y⊺
nC

−1
n

∂Cn

∂li
C−1

n yn

¯´

y⊺
nC

−1
n

∂Cn

∂lj
C−1

n yn

¯

(9)

where ∂Cn/∂li ∈ Rn×n and ∂2Cn/∂li∂lj ∈ Rn×n. There
exist d matrices of ∂Cn/∂li, d matrices of ∂Cn/∂lj , and
d×d matrices of ∂2Cn/∂li∂lj for the computation of (9). If
we assume that the expected log-likelihood function Ln+1 is
a Gaussian distribution then the second term of the expected
Fisher information matrix Fn+1 in (8) can be computed
as in [8], [23], [31], [32]. Unfortunately, the expected log-
likelihood function Ln+1 is not a Gaussian distribution, but
a Student’s-t distribution because the active learning is im-
plemented with small dataset sizes. Since the log-likelihood
of a Student’s-t distribution does not admit a closed-form
solution, we need to approximate the expected log-likelihood
function Ln+1. We approximate Ln+1 by using a Gaussian
surrogate model with matched moments [33] that yields,

Ln+1(̂ln;x) = ln p(yn+1 | l̂n;x)

≈ −1

2
lny⊺

nC
−1
n yn

`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘

−

(n− 2)(yn+1 − k⊺
n+1C

−1
n yn)

2

2y⊺
nC

−1
n yn

`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘ + c =: L̃n+1,

where L̃n+1 is the approximated, expected log-likelihood
function and c = −0.5(ln 2π − ln(n − 2)) represents all
constant terms.

The ALFIA optimization problem takes the form of,

xn+1 = arg min
x∈X

{
−

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

Fn(̂ln) + E

„

−∂2Ln+1

∂l2

ȷ˙−1
ˇ

ˇ

ˇ

ˇ

ˇ

}

≈ arg min
x∈X

−

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

Fn(̂ln) + E

«

−∂2L̃n+1

∂l2

ff¸−1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= arg min

x∈X

{
−

ˇ

ˇ

ˇ

´

Fn(̂ln) + F̃n+1(̂ln;x)
¯

ˇ

ˇ

ˇ

−1
}
, (10)

where F̃n+1 ∈ RD×D is the approximated expected Fisher
information matrix.

Proposition 3: The ALFIA criterion yields,

JALFIA(̂ln;x) = −
ˇ

ˇ

ˇ

´

Fn(̂ln) + F̃n+1(̂ln;x)
¯

ˇ

ˇ

ˇ

−1

. (11)

The elements of the first term Fn are computed by (9) and
the elements second term F̃n+1 follow,

”

F̃n+1

ı

ij
=

«

E

«

−∂2L̃n+1

∂li∂lj

ffff

ij

=
Wn,iWn,j

2
`

y⊺
nC

−1
n yn

`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘˘2

+
Vn,iVn,j

y⊺
nC

−1
n yn

`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘ . (12)

The Wn,i ∈ R, Vn,i ∈ R are provided by,

Wn,i = y⊺
nC

−1
n

∂Cn

∂li
C−1

n yn

`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘

+

y⊺
nC

−1
n yn

ˆ

∂k⊺
n+1

∂li
C−1

n kn+1+

k⊺
n+1C

−1
n

ˆ

∂kn+1

∂li
− ∂Cn

∂li
C−1

n kn+1

˙˙

, (13)

Vn,i =

ˆ

C−1
n

ˆ

∂kn+1

∂li
− ∂Cn

∂li
C−1

n kn+1

˙˙⊺

yn, (14)

where ∂kn+1/∂li ∈ Rn and ∂Cn/∂li ∈ Rn×n. Similarly,
Wn,j ∈ R, Vn,j ∈ R are computed by replacing li
in (13), (14) with lj . There exist d vectors of ∂kn+1/∂li,
d vectors of ∂kn+1/∂lj , d matrices of ∂Cn/∂li, and d ma-
trices of ∂Cn/∂lj for the computation of (12). ˝

For the optimization of ALFIA (10) we employ the FDM
method (5) similarly to the ALC problem in Section III-A.
We term the ALFIA with approximated gradient as fALFIA.

C. Adaptive Exploration-Exploitation Active Learning (ALX)

In this section, we present the proposed adaptive exploration-
exploitation active learning (ALX) method that employs
both cALC and fALFIA. ALX is designed to achieve both
accurate predictions and precise model estimation, while
requiring scalable computations. A comparison of cALC,
fALFIA, and ALX methods is shown in Table I.

Active learning methods are efficient in different fields
depending on the acquisition function. The acquisition func-
tions are designed to achieve specific goals, but they are
not universal for all applications. To this end, they are

TABLE I
QUALITATIVE COMPARISON OF ACTIVE LEARNING METHODS

cALC fALFIA ALX
Prediction quality Accurate Moderate Accurate
Model estimation Moderate Accurate Accurate
Fit GP surrogate Continuous Continuous Intermittent
Computations High Moderate Low
Phase Explor. Explor. Explor./Explot.
Acquisition fun. ALC ALFIA ALC/ALFIA

usually selected or designed based on the desired goals.
For example, the acquisition function of ALC is designed
to improve the prediction accuracy. On the other hand,
the ALFIA acquisition function is designed to estimate the
hyperparameters of the GP surrogate model. Although ALC
has significant capabilities on prediction accuracy, it does
not ensure accurate model estimation. Similarly, ALFIA can
accurately estimate the hyperparameters of the GP surrogate
model, yet it usually provides inaccurate predictions.

In addition to design properties, computational scalability
is of significant importance especially for robotic missions
that require rapid decision making with onboard resources.
Fitting a GP surrogate model at every loop entails sub-
stantial computations. Moreover, some acquisition functions
have high computational demands for their evaluation. In
particular, the ALC acquisition function is expensive due
to the evaluation of the reference set. On the contrary, the
acquisition function of ALFIA can be rapidly executed with a
single evaluation, yet even ALFIA may become intractable
with continuous fit of a new GP surrogate model at every
loop. Both active learning methods (cALC and fALFIA)
require continuous fit of a GP surrogate model at every loop
as shown in Fig. 2-(a). This results in purely exploration-
based active learning, because the surrogate is not exploited
for other tasks. The only utility of the surrogate appears when
the active learning criterion computes the next input location.

The block diagram of the proposed ALX method is
presented in Fig. 2-(b). The exploration phase is emphasized
with a light blue box and the exploitation phase with a
light red box. The first two steps are similar to a typical
active learning method. We form an initial dataset Dinit with
ninit = 10D and then we fit a GP surrogate model. Next, the
GP surrogate model is provided to the fALFIA acquisition
function. The selection of the fALFIA acquisition function
for the initial determination of the next input location is
attributed to two reasons: 1) the fALFIA criterion is better
at exploring the search space and obtaining an accurate
GP surrogate model that can then be exploited to improve
prediction accuracy; and 2) the fitting of a GP surrogate
model is already computationally expensive, thus we employ
the least expensive acquisition function fALFIA—compared
to cALC—to alleviate the total computations per loop.

After determining the next input location, the ALX not
only assigns xn+1 to an agent for the observation collection
yn+1, but also takes an additional concurrent step by pre-
dicting the observation ŷn+1 at the assigned location xn+1

with the current GP surrogate model hyperparameters θ̂n.
Since the inverse of the covariance matrix C−1

n is already
computed from fitting the GP surrogate model, the GP
prediction entails relatively low computations of O(n2). We
now have two datasets of the same size, the new dataset
Dn+1 = Dn ∪ (xn+1, yn+1) ∈ R(n+1)×D and the predicted
dataset D̂n+1 = Dn∪(xn+1, ŷn+1) ∈ R(n+1)×D. These two
datasets are compared by an exploration condition to measure
the discrepancy of the predicted observation ŷn+1 and the
sampled observation yn+1. In particular, the exploration
condition evaluates the inequality,

|ŷn+1 − yn+1|> β
`

max(yn+1)−min(yn+1)
˘

, (15)

where max(yn+1) is the maximum value, min(yn+1) the
minimum value from the set of observations, and β ∈ [0, 1]
the user-defined exploration cost value. High exploration cost
values β promote exploitation, while low β favor exploration.
Thus, if the exploration condition (15) is satisfied, then the
exploration continues by fitting a new GP surrogate model
with the new dataset Dn+1, otherwise the same GP surrogate
model with hyperparameters θ̂n is exploited to find the next
input location. In other words, the exploration condition
evaluates the absolute error between the prediction using the
current model and the collected observation. If the prediction
error is higher than a threshold, then we deduct that the
model is inaccurate and fit a new GP surrogate (exploration),
otherwise we use the current surrogate (exploitation).

For the exploitation phase the new dataset is provided
to the cALC acquisition function that exploits the current
GP surrogate model with θ̂n. The selection of the cALC
acquisition function for the exploitation phase has a twofold
reasoning: 1) the cALC criterion is better at improving the
prediction accuracy as long as it has an accurate GP surrogate
model; and 2) the evaluation of cALC is isolated from the
GP model fit to reduce the computations. Essentially, when
a new GP surrogate model is required we use the fALFIA
acquisition function that is better at upgrading the model
estimation accuracy (exploration) and when an accurate
model exists we exploit the surrogate and use cALC which
is better at improving the prediction accuracy (exploitation).

Implementation details of the proposed ALX method are
provided in Alg. 1. The first step is to compute a multi-start
location dataset Xm-s by using the conditionLHS routine
that works similarly to LHS (Section II-B), conditioned
on the current input locations Xn. Since both acquisitions
functions of ALC (4) and ALFIA (11) are non-convex on
the optimizing parameter x ∈ X , the multi-start location
dataset Xm-s ensures that local minima are avoided. Next,
the exploration condition (15) is utilized to decide the phase
of active learning (exploration or exploitation). For the explo-
ration phase (lines 4-7), a new GP surrogate model is fitted
to obtain the hyperparameters θ̂n and the inverse covariance
C−1

n . Next, fALFIA is used as described in Proposition 3 to
output the next sample location candidates {xn+1,i}Nm-s

i=1 and
the corresponding acquisition function values {Jn+1,i}Nm-s

i=1

for all multi-start locations using the new hyperparameters.

Algorithm 1 Exploration-Exploitation AL (ALX)
Input: Dn = (Xn,yn), D, Nm-s, Nref, nmax, β, γ, η
Output: θ̂nmax , Dnmax

1: repeat
2: Xm-s ← conditionLHS(Nm-s, D,Xn); {x(1)

i }
Nm-s
i=1 = Xm-s

3: if |ŷn − yn|> β pmax(yn)−min(yn)q then ▷ Exploration
4: θ̂n,C

−1
n ← GPtraining(Dn)

5: for i = 1 to Nm-s do
6: xn+1,i, Jn+1,i ← ALFIA(C−1

n , θ̂n,x
(1)
i ,Dn, γ, η)

7: end for
8: else ▷ Exploitation
9: θ̂n = θ̂n−1; C−1

n ← fastUpdate(C−1
n−1, θ̂n,xn)

10: X ref ← conditionLHS(Nref, D,Xn,Xm-s)
11: for i = 1 to Nm-s do
12: xn+1,i, Jn+1,i ← ALC(C−1

n , θ̂n,xi,Xn,X ref, γ, η)
13: end for
14: end if
15: xn+1 ← minJ({xn+1,i}Nm-s

i=1 , {Jn+1,i}Nm-s
i=1) ▷ Next Input

16: yn+1 ← sample(xn+1)
17: ŷn+1 ← GPprediction(C−1

n , θ̂n,xn+1,Dn)
18: yn+1 = yn ∪ yn+1; Xn+1 = Xn ∪ xn+1 ▷ New Dataset
19: until nmax
20: return θ̂nmax ,Dnmax

For the exploitation phase (lines 9-13), we set the previous
hyperparameters as the current θ̂n = θ̂n−1 and we com-
pute the new inverse covariance matrix C−1

n by using the
partitioned inverse matrix [15, Chapter 6.3]. The reference
set X ref of ALC is designed using LHS, but conditioned on
the current input locations Xn and the multi-start location
dataset Xm-s. Next, cALC is executed (Proposition 1, 2) that
yields the next sample location candidates {xn+1,i}Nm-s

i=1 and
the corresponding acquisition function values {Jn+1,i}Nm-s

i=1

for all multi-start locations. After obtaining the next sampling
locations and the corresponding acquisition function values,
we select the next input location xn+1 from the lowest
acquisition function value. Then, we assign the next input
location xn+1 and collect yn+1, while concurrently we
predict ŷn+1 with the GP hyperparameters θ̂n. The ALX
method iterates for a predetermined number of nmax loops to
output the hyperparameters of the GP surrogate model θ̂nmax

and the final dataset Dnmax .

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to validate
the efficacy of the proposed ALX methodology. We use
numerous test functions with different input space dimen-
sions: a) generative GP function using hyperparameter vector
θ = (l1 = 1.9, l2 = 0.6, σf = 2.1, σϵ = 0.1)⊺ with input
space dimension D = 2; b) Gramacy-Lee function with
D = 2; c) Hartman function with D = 3; d) Rosenbrock
function with D = 4; e) Hartman function with D = 6;
and f) Sphere function with D = 6. Input locations are
normalized to unit dimensions x ∈ [0, 1]D. Test functions
(a), (c), and (e) are multimodal, while (b), (d), and (f) are
unimodal. This set of test functions (a)–(f) is a common
benchmark for the evaluation of active learning methods and
GPs [7], [34]. The initial dataset has size ninit = 10D and
we set the size of multi-start locations to Nm-s = 2D for all
test functions. We compare six methods: i) batch GP with

Fig. 3. Prediction accuracy in terms of NRMSE and total time per active learning loop for all test functions.

random selection of input locations Xn ∼ Un[0, 1]
D that is

termed as GP-random; ii) batch GP with LHS selection of
input locations Xn = XLHS,n, termed as GP-LHS; iii) ap-
proximated gradient ALC with finite differences, termed
as fALC; iv) closed-form gradient ALC, termed as cALC;
v) approximated gradient ALFIA with finite differences,
termed as fALFIA; and vi) exploration-exploitation active
learning, termed as ALX. We select nmax = 100 loops of
active learning for methods (iii)–(vi). The reference set for
methods (iii), (iv) has size Nref = 15D. All observations
follow (1) with imposed iid noise ϵ ∼ N (0, σ2

ϵ), where
σϵ = 0.1 std(f(X)). The gradient descent step is set to
γ = 5 and the convergence tolerance of the gradient descent
to η = 10−4 for methods (iii)–(vi). The exploration cost
value of the ALX method (vi) is set to β = 0.1.

To remove the random assignment of data that may favor
a specific method, we conduct 100 Monte Carlo replications
for each test function (a)–(f). The numerical comparison
involves the prediction NRMSE for methods (i)–(vi) and
the required time for one loop for all active learning meth-
ods (iii)–(vi). The prediction NRMSE follows NRMSE =
[
∑nS

s=1(µ(xs,∗)− y(xs,∗))2]
1/2/(max{y} −min{y}), with

nS = 40, 000 the number of test points.

Best prediction accuracy & best scalability (Both 2D):
The evaluation of all methods on the generative GP 2D
and the Gramacy-Lee 2D is presented in Fig. 3-(a) and
Fig. 3-(b) respectively. For the generative GP 2D, ALX and
cALC outperform on median all other methods in prediction
accuracy. However, ALX requires 47.6% lower time than
cALC on median for every loop. For the Gramacy-Lee 2D,
ALX, fALC, cALC, and GP-LHS produce the most accurate
predictions. Yet, ALX entails 65.7% lower time than cALC
and 57.1% lower time than fALC on median for every loop.

Best prediction accuracy & best scalability (3D): We
compare all methods on the Hartmann 3D test function as
shown in Fig. 3-(c). ALX, cLAC, and fALC are the most
accurate method on median in prediction, but ALX requires
55.9% lower time than cALC and 39.5% lower time than
fALC on median for every loop.

Best prediction accuracy & best scalability (4D): The
efficiency of all methods on the Rosenbrock 4D test function
is depicted in Fig. 3-(d). The proposed ALX outperforms all
methods in prediction accuracy on median with cALC and
fALC producing competitive predictions. ALX entails 5.0%
less time than fALC and 26.5% less time than cALC on
median for every loop.

Best prediction accuracy & best scalability (Both 6D):
In Fig. 3-(e), -(f), we evaluate all methods on the Hartmann
6D and Sphere 6D test function respectively. ALX and
cALC outperform on median all other methods in prediction
accuracy, while fALFIA produces competitive predictions
for the Hartmann 6D test function. The proposed ALX
requires 51.4% less time than cALC and 8.0% lower time
than fALFIA on median for every loop. For the Sphere 6D
function, ALX, fALX, and cALC produce the most accurate
predictions, while ALX requires two orders of magnitude
lower time than fALC and cALC on median for every loop.

Overall, the results reveal that the proposed ALX method
is consistently the most accurate predictor as well as consis-
tently the most computationally efficient method. From the
other methods, cALC is also consistently the best method
for prediction accuracy along with ALX, but not computa-
tionally scalable. In addition, fALFIA is inconsistent both
for prediction accuracy and computations. Moreover, fALC
is competitive for prediction accuracy, but computationally
expensive for higher input search spaces.

V. CONCLUSION

We synthesize an adaptive exploration-exploitation active
learning method (ALX) and we formulate a new acquisi-
tion function that maximizes the approximated, expected
Fisher information (ALFIA). The proposed ALX method
is composed of two phases: i) exploration with the new
ALFIA acquisition function; and ii) exploitation with the
ALC acquisition function. ALX produces consistently the
most accurate predictions in terms of NRMSE and requires
the least time per active learning loop for its execution.
Ongoing work is focusing on the decentralization of the
proposed method with multi-agent systems.

REFERENCES

[1] J. Das, F. Py, J. B. Harvey, J. P. Ryan, A. Gellene, R. Graham,
D. A. Caron, K. Rajan, and G. S. Sukhatme, “Data-driven robotic
sampling for marine ecosystem monitoring,” The International Journal
of Robotics Research, vol. 34, no. 12, pp. 1435–1452, 2015.

[2] V. Suryan and P. Tokekar, “Learning a spatial field in minimum time
with a team of robots,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1562–1576, 2020.

[3] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Trans. on
Pattern Analysis and Machine Intel., vol. 37, no. 2, pp. 408–423, 2013.

[4] W. Luo and K. Sycara, “Adaptive sampling and online learning in
multi-robot sensor coverage with mixture of Gaussian processes,” in
Intern. Conference on Robotics and Automation, 2018, pp. 6359–6364.

[5] G. P. Kontoudis, S. Krauss, and D. J. Stilwell, “Model-based learn-
ing of underwater acoustic communication performance for marine
robots,” Robotics and Autonomous Systems, vol. 142, p. 103811, 2021.

[6] S. Seo, M. Wallat, T. Graepel, and K. Obermayer, “Gaussian process
regression: Active data selection and test point rejection,” in IEEE-
INNS-ENNS International Joint Conference on Neural Networks,
vol. 3, 2000, pp. 241–246.

[7] R. B. Gramacy and H. K. Lee, “Adaptive design and analysis of
supercomputer experiments,” Technometrics, vol. 51, no. 2, pp. 130–
145, 2009.

[8] X. Yue, Y. Wen, J. H. Hunt, and J. Shi, “Active learning for Gaussian
process considering uncertainties with application to shape control of
composite fuselage,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 1, pp. 36–46, 2020.

[9] C. N. Mavridis, G. P. Kontoudis, and J. S. Baras, “Sparse Gaussian pro-
cess regression using progressively growing learning representations,”
in IEEE Conference on Decision and Control, 2022, pp. 1454–1459.

[10] A. Krause and C. Guestrin, “Nonmyopic active learning of Gaussian
processes: An exploration-exploitation approach,” in International
Conference on Machine Learning, 2007, pp. 449–456.

[11] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning, 2nd ed. Cambridge, MA, USA: MIT Press, 2006.

[12] G. P. Kontoudis and D. J. Stilwell, “Decentralized nested Gaussian
processes for multi-robot systems,” in IEEE International Conference
on Robotics and Automation, 2021, pp. 8881–8887.

[13] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process
meets big data: A review of scalable GPs,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 11, pp. 4405–
4423, 2020.

[14] G. P. Kontoudis and D. J. Stilwell, “Fully decentralized, scalable
Gaussian processes for multi-agent federated learning,” arXiv preprint
arXiv: 2203.02865, 2022.

[15] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design and
Optimization for the Applied Sciences. Chapman Hall/CRC, 2020.

[16] G. P. Kontoudis and M. Otte, “Closed-form active learning using
expected variance reduction of Gaussian process surrogates,” in Amer-
ican Control Conference, 2023, pp. 4626–4632.

[17] Z. Zhu and M. L. Stein, “Spatial sampling design for parameter
estimation of the covariance function,” Journal of Statistical Planning
and Inference, vol. 134, no. 2, pp. 583–603, 2005.

[18] H. Liu, Y.-S. Ong, and J. Cai, “A survey of adaptive sampling
for global metamodeling in support of simulation-based complex
engineering design,” Structural and Multidisciplinary Optimization,
vol. 57, no. 1, pp. 393–416, 2018.

[19] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert,
and M. Toussaint, “Safe exploration for active learning with Gaus-
sian processes,” in Machine Learning and Knowledge Discovery in
Databases. Springer, 2015, pp. 133–149.

[20] T. Samman, A. Dutta, O. P. Kreidl, S. Roy, and L. Bölöni, “Secure
multi-robot information sampling with periodic and opportunistic
connectivity,” in IEEE International Conference on Robotics and
Automation, 2022, pp. 4951–4957.

[21] M. Corah and N. Michael, “Efficient online multi-robot exploration
via distributed sequential greedy assignment.” in Robotics: Science
and Systems, 2017.

[22] F. Ghassemi and V. Krishnamurthy, “Separable approximation for
solving the sensor subset selection problem,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 47, no. 1, pp. 557–568, 2011.

[23] Y. Xu and J. Choi, “Adaptive sampling for learning Gaussian processes
using mobile sensor networks,” Sensors, vol. 11, no. 3, pp. 3051–3066,
2011.

[24] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison, Tech. Rep. Computer Science technical report 1648, 2009.

[25] J. L. Loeppky, J. Sacks, and W. J. Welch, “Choosing the sample size
of a computer experiment: A practical guide,” Technometrics, vol. 51,
no. 4, pp. 366–376, 2009.

[26] M. McKay, R. Beckman, and W. Conover, “Comparison the three
methods for selecting values of input variable in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, 1979.

[27] M. Stein, “Large sample properties of simulations using latin hyper-
cube sampling,” Technometrics, vol. 29, no. 2, pp. 143–151, 1987.

[28] F. A. Viana, “Things you wanted to know about the latin hypercube
design and were afraid to ask,” in World Congress on Structural and
Multidisciplinary Optimization, vol. 19, no. 24.05, 2013.

[29] A. Sobester, A. Forrester, and A. Keane, Engineering design via
surrogate modelling: A practical guide. John Wiley & Sons, 2008.

[30] M. L. Stein, Interpolation of spatial data: Some theory for kriging,
1st ed. New York, NY, USA: Springer-Verlag, 1999.

[31] K. V. Mardia and R. J. Marshall, “Maximum likelihood estimation
of models for residual covariance in spatial regression,” Biometrika,
vol. 71, no. 1, pp. 135–146, 1984.

[32] T. Wilson and S. B. Williams, “Active sample selection in scalar
fields exhibiting non-stationary noise with parametric heteroscedastic
Gaussian process regression,” in IEEE International Conference on
Robotics and Automation, 2017, pp. 6455–6462.

[33] R. B. Gramacy and D. W. Apley, “Local Gaussian process approxima-
tion for large computer experiments,” Journal of Computational and
Graphical Statistics, vol. 24, no. 2, pp. 561–578, 2015.

[34] V. Picheny, T. Wagner, and D. Ginsbourger, “A benchmark of Kriging-
based infill criteria for noisy optimization,” Structural and Multidisci-
plinary Optimization, vol. 48, no. 3, pp. 607–626, 2013.

