
PiP-X: Online feedback motion
planning/replanning in dynamic
environments using invariant funnels

Journal Title
XX(X):1–22
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Mohamed Khalid M Jaffar and Michael Otte

Abstract
Computing kinodynamically feasible motion plans and repairing them on-the-fly as the environment changes is a
challenging, yet relevant problem in robot navigation. We propose an online single-query sampling-based motion
re-planning algorithm using finite-time invariant sets, commonly referred to as ‘funnels’. We combine concepts from
nonlinear systems analysis, sampling-based techniques, and graph-search methods to create a single framework that
enables feedback motion re-planning for any general nonlinear dynamical system in dynamic workspaces.

A volumetric network of funnels is constructed in the configuration space using sampling-based methods and
invariant set theory; and an optimal sequencing of funnels from robot configuration to a desired goal region is then
determined by computing the shortest-path subgraph (tree) in the network. Analysing and formally quantifying the
stability of trajectories using Lyapunov level-sets ensures kinodynamic feasibility and guaranteed set-invariance of the
solution-paths. Though not required, our method is capable of using a pre-computed library of motion-primitives to
speedup online computation of controllable motion plans that are volumetric in nature.

We introduce a novel directed-graph data structure to represent the funnel-network and its inter-sequencibility;
helping us leverage discrete graph-based incremental search to quickly rewire feasible and controllable motion plans
on-the-fly in response to changes in the environment. We validate our approach on a simulated cart-pole, car-like robot,
and 6DOF quadrotor platform in a variety of scenarios within a maze and a random forest environment. Using Monte
Carlo methods, we evaluate the performance in terms of algorithm-success, length of traversed-trajectory, and runtime.

Keywords
Feedback motion planning, online replanning, sampling-based algorithms, incremental graph-search, nonlinear
systems, invariant set theory, motion primitives

1 Introduction

The ability to replan is essential whenever a robot must
explore an unknown or changing environment while using
a limited sensor radius. In scenarios where the environment
contains fast-moving obstacles or is densely cluttered with
obstacles, a new motion-plan must be quickly calculated
whenever newly gathered information about obstacles
invalidates the current plan. Likewise, it is also essential that
any global motion plan (or replan) respects the kinodynamic
constraints and controllability of the robot-system. Feedback
motion planning algorithms achieve such compatibility by
considering this dual requirement of motion planning and
robot control in tandem.

For robots that must react quickly to changes in the
obstacle-space, the computational complexity of brute-force
replanning—planning from scratch whenever the environ-
ment changes—is often impractical. In the case of feedback
motion planning, the need to calculate controllable motion
plans further increases the computational burden of replan-
ning (especially when the valid state space is non-convex
due to obstacles and/or other system constraints). It is much
more efficient to reuse the valid portions of previous plans,
repairing only the invalid parts to respect the new changes.
Incremental search methods which utilise information up to
the current time-instance to plan/replan in the future can be
adapted to achieve such quick replanning. However, the use

of such methods in the literature so far has been limited
to discrete grids and graphs in which edges represent one-
dimensional trajectories through space-time.

This paper presents a sampling-based online motion
planning/replanning algorithm using trajectories with certi-
fied regions of stability, commonly referred to as funnels.
We extend sampling-based motion planners to nonlinear
robot-systems in dynamic workspaces. Using systems analy-
sis and invariant set theory, we compute dynamically feasible
and verified trajectories with formal stability guarantees. The
use of sampling techniques enables our algorithm to be com-
putationally tractable for higher dimensional systems and
configuration spaces. We extend the use of aforementioned
incremental search algorithms to the case of volumetric
funnel-edges by using a novel graph data structure to model
a network of funnels. Additionally, our method is capable of
using a library of funnels to speedup online computation.

A preliminary version of this work was presented at the 15th International
Workshop on the Algorithmic Foundations of Robotics (WAFR 2022).
The authors are affiliated with the Department of Aerospace
Engineering, University of Maryland, College Park, MD, USA

Corresponding author:
Mohamed Khalid M Jaffar, Motion and Teaming Laboratory, University of
Maryland, 8228 Paint Branch Dr, College Park, MD 20742, USA.
Email: khalid26@umd.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

The algorithm that we present is called PiP-X
(Planning/replanning in Pipes in dynamic or initially
unknown environments), a novel kinodynamically-
feasible, online re-planning* algorithm that is relevant
in practical scenarios such as safely navigating through
dynamic workspaces. Our method quickly computes,
and continuously updates controllable motion plans with
formal invariance guarantees, that can be safely tracked
by nonlinear robot-systems despite changes in obstacle
space. We recast the challenging problem of online
kinodynamically-feasible motion re-planning into a discrete
graph-search by mapping the network of volumetric funnels
in the higher dimensional state space to a directed-graph
data structure representation.

The use of funnels in lieu of one-dimensional trajectories
through space-time for sampling-based re-planning is
advantageous because it serves as a bridge between discrete
computational methods (path planning algorithms) and
theoretical analysis (system analysis and control design).
We reconcile the two sub-blocks in a robot-autonomy
stack—motion planner and controller—using funnels, thus
addressing feedback motion re-planning. In essence, we
obtain a re-planning algorithm that respects the closed-loop
dynamics of the robot, computes the minimum-cost path
(with formal invariance guarantees) to the goal, and also
efficiently replans around dynamic obstacles.

To the best of the authors’ knowledge, this is the first work
to propose techniques for funnel-based motion re-planning
using graph-based quick rewiring. It sets the foundations
for global feedback motion planning/replanning on-the-fly
by introducing a new form of volumetric funnel-networks,
leveraging the rich literature in sampling-based planning,
invariant set analysis and graph search. The authors stress
that we are not suggesting an improved way to compute
funnels, but rather a new technique of using existing efficient
methods of funnel computation to motion plan/replan for a
general nonlinear robot-system in dynamic spaces.

1.1 Statement of Contributions
The technical contributions of our work are three-fold.

1. PiP-X: Global feedback motion re-planning with fun-
nels, using sampling-based techniques and incremen-
tal graph-search.

2. A novel technique to represent a network of funnels
and its inter-sequencibility using a bipartite graph
data structure with augmented vertices and edge-sets.

3. Implicitly addressing the two-point boundary value
problem (TP-BVP) during graph rewiring by using the
system’s stability analysis and funnel sequencibility.

A preliminary version of this paper appeared in the
conference proceedings of the International Workshop on the
Algorithmic Foundations of Robotics (WAFR) (Jaffar and
Otte 2023). Major extensions in this journal version include:
a more detailed technical background with visualisations
in Section 3, an in-depth description of our method
and algorithm in Section 5, validation in two additional
platforms: a cart-pole and a car-like robot (Section 6), and
added performance and comparison analysis (Section 7.3–
7.4) of our algorithm on a simulated quadrotor in two new

Figure 1. Online funnel-based re-planning algorithm, PiP-X: (a)
Funnel-graph, a network of finite-time invariant sets − funnels,
each “dropping” into the subsequent funnel, finally into the
goal region. (b) Rewiring of the funnel-path when changes
in the environment are sensed (c) Analysing compossibility
of funnels (d) Trajectory of the robot lies completely inside
the traversed funnel-path (e) Labelled funnel-edges, inlets
and outlets (f) Representing funnel-connectivity (solid motion-
edges) and inter-sequencibility (dashed continuity-edges) as a
graph data structure to enable quick and efficient graph-based
re-planning. The solution path is B2−A2−A1−G1.

environments: initially unknown forest with limited robot-
sensing and maze with dynamic changes.

1.2 Outline

The remainder of this paper is structured as follows:
Section 2 outlines the related work, and Section 3 provides
the necessary theoretical background while introducing the
notation used in the paper. Section 4 formally states our
problem definition. Our approach is described in Section 5
and validated in Sections 6–7. Finally, we state our
conclusions in Section 8.

∗Re-plan: plan and replan (to reflect the updated state of the environment)

Prepared using sagej.cls

M Jaffar and Otte 3

2 Related Work
PiP-X builds on existing literature in the fields of feedback
motion planning, sampling-based planning techniques, and
online replanning in dynamic environments. It differs from
previous work in that it is the first online global feedback
motion re-planning algorithm using funnels.

2.1 Sampling-based kinodynamic motion
planning

Geometric sampling-based motion planners such as proba-
bilistic roadmaps (PRM) (Kavraki et al. 1996) and rapidly
exploring random trees (RRT) (Kuffner and LaValle 2000)
have proven to be effective and practical in high-dimensional
configuration spaces. Karaman and Frazzoli (2011) pro-
pose RRT∗ with theoretical proofs of asymptotic optimality.
RRT# algorithm presented by Arslan and Tsiotras (2013)
improves the convergence rate, making it suitable for online
implementation. In order to address motion planning for
differentially constrained robots, numerous researchers have
extended such geometric planners to kinodynamic systems
(Hsu et al. 2002; Karaman and Frazzoli 2010; Arteaga et al.
2021; Becerra et al. 2021).

Sampling-based kinodynamic variants steer the vehicle by
randomly sampling control inputs and forward simulating the
trajectory based on the dynamics (LaValle and Kuffner Jr
2001; Kleinbort et al. 2018). SST and (asymptotically
optimal) SST∗ (Li et al. 2016) are kinodynamic planners
that do not rely on a steering function, and instead use
selective propagation/pruning to maintain a sparse tree.
For complex systems with unstable dynamics, Kuwata
et al. (2009) propose CL-RRT that uses closed-loop
prediction for trajectory generation, growing a tree in the
reference-trajectory space; Arslan et al. (2017) present an
asymptotically optimal extension to it.

Some researchers formulate an optimal control problem
with the trajectory given by the geometric planner, solved
using shooting methods (hwan Jeon et al. 2011) or closed-
form analytical solutions (Webb and Van Den Berg 2013).
Another popular approach is to smooth the path given by
geometric planners through splines or trajectory optimisation
(Ravankar et al. 2018) and track it using feedback controllers
such as PID or receding-horizon controller (Basescu and
Moore 2020).

2.2 Graph-based motion replanning in
dynamic environments

Earlier work on re-planning – D∗ (Stentz et al. 1995), LPA∗

(Koenig et al. 2004), D∗Lite (Koenig and Likhachev 2002)
are based on incremental, heuristic-guided shortest-path
repairs on a discrete grid embedded in the robot’s workspace.
Such discretization assumes a constant resolution, requires
additional pre-processing, or post-processing to achieve
kinodynamic feasibility and/or controllability, and uses
data structures that tend to scale exponentially with the
dimensions of the system. Nevertheless, they provide
a strong algorithmic foundation for developing quick,
efficient re-planning algorithms that are useful in cases
such as geometric path planning, where robot’s kinematics,
dynamics, or control can be ignored.

Previous work on sampling-based replanning focused on
the feasible motion re-planning problem – ERRT (Bruce and
Veloso 2002), DRRT (Ferguson et al. 2006) and multipartite
RRT (Zucker et al. 2007) completely prune the edges in
collision, and attempt to rejoin the disconnected branches
to the rooted tree. RRTX proposed by Otte and Frazzoli
(2016) was the first asymptotically optimal sampling-based
re-planning algorithm. It rewires the shortest-path tree from
goal to exclude tree nodes and edges that are in collision,
similar to D∗Lite. The underlying search graph—built
iteratively through sampling and a rewiring-cascade step—
ensures quick replanning and is well-suited for re-planning
on-the-fly. Another technique is to resample configurations
based on heuristics (Gammell et al. 2020) and leverage
the rewiring step from RRT∗ to locally repair the solution
branch around newly-sensed obstacles (Connell and La
2017; Adiyatov and Varol 2017).

Completeness and optimality guarantees have been
achieved for geometric path re-planning, but incorporating
robot dynamics without violating these guarantees remains
an active area of research. Specifically, most of the optimal
sampling-based and re-planning algorithms require solving
the two-point boundary-value problem (TPBVP) which is
generally difficult for non-holonomic robots, limiting their
practical applicability. Some techniques have been proposed
to solve the kinodynamic re-planning problem without using
a two-point BVP solver (Li et al. 2016), achieving near-
optimality. However, most previous works consider simple
or linearised dynamics without considering disturbances
and unmodelled effects. Solving the intrinsic TPBVP for
an arbitrary nonlinear system remains challenging and
computationally intractable for online implementation.

2.3 Feedback motion planning using funnels
Historically, robot-planning stacks have a hierarchical
structure: the high-level path planner computes an open-loop
trajectory and a low-level controller stabilises and tracks the
trajectory. This decoupled approach is limited in practice
because controller tracking errors and actuator saturations
or uncertainties might render the planned path infeasible
to track. Tracking errors between the planned and actual
trajectories can lead to critical failures such as collisions
with obstacles. These shortcomings are addressed through
feedback motion planning, in which the motion planner
explicitly considers the stabilising feedback controller to
optimise planning for dynamical continuous systems. Mason
(1985) introduced a metaphor – funnel, for locally stabilised
and verified trajectories. An illustration of sequentially
composed funnels reaching a goal region, similar to Fig. 1-a,
presented by Burridge et al. (1999) sparked the motivation to
use such funnels for feedback motion planning.

Tedrake et al. (2010) popularised the notion of LQR-trees,
an algorithm that covers the state space using a tree of time-
varying trajectories, locally stabilised by an LQR controller
and verified by Lyapunov level-set theory. Tobenkin et al.
(2011) present a detailed approach on how to compute
these regions of finite-time invariance using Sum-of-Squares
(SoS) programming and bilinear alternations. However, these
methods are computationally intensive and are not suitable
for scenarios in which the obstacles are not known a priori.
Majumdar and Tedrake (2017) compute the funnels offline

Prepared using sagej.cls

4 Journal Title XX(X)

and use them to plan online for flying a glider through
a dense setting. Our approach shares much in common
with this work, but differs in that it uses a formal graph-
framework to represent an RRG of funnel-edges, as well as to
online replan funnel-paths using incremental graph-repairs.
Similar work by the same research group leverages the
concepts of funnels to develop planning algorithms for UAV-
perching (Moore et al. 2014), double pendulum (Majumdar
et al. 2013), and a cart-pole (Reist et al. 2016). Funnel-based
motion planning for a robotic arm using adaptive feedback
control is presented by Verginis et al. (2021, 2023).

2.4 Other related work
In parallel to Lyapunov theory-based analysis, researchers
have proposed different techniques for reachability set-
based trajectory design (Bajcsy et al. 2019; Kousik et al.
2020). FaSTrack (Herbert et al. 2017) is an adversarial
game-theoretical approach to generate worst-case tracking
error bounds around trajectories using Hamilton-Jacobi
reachability analysis. Singh et al. (2019) use contraction
theory to compute invariant-tubes around trajectories and
plan using them. Other researchers also provide ways to
compute stabilised and verified trajectories to be used with
any motion-planner – using direct transcription (Manchester
and Kuindersma 2019), and funnel generator functions
(Ravanbakhsh et al. 2019).

Optimisation-based approaches such as CHOMP (Ratliff
et al. 2009; Zucker et al. 2013) and TrajOpt (Schulman
et al. 2014) are also popular in the context of motion
re-planning in dynamic spaces. Such algorithms generally
use a trajectory optimization framework with a receding
horizon controller to avoid collisions while simultaneously
satisfying smoothness and dynamics constraints (Borrelli
et al. 2004; Park et al. 2012). They abstract the problem
completely into a formal mathematical objective and solve
the constrained optimisation problem numerically (Richards
and How 2002; Blackmore et al. 2011). An application of
using an optimisation-based collision avoidance framework
for autonomous parking is presented by Zhang et al. (2020).

The scientific merit of our research is extending previous
work in funnel-based motion planning to global on-the-fly
replanning by using graph-based quick rewiring methods.
Our primary contribution is that we present a novel graph
data structure to map the volumetric funnel-network in
the higher dimensional state space, helping us leverage
graph-search algorithms to rewire controllable motion plans.
Through this, we are able to recast the challenging problem
of feedback motion re-planning for non-trivial systems into
a geometric one, making it tractable for online replanning.
Our algorithm generates kinodynamically feasible motion
plans/replans for nonlinear robot-systems using backward
reachable sets, while implicitly solving the two-point
boundary value problem.

3 Preliminaries

Our approach combines concepts from invariant set analysis
for dynamical systems, design of a library of verified motion
primitives, and graph-based replanning techniques. This
section briefly provides the requisite technical background

Figure 2. A sample funnel – finite-time backward-reachable
invariant set to a compact region of desired final states, Xf

while introducing the notation that will be used in the rest of
the paper.

3.1 Invariant Set Theory
The notion of region of attraction of asymptotically stable
fixed points can be extended to certifying time-varying
trajectories. Such regions of finite-time invariance around a
trajectory are referred to as funnels (Tobenkin et al. 2011).
Considering a closed-loop nonlinear system,

ẋ(t) = f(t,x(t)) x(t0) = x0 (1)

where state, x ∈ Rn and f is Lipschitz continuous in x and
piecewise continuous in t, guaranteeing global existence and
uniqueness of a solution (Slotine et al. 1991). Considering a
finite time interval [t0, tf], a funnel is formally defined as,

Definition 1. Funnel – A set, F ⊆ [t0, tf]× Rn, such that
for each (τ,xτ) ∈ F , τ ∈ [t0, tf], the solution to Eq. (1),
x(t), with initial condition x(τ) = xτ , lies entirely within
F till final time, i.e. (t,x(t)) ∈ F ∀ t ∈ [τ, tf].

Intuitively, if the closed-loop system starts within the
funnel, then the system states evolving due to Eq. (1) remain
within the funnel at all time instances until the final time. We
leverage tools from Lyapunov theory to compute bounded,
inner-approximations of the funnel. The compact level-sets
of a Lyapunov function, V (t,x), satisfy the conditions of
positive invariance (Khalil and Grizzle 2002),

B(t) = {x | 0 ≤ V (t,x) ≤ ρ(t)} (2)

where ρ(t) is a non-negative real-valued function, describing
the time-varying boundary value of level sets. As noted by
Tobenkin et al. (2011), under certain mild assumptions, it is
sufficient to analyse the boundary of the level sets, ∂B(t)
and the invariance conditions can be reformulated in terms
of ρ(t) such as,

V (t,x) = ρ(t) =⇒ V̇ (t,x) ≤ ρ̇(t)

V̇ (t,x) =
∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x(t)).

(3)

In other words, with respect to time, the Lyapunov function at
the boundary, ∂B(t) should decrease faster than the level set,
ρ(t) for invariance. Then the set defined in Eq. (4), satisfying
the conditions in Eq. (3) is a funnel (Moore et al. 2014).

F = {(t,B(t)) | t ∈ [t0, tf]} (4)

Prepared using sagej.cls

M Jaffar and Otte 5

In our case, we are interested in computing backward
reachable sets about a finite-time, nominal trajectory to a
compact region in state space. Given a bounded space of
desired final-states, Xf ⊆ Rn, we consider funnels that end
within the region, i.e. (tf ,x(tf)) ∈ F =⇒ x(tf) ∈ Xf , or
alternatively, B(tf) ⊆ Xf . A sample funnel with its parts
labelled can be found in Fig. 2.

We wish to maximise the volume of the funnel that flows
into the sub-goal region, Xf using tools from Lyapunov
analysis and convex optimisation. The funnel-volume is as
defined by Tobenkin et al. (2011). Section 5.4 talks about
how to compute such maximum-volume funnels for systems
with piecewise polynomial dynamics, using Sum-of-Squares
(SoS) relaxation to solve for a class of quadratic Lyapunov
functions.

3.2 Verified Trajectory Libraries
The idea of saving a pre-computed library of motion
primitives for online planning has seen considerable research
in the past. Dey et al. (2012) provide an optimisation-based
approach to design the library, abstracting the information
and sequence of trajectories. Maneuver Automaton by
Frazzoli et al. (2005) discusses the relevant properties of
trajectory libraries required for sequencing, providing a
theoretical foundation.

The condition for sequencing trajectories presented by
Burridge et al. (1999) can be extended to funnels by
analysing the compact invariant sets satisfying Eq. (3), B(t)
at the final and initial time. An ordered pair of funnels,
(Fi, Fj) is sequentially compossible if Bi(tfi) ⊆ Bj(t0j).
However, this is often a strict condition, and is not
necessary for composing motion plans. In order to analyse
the sequencibility of trajectories for motion planning,
we decompose the state vector into cyclic and non-
cyclic states, x = [xTc xTnc]

T . Cyclic states are defined as
(generalised) coordinates to which the open-loop dynamics
of a Lagrangian system, ẋ = f ′(t,x,u) are invariant. Or
alternatively, the dynamics depend only on the non-cyclic
states.

ẋ(t) = f ′(t,xnc(t),u(t)) (5)

For example, in a holonomic ground robot with second-
order dynamics, pose is the cyclic coordinates, whereas
velocity would be the non-cyclic counterpart. It is sufficient
to verify whether the regions-of-invariance projected onto
a subspace formed by the non-cyclic state coordinates are
sequentially compossible (Majumdar and Tedrake 2013).
One can shift the funnel along the cyclic coordinates so as
to contain the outlet of the previous funnel, as illustrated in
Fig. 3. Shift function, Ψc(.) is a mapping from the space
of funnels to itself that shifts (translates/rotates) the funnel
along the cyclic coordinates while not transforming it about
the non-cyclic coordinates.

Definition 2. A funnel-pair, (Fi , Fj) is said to be
motion-plan compossible if and only if

PS
nc(Bi(tfi)) ⊆ PS

nc(Bj(t0j)) (6)

where PS
nc(.) is the appropriate projection operator from

the state space onto the subspace formed by non-cyclic
coordinates. In addition to posing a less strict condition,

Figure 3. Compossibility of funnels from the library illustrating
shifts, Ψc(.) along cyclic coordinates (invariant dynamics).
(F1, F3) is motion-plan compossible, whereas (F1, F2) is not;
i.e. outlet of F1 is completely contained within the inlet of F3

after an appropriate shift operation, Ψc3

the notion of motion-plan compossibility plays a significant
role in designing the funnel library – one can use a finite
number of motion primitives to cover an infinite vector
space of cyclic coordinates by shifting the trajectories
appropriately. Section 5.5 talks about projection operators
and shift functions in detail for our specific case of funnels
characterised by ellipsoidal level sets.

For example, during online planning in a UAV, it suffices
to check whether the linear and angular velocities at the
start of a trajectory match with the current velocities. The
position and heading (cyclic coordinates) of the funnel can
be shifted to the current pose of the UAV. Majumdar and
Tedrake (2017) discuss the various notions of compossibility
in detail, providing methods to check the condition in Eq. (6)
using semi-definite programming.

3.3 Discrete graph replanning
An important theme throughout our work is the use of graphs
to map a network of volumetric funnels in a way that respects
their compossibility constraints, Eq. (6). To this effect, we
present concepts from graph theory, and how we leverage the
notions of discrete search to calculate optimal sequencing
of funnels to a goal region. In the context of path planning,
graphs serve a dual purpose of modelling the topology and
traversability of configuration space C, and also to search for
a feasible or an optimal path through it. A graph is defined
by a set of vertices V , and edges E, formally denoted as
G = (V,E), where E ⊆ {(v, w) | v, w ∈ V, v ̸= w}.

Most search algorithms compute a connected acyclic
subgraph (tree) within the graph, such that each vertex has
one, and only one, parent. A path from the start to a goal
is readily found by backtracking parent pointers starting

Prepared using sagej.cls

6 Journal Title XX(X)

from the goal or start, respectively, depending on the search-
direction. Discrete path planners like Dijsktra or A* find an
optimal path with respect to a user-defined cost function.
Given an edge, e = (v, w) ∈ E, the edge cost function,
c(v, w) represents the cost to move from vertex v to vertexw.
The edge costs satisfy the property of a distance metric: non-
negativity, identity of indiscernibles and triangle inequality.

D∗Lite (Koenig and Likhachev 2002) is a graph-based
incremental search method that reuses all valid current
information to improve the solution path in the next iteration,
resulting in faster replanning speeds than algorithms that
replan from scratch. It continually and efficiently repairs
the shortest path-to-goal as edge costs change while robot
traverses the solution path. Our algorithm adapts this idea to
similarly maintain a shortest-path tree of funnels rooted at
the goal region.

For each node v, the algorithm maintains an estimate
of cost-to-goal value, g(v) defined as the sum of cost of
all edges along the path from node v to the goal, through
the graph. In our work, the cost of a funnel-edge is given
by the length of the nominal trajectory within the funnel.
Additionally, the algorithm computes an lmc value (one-step
lookahead minimum cost) for all nodes, defined as,

lmc(v) = min
v′∈N+(v)

{c(v, v′) + g(v′)} (7)

where N+(v) is the set of out-neighbors of vertex v. For
e = (v, w) ∈ E, w and e are said to be the out-neighbor and
out-edge of v, respectively. Similarly, v and e are referred
to as the in-neighbor and in-edge of w, respectively. Based
on the two cost values – g and lmc, we determine whether
changes have occurred in the shortest path to the goal: lmc is
better informed because it gets updated based on changes in
the out-neighbors’ cost-to-goal. The key idea of D∗Lite can
be explained as,

1. g(v) = lmc(v) =⇒ v is consistent→ no changes to
shortest path from v to goal

2. g(v) < lmc(v) =⇒ v is under-consistent → cost of
the path to goal has increased, and we have to repair
the entire (reverse) subtree rooted at v

3. g(v) > lmc(v) =⇒ v is over-consistent→ a shorter
path exists: update the parent and cost-to-goal of v, and
propagate this cost-change to the in-neighbors of v

In addition to the incremental search, the algorithm uses
heuristics to focus the reverse-search to the robot-node.

Definition 3. Heuristic value, h : V → R+ is a non-
negative estimate of the cost from start to a node satisfying

1. Non-negativity: h(v) ≥ 0 ∀ v ∈ V , h(vstart) = 0
2. Triangle inequality: h(v) ≤ h(v′) + c(v, v′) ∀
v, v′ ∈ V

3. Admissibility: h(v) ≤ h∗(v) ∀ v ∈ V , where
h∗(v) is the optimal cost-from-start value

We do not repair all the nodes after every edge-cost
change, instead only repair promising nodes that have
the ‘potential’ to lie in the robot’s shortest path to goal,
determined using g, lmc and h values as in Eq. (8). A
minimum priority queue is utilised to maintain an order in
which nodes need to be repaired. The inconsistent nodes, i.e.

g(v) ̸= lmc(v), are pushed into the priority queue and sorted
by ascending value of its key value,

key(v) = [min{g(v), lmc(v)}+ hstart(v),

min{g(v), lmc(v)}]
(8)

where hstart(v) is an admissible heuristic for the estimate
of cost to go from the start (robot-node) to node v. The
key comparisons for priority queue-related operations are
based on lexicographic order – the second entry is considered
only in case of a tie-breaker among the first entries.

In our work, graph vertices represent regions in
state space – inlet/outlet regions, and edges represent fun-
nels “flowing” from inlets to outlets. We represent both,
traversability and sequencibility, using a directed graph con-
structed backwards from the goal region. The aforemen-
tioned incremental search technique is used to calculate the
shortest funnel-path from robot to the goal, and recalculate
it as the environment changes. This ensures there exists a
safe, controllable trajectory starting from the robot’s current
state in an inlet-region to an outlet-region that is completely
contained within the desired goal region.

4 Problem Formulation
For a Lagrangian robot system with state, x = (q,v) ∈ S,
where q ∈ C is the robot-configuration, v ∈ Rd represents
the velocities, S denotes the state space, and d ∈ N is the
dimension of the configuration space C, the dynamics are
given by,

q̇(t) = v v̇(t) = f(q,v,u) (9)

where u ∈ U ⊆ Rm is the control-input to the robot system,
and f representing the system dynamics is locally Lipschitz
continuous.

Assumption 1. For a compact set of desired configurations,
Xdes ⊆ C, there exists a state-feedback control policy,
u : [t0, tf]× S → U , which when input to the system (9)
starting at x(t0) = x0, ensures q(tf) ∈ Xdes for some finite
time, tf ≥ 0.

We formally quantify the tracking or stabilising per-
formance of this assumed controller by computing inner-
approximations of backward-reachable invariant sets around
the nominal trajectory, as described in Section 5.4. Note
that the assumed controller may not be able to handle
(dynamic) obstacle spaces, and thus we require a motion
planner/replanner (considering this feedback-controller) to
safely navigate, avoiding collisions with the obstacles.

Consider a robot that operates in workspaceW , with finite
number of obstacles having locally Lipschitz continuous
boundaries, occupying a subspace, O ⊂ W . Correspond-
ingly, let Cobs be the open subset of configurations in which
the robot is in-collision. Cfree = C \ Cobs is the closed subset
of C-space, in which the robot can safely operate without
colliding with obstacles.

Definition 4. Funnel-edge – Given a compact set, Xw ⊆ C
centered around w ∈ C, an initial configuration, v ∈ C and
finite time interval [t0, tf], funnel-edge ϕ(v, w) ⊆ C is the
projection of maximum-volume funnel,F satisfying (2)−(4),
such that v ∈ PS

C (B(t0)) and PS
C (B(tf)) ⊆ Xw.

Prepared using sagej.cls

M Jaffar and Otte 7

Figure 4. Overview of PiP-X. The algorithm consists of an offline stage of dynamical system analysis, and an online phase of
sampling-based graph construction and incremental re-planning in dynamic environments

A funnel-edge is said to be valid, if and only if
PC
W(ϕ(v, w)) ∩ O = ∅, i.e. it does not overlap with the

obstacle set when projected down to the workspace. The
cost of a funnel-edge is based on the length of the nominal
trajectory within it, x̄(t) projected down to C-space, q̄(t)

cϕ(v, w) =

∫ tf

t0

ds(t) (10)

where differential, ds(t) = ∥dq̄(t)∥W , q̄(t) satisfies Eq. (9),
and ∥·∥W represents a weighted Euclidean norm, with
appropriate weights based on the description of C-space.
PAB (.) is a projection operator from space A to a lower
dimensional space B.

It is worth mentioning that the defined cost function in
Eq. (10) satisfies the properties of a distance metric. Since a
valid funnel-edge does not intersect with the obstacle set O,
the trajectory of robot’s configuration contained within it
due to set-invariance, will not be in collision with obstacles.
Thus, q(t) ∈ ϕvalid(.)⇔ q(t) ∈ Cfree for t0 ≤ t ≤ tf .

Definition 5. Funnel-path – For a configuration,
q1 ∈ Cfree and a compact set, X2 ⊆ Cfree, funnel-path,
π(q1,X2) is a finite sequence of valid funnel-edges
with underlying motion-plan compossibility, i.e.
π(q1,X2) = {ϕ1, ϕ2, . . . ϕn}, such that q1 ∈ PS

C (Bϕ1
(t01))

and PS
C (Bϕn

(tfn)) ⊆ X2. The cost of a funnel path is
defined in Eq. (11).

cπ(q1,X2) =

n∑
i=1

cϕi (11)

Problem 1. Online feedback motion planning:
Given Cfree, obstacle space O(t), and a goal region,
Xgoal ⊆ Cfree for a robot starting at a configuration,
qrobot(0) = qstart ∈ Cfree, calculate the optimal funnel
path, π∗(qrobot(t),Xgoal), move the robot by applying a
feedback control policy, u(t,x) ∈ U and keep updating π∗

until qrobot(t) ∈ Xgoal.

π∗(qrobot(t),Xgoal) = argmin
π(qrobot(t),Xgoal)

cπ(qrobot(t),Xgoal)

A dynamic environment has its obstacle space changing
randomly with time and/or with robot configuration:

O(t) = σ(t, qrobot(t)), described using a sensing function,
σ : {t} × Rd → O. An environment can be modelled as
static if σ is known a priori or can be deterministically
computed. A trivial case of static environment is ∆O(t) ≡ ∅.
We consider replanning in dynamic environments, where
∆O(t) is neither known a priori nor possible to predict.

Problem 2. Feedback motion replanning: Assuming that
the robot has the ability to instantaneously sense changes
in obstacle space, ∆O(t) using σ(t, qrobot(t)); continually
recompute π∗(qrobot(t),Xgoal) until qrobot(t) ∈ Xgoal.

To tackle both these above-mentioned problems, we
propose PiP-X, a feedback motion planning/replanning
algorithm that computes optimal funnel-paths and updates
them on-the-fly. The funnel-path is a sequence of maneuvers
with formal guarantees of invariance, associated with state-
feedback control policies. The continuously updated motion
plan with valid funnel-edges ensures that the robot trajectory
always lies within the funnel-path, avoids dynamic obstacle-
spaces, and ultimately reaches the defined goal region.

5 Approach
This section details the various components of our method:
the pre-processing stage of computing backward-reachable
invariant sets and designing the funnel library, and the online
phase of the feedback motion re-planning algorithm, PiP-X.

5.1 Outline
Our method (see Fig. 4) has an offline stage of nonlinear
system analysis using Lyapunov theory, and an online phase
of sampling-based motion re-planning using incremental
graph search. Though not required by our re-planning
algorithm, we pre-construct a library of funnels to speedup
online computation of optimal funnel-paths. Given the
mission profile, we design the funnel library considering
various combinations of initial and final states, as described
in Section 5.5. Design considerations include description of
cyclic/non-cyclic coordinates of the state space for funnel
compossibility, C-space topology to ensure probabilistic
coverage, and desired resolution of the motion plans/replans.

We compute funnels (characterised by ellipsoidal level
sets) for a given initial state, a compact set of desired
final states and a finite-time horizon, using Lyapunov theory

Prepared using sagej.cls

8 Journal Title XX(X)

Figure 5. (a) Part of a network of volumetric funnels (b) Corresponding directed graph data structure with augmented vertices
representing the funnel-network. Motion-edges (solid) representing traversability are finite-cost, whereas dashed-edges are
zero-cost continuity-edges encoding compossibility information — whether or not trajectories “flow” into the subsequent funnel.
Note that outlet-regions are centered at the configurations. Going from A1 to C2 is infeasible, whereas A1−B1−B3−D3 is a feasible
funnel-path. (c)-(d) An example in a dynamic forest environment. Funnel-edges are light gray, dynamic obstacles are dark gray, the
funnel-path is green, the start is magenta, and goal is red.

(detailed in Section 5.4). The system’s equations of motion
along with the state-feedback control law are approximated
to polynomial dynamics about the nominal trajectory using
a Taylor-series expansion of order greater than one. We
observe that such a bounded polynomial approximation
offers a conservative estimate, i.e. it always underestimates
the inner-approximations of backward reachable sets – a
condition sufficient for our re-planning algorithm.

During the online phase, we iteratively build a network
(or roadmap) of funnels using sampling-based methods:
an RRG with volumetric funnel-edges. We represent this
funnel-connectivity existing in the higher dimensional state
space in the form of a directed graph data structure
(see Fig. 5 and Section 5.2). Graph vertices represent
inlet/outlet regions in state space and graph edges denote
funnels. Additionally, the edge-set of the graph is augmented
to include the information of motion-plan compossibility
(Definition 2) amongst funnel pairs. On this graph, we use
incremental search (outlined in Section 3.3) to keep updating
the shortest-path subgraph (tree) rooted at goal — translating
to optimal funnel-paths (Definition 5) from any configuration
in an inlet-region (graphvertex) to the goal region.

Continual repairs to the subgraph (tree) ensure that
controllable motion plans are quickly recomputed in the
event of changes in obstacle space ∆O, either due
to robot sensing new obstacles or the obstacles being
dynamic themselves. The funnel-path to goal region and the
corresponding sequence of control inputs are input to the
robot, with state-observer and obstacle-sensor(s) closing the
feedback loop. Section 5.3 describes our feedback motion
planning/replanning algorithm in-depth.

From Fig. 6, it is worth noticing that the funnels computed
based on Lyapunov theory offer a sufficient but not a
necessary condition for invariance. Trajectories starting

inside the funnel will remain in the funnel for the entire
finite time-horizon. However, trajectories starting outside
the funnel may or may not terminate within the defined
goal region. Nevertheless, this analysis provides formal
guarantees about robustness to set of initial conditions and
system perturbations, pertinent in sampling-based motion
planning/replanning of kinodynamic systems.

5.2 Notes on graph data structure
representing the volumetric
funnel-network

We represent the network of volumetric funnels using a
directed-graph augmented with the additional information
of funnel-compossibility (see Fig. 5). Such a graph data
structure representation enables the use of incremental
graph-replanning methods to quickly rewire funnel-paths
(Definition 5) to the goal region. Our method essentially
constructs ‘links’ between regions of state space with funnels
that have an implicit notion of time. Traversability of the
robot system and sequencibility of trajectories is represented
through motion-edges and continuity-edges, respectively, in
the augmented graph G. The edge set of this graph consists
of these motion-edges and continuity-edges, E = Em ∪ Ec.
Vertices of the graph are tuples consisting of a configuration
and the respective funnel-edge, v – q f . The graph
nodes exhibit certain relations amongst the vertex set V ,
summarised as,

• q f1 & q f2 — Having the same first
element (configuration) implies there will be a directed
‘zero-cost’ continuity edge, ec between the two nodes,
if and only if the funnel-pair (f1, f2) is motion-plan
compossible (Definition 2).

Prepared using sagej.cls

M Jaffar and Otte 9

• qa f & qb f — Represents the case of two
vertices sharing the funnel-edge f . By construction,
a directed motion-edge, em exists, having a cost as
defined in Eq. (10).

• qa f1 & qb f2 — These nodes do not have a
common entry. In such cases, there will be no edge
between the two graph nodes.

It is worth mentioning that continuity-edges (dashed
arrows in Fig. 5-b) are zero-cost, and have no bearing
on the cost of the solution path to goal or the optimality
guaranteed by the graph-search algorithm. As illustrated in
Fig. 5-b, there are two types of graph-vertices: inlet-nodes
and outlet-nodes, V = {VI , VO}. Inlet-nodes like qB f3
have one, and only one, solid (motion) out-edge — might
have zero or more dashed (continuity) in-edges. Outlet nodes
have only one solid (motion) in-edge, and any number of
dashed (continuity) out-edges, e.g. qB f1 and qC f2 .
For any node, the set of in-edges consists of either only
continuity-edges, or one motion-edge. The same is true for
out-edge set of each node.

With these properties and observations, the authors would
like to point out that the augmented graph is indeed
bipartite with (disjoint) sets of inlet-nodes and outlet-nodes.
Motion-edges go from VI to VO, and continuity-edges from
VO to VI . Hence, any path from a configuration to the
goal region will have alternating (solid) motion-edges and
(dashed) continuity-edges, similar to the one in Fig. 1-f.

5.3 Online motion planning/replanning
algorithm – PiP-X

A reverse-search graph is more effective in scenarios that
require online replanning, such as a robot navigating through
an unknown environment perceiving obstacles within a finite
sensor horizon. It is efficient because it suffices to alter the
motion plans locally near the robot location, saving us the
cost of rewiring the bulk of the search tree. The ‘inconsistent’
nodes are locally repaired in such a way that preserves the
global optimality of the path-length defined in Eq. (11).

We incrementally build a network of funnels and keep
updating the optimal funnel-path through this network using
the routine: plan() (Algorithm 1), outlined on a high-level
below. F denotes the funnel-network, and the graph data
structure representing it is denoted by G.

1. Sample a configuration qrand (line 1) and extend an
ϵ-distance (line 2) from the nearest node in the existing
search graph to determine a new configuration qnew.

2. Determine the set of nearest neighbors (line 4) in
the shrinking r-ball†: r = min{r0(log|V |/|V |)1/d, ϵ},
where |V | is cardinality of the vertex set, d is
the dimensionality of C and r0 is a user-specified
parameter.

3. For each node n in the nearest neighbors’ set, choose
the funnel from the pre-computed funnel library L, that
would steer the robot from n to a δ-ball near qnew as
well as the return funnel from qnew to a δ-ball near n.

4. Once we get the valid funnel-edges, ϕ (Definition 4),
check for compossibility among the funnels. Rep-
resent the projections of inlets, Xi and outlets,
Xo as vertices, ϕ as a motion-edge, and zero-cost

continuity-edges signifying compossibility – hence is
the search graph iteratively constructed (line 5).

5. An incremental search (line 6) on the constructed
sampling-based graph keeps updating the shortest-
path tree of funnels rooted at the goal region.

Algorithm 1 (F,G)← plan()

1: qrand ← sampleFree()
2: qnew ← extend(G, qrand, ϵ) ▷ geodesic-distance
3: r ← rBall()
4: N ← findNearestNeighbors(qnew, r,G)
5: (F,G)← constructSearchGraph(qnew,N)
6: computeShortestPathTree()
7: return (F,G)

After each update in line 6, all the promising nodes in the
graph know their best parent that would minimise their one-
step lookahead cost (lmc), enabling the planner to backtrack
the solution-path using parent pointers. The search is focused
towards the robot location using an admissible heuristic, h
(Definition 3), thereby enabling quick rewiring of the optimal
path whenever the heuristic provides useful information.

Algorithm 2 outlines the pesudo-code of our online
re-planner, PiP-X. The pre-planning phase (lines 4−7) of the
algorithm, continues until the start configuration lies within
one of the funnel-inlets and the funnel network is dense
enough to have covered a sufficient volume of the C-space.
A solution funnel path exists if the robot configuration lies
within one of the inlet-nodes and has a finite cost-to-goal
value. Consequently, we have a sequence of closed-loop
control policies to transition from one region of state-space to
another, ultimately terminating at the goal region. The entire
trajectory is guaranteed to lie within the solution funnel
branch by virtue of set-invariance, provided the actual system
dynamics closely resembles the nominal model.

The various routines of PiP-X (Algorithm 2) providing
low-level implementation details, are explained as follows.
We first specify the algorithm parameters and inputs, and
initialise the required data structures: search graph G, funnel
network F, kdTree Tk, priority queue Q (lines 1−3).
The planning parameters are minimum path-resolution ϵ,
shrinking r-ball parameters, r0 and d, pre-planning time, TP
and idleness limit, IM . The inputs to the algorithm are start
configuration qstart, goal region Xgoal, the pre-computed
funnel library L, and the initial environment — characterised
through Cfree and list of obstacles known a priori, O. The
obstacle-space will be updated when any changes, ∆O(t)
are discovered on-the-fly.

5.3.1 Sampling configurations: sampleFree() — The
configurations qrand are independently and identically (i.i.d.)

†Although the shrinking radius of the r-ball given by Karaman and Frazzoli
(2011) is found to have practical success historically, recent work by
Solovey et al. (2020) states that there is a logical gap in the optimality
proof. They propose an amendment by increasing the r-ball to incorporate
the additional dimension of time that dictates the samples’ ordering:
r′ = r0(log|V |/|V |)1/(d+1). Our work uses the tighter bound of 1/d due
to its empirical success and widespread adoption in literature. The authors
wish to state that the (correct) relaxed bound of 1/(d+ 1) can also be used,
with not much change to the rest of our approach.

Prepared using sagej.cls

10 Journal Title XX(X)

Algorithm 2 PiP-X

Input: qstart,Xgoal, Cfree, O, L ▷ Start, Goal region, Free-
space, obstacle-space, Funnel library

Output: G,F ▷ search-Graph and Funnel-network
1: Parameters: ϵ, r0, TP , IM ▷ extend distance, r-ball,

pre-planning time, idleness limit
2: Initialisation: t← 0, startFound← 0
3: G.add(Xgoal), F← ∅, Tk ← ∅, Q← ∅
4: while t < TP or ¬startFound do
5: (F,G)← plan()
6: if inFunnel(qstart,F) then
7: startFound← 1 ▷ end of Pre-planning phase
8: j ← 0, qrobot ← qstart, qprev ← qstart

9: while j < IM and qrobot /∈ Xgoal do ▷ Online phase
10: at sensingFrequency do ▷ sense obstacle-changes
11: ∆O ← senseObstacles()
12: modifyEdgeCosts(∆O)
13: end
14: (F,G)← plan() ▷ Repairing the motion-plan
15: at robotMotionFrequency do ▷ Robot movement
16: qrobot ← robotMove(qrobot, qgoal)
17: if g(qrobot) ̸=∞ then ▷ a funnel-path exists
18: km←km+ computeHeuristic(qprev, qrobot)
19: qprev ← qrobot; j ← 0 ▷ reset idleness count
20: else
21: qrobot ← qprev ▷ stay at current location
22: j ← j + 1 ▷ update idleness count
23: end
24: if qrobot ∈ Xgoal then
25: return SUCCESS ▷ Algorithm success
26: return NULL ▷ Algorithm failure

drawn from the free-space, Cfree at random. When the robot
starts moving and senses obstacles, the sampling is directed
towards the sensed region where changes are certain to have
occurred. This helps to rewire the parent edges near the
robot, ensuring the robot has a choice of safe alternate plans
around the new-found obstacles. However, configurations
are continued to be drawn uniformly random from Cfree at
regular frequency even after the robot starts moving — to
improve coverage in case a replan is eventually required.

5.3.2 Exploration: The C-space is explored using the
extend(G, qrand, ϵ) routine. It determines the nearest
configuration in the existing search graph, based on geodesic
distance, and aims to extend to qrand by at most an ϵ-distance
to obtain the new configuration, qnew. If this configuration is
already in the funnel-network F, we discard it and continue
with the next sampling, because we are guaranteed to find a
set of maneuvers which would drive the robot-system from
this configuration to the goal region.
findNearestNeighbors(qnew, r, G) determines the

neighbors within a r-ball around the new configuration,
qnew. It is implemented through a k-D tree, Tk built
using configurations. The radius of the ball decreases at a
‘shrinking rate’ derived using percolation theory (Penrose
et al. 2003).

Algorithm 3 F ← steer(q1, q2)

1: F ′ ← findFunnel(q1, q2,L)
2: F ← shiftFunnel(q2,F ′) ▷ shifts & truncates funnel
3: ifq1 /∈F .ellipsoid(start)or¬collisionFree(F,O) then
4: return ∅
5: return F

5.3.3 Steering (Algorithm 3): From the funnel library L,
findFunnel() determines the appropriate funnel that closely
drives the system from configuration, q1 to q2. We use
shiftFunnel() subroutine to shift/rotate the funnel along the
cyclic coordinates and time, using appropriate shift-operators
Ψc(.) and Ψt(.), respectively. The fact that the funnel is a
backward-reachable set, enables us to truncate the funnel at
any time, tf ∈ (0, T].

The funnel is projected down to the workspace for
checking any overlaps with the obstacle set, O. If the funnel
is in-collision or the target-configuration does not lie in the
inlet of the funnel projected down to C (line 3), the subroutine
steer() returns a null set. Otherwise, we return the funnel F ,
along with its cost – length of the nominal trajectory within
the funnel, computed according to Eq. (10).

Algorithm 4 (F,G)← constructSearchGraph(qnew,N)

1: for all n ∈ N do
2: F−

n ← steer(qnew, n) ▷ funnels out of qnew
3: F+

n ← steer(n, qnew) ▷ funnels into qnew
4: if F−

n ̸= ∅ then
5: {Xi,Xo}←getNode(F−

n) ▷ inlet-outlet nodes
6: for all Fo ∈ outFunnels(n) ∪ {F+

n } do
7: if compossible(F−

n ,Fo) then
8: Ni ← inletNode(Fo)
9: Ec ← Ec ∪ (Xo,Ni) ▷ continuity-edge

10: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)
11: updateVertex(Xo)
12: if F+

n ̸= ∅ then
13: {Xi,Xo}←getNode(F+

n) ▷ inlet-outlet nodes
14: for all Fi ∈ inFunnels(n) ∪ {F−

n } do
15: if compossible(Fi,F+

n) then
16: No ← outletNode(Fi)
17: Ec ← Ec ∪ (No,Xi) ▷ continuity-edge
18: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)
19: F ← F ∪ {F−

n ,F+
n } ▷ adding to funnel-edges set

20: for all Fi ∈ inFunnels(qnew) do
21: for all Fo ∈ outFunnels(qnew) do
22: if compossible(Fi,Fo) then
23: Xo ← outletNode(Fi)
24: Xi ← inletNode(Fo)
25: Ec ← Ec ∪ (Xo,Xi) ▷ continuity-edge
26: return F, G = (V,Em, Ec)

5.3.4 Constructing the funnel-network (Algorithm 4):
We attempt to construct funnels (lines 2−3) between the
new configuration, qnew and all of the neighbor nodes, n in
the neighbor-set, N . Valid (not in-collision) funnels flowing
into a δo-ball around qnew are referred to as its inFunnels,

Prepared using sagej.cls

M Jaffar and Otte 11

F−
q ≡ F+

n and funnels flowing out of a δi-ball around qnew
as its outFunnels, F+

q ≡ F−
n , ∀ n ∈ N .

getNode(F) in lines 5 and 13 determines the node sets:
Xi and Xo, corresponding to the inlet and outlet of the funnel
F , projected down to C-space. These nodes are added to
the graph vertex-set V , and the directed edge – (Xi, Xo) is
added to the set of motion-edges, Em (lines 10 and 18) The
newly constructed funnels are added to the funnel-network,
F (line 19).

All the pairs of inFunnels and outFunnels at qnew
are checked for sequencibility (lines 6−9 and lines 14−17)
using compossible() (Algorithm 5). If compossible, a
zero-cost directed edge from outlet node to inlet node is
added to the set of continuity-edges, Ec (lines 9 and 17).
Additionally, the existing inFunnels and outFunnels at
neighbor nodes, n are checked for compossibility with
the newly constructed funnels to/from n (lines 20−25).
If compossible, continuity-edges between outlet-nodes and
inlet-nodes at n are also added to Ec (line 25).

Invoking updateVertex() (Algorithm 7) in line 11
ensures propagation of cost-changes and possible rewiring of
the shortest-path subgraph (tree) due to the new sample. The
cost-to-goal value of all the new nodes, g(v) is initialised to
be infinite by default. By the virtue of all new nodes being
inconsistent (specifically overconsistent), they are pushed
into the priority queue, Q with key computed as in Eq. (8),
and will be repaired if they have the potential to lie in the
solution path to goal.

Algorithm 5 compossible(F1,F2)

1: Ei ← F2(start).ellipsoid ▷ inlet of F2

2: Eo ← F1(end).ellipsoid ▷ outlet of F1

3: if Ei ⊇ Eo then ▷ inlet completely contains outlet
4: return TRUE

5: return FALSE

5.3.5 Funnel-related subroutines: The re-planning
algorithm makes use of minor subroutines specific to
funnels. inFunnel(q, F) returns a boolean value, based on
whether the configuration q lies in any of the inlets of the
funnel-edges in funnel-network, F. This is useful while
checking whether a path exists from start to goal region
(Algorithm 2 – line 6) and during sampling too. The check
is performed based on Eq. (12), with ellipsoidal inlet regions
of funnels projected down to C-space. For M ∈ Sd+, set
of d× d symmetric, positive definite matrices and qc ∈ C,
Eq. (12) represents the interior of an ellipsoid centred at qc.

(q − qc)TM(q − qc) < 1 (12)

compossible() (Algorithm 5) checks whether a pair of
funnels is motion-plan compossible as defined in Defintion 2.
The ellipsoid-in-ellipsoid check in line 3 is by approximating
the outlet-ellipsoid into a convex hull by sampling points
on the boundary of the ellipsoid, ∂Eo. The extreme-points
are chosen based on singular value decomposition of the
ellipsoid matrix Mo, and checked whether it lies in the
interior of Ei using Eq. (12).

5.3.6 Building the shortest-path subgraph (tree)
(Algorithm 6): Given the search graph, a tree rooted at the

Algorithm 6 computeShortestPathTree()

1: kstart ← computeKey(qstart)
2: whileQ.topKey()<kstart∨ lmc(qstart) ̸=g(qstart)do
3: v ← Q.pop(); kold ← key(v)
4: knew ← computeKey(v)

5: if knew > kold then ▷ check & update key
6: Q.push(v, knew)
7: else if g(v) > lmc(v) then ▷ over-consistent
8: g(v)← lmc(v)
9: for all u ∈ Pred(v) do updateVertex(u)

10: else ▷ under-consistent
11: g(v)←∞
12: updateVertex(v)
13: for all u ∈ Pred(v) do updateVertex(u)

goal with minimum cost-to-goal is calculated using tech-
niques outlined in Section 3.3. Invoking computeShort-

estPathTree() ensures that the robot/start node becomes
consistent, and also all the nodes with key value lower than
that of the start node (line 2). So in effect, the shortest path
to goal from each promising node in the search graph, based
on cost-to-goal and heuristic values, is continually updated.

Inconsistent nodes are popped out of the priority queue,Q
and repaired (lines 3−13), i.e. made consistent until the robot
or start node becomes consistent or the queue becomes empty
(usually encountered during the pre-planning phase). The
key-comparisons in lines 2 and 5 are based on lexicographic
comparison− the second entry becomes relevant only during
tie-breaker among first entries (Koenig and Likhachev 2002).

Algorithm 7 updateVertex(v)

1: lmc(v)← computeLMC(v)
2: parent(v)← findParent(v)
3: if v ∈ Q then
4: Q.remove(v)

5: if g(v) ̸= lmc(v) then ▷ inconsistent
6: key(v)← computeKey(v)
7: Q.push(v, key(v))

updateVertex(v) (Algorithm 7) computes lmc of vertex
v (line 1) based on Eq. (7). The node v is removed from
the priority queue (lines 3−4) and added to the priority
queue with the updated key value only if it is inconsistent
(lines 5−7). The priority key value given by computeKey()
is computed using Eq. (8). computeHeuristic(v) calculates
the admissible heuristic value – Euclidean distance from v to
qstart. findParent(v) (line 2) determines the best parent of
the node, v by analysing its outNeighbors, N+(v).

parent(v)← argmin
v′∈N+(v)

{c(v, v′) + g(v′)} (13)

The priority queue is implemented using a binary heap.
The queue operations are briefly described as follows−
Q.push(v, key) inserts the element, v into the queue at
the appropriate place based on key value. Q.pop() removes
the top element of the queue and returns it. Q.remove(v)
removes the entry v, and rebalances the heap. Lastly,
Q.topKey() returns the key value of the top-most element
in the queue.

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 6. A funnel computed based on Lyapunov level-set theory offers a sufficient but not a necessary condition for invariance. (a)
Trajectories starting inside the funnel stay within the funnel; one can not conclusively comment about trajectories starting outside the
funnel - it may (b) or may not (c) terminate within the desired goal set (green region)

5.3.7 Robot motion: The various modules of the online
phase (lines 9−25) in Algorithm 2 – sensing (lines 10−13),
planning (line 14) and robot motion (lines 15−23) have
different operating frequencies. This is implemented by
running the methods on separate threads at different
frequencies. robotMove(q1, q2) in line 16 determines, and
applies the corresponding control policy to move from q1
to q2. The changes to the obstacle set, ∆O are estimated
using sensors on the robot, and the cost of affected edges
are updated using modifyEdgeCosts(∆O) (Algorithm 8).
The ‘head’ of the modified edges, i.e. v in e = (v, w) are
checked for inconsistencies, and added to the priority queue
if inconsistent using updateVertex() (in lines 4 and 7).

Algorithm 8 modifyEdgeCosts(∆O)

1: for all e = (v, w) ∈ Em do ▷ motion-edges set
2: if ¬collisionFree(e,∆O) then
3: c(v, w)←∞
4: updateVertex(v)
5: else ▷ if edges become free
6: c(v, w)← cprev
7: updateVertex(v)

5.3.8 Collision checking: We exploit the geometric
properties of the funnel and environment to come up with a
computationally efficient subroutine − collisionFree(F , O)
for checking overlaps with obstacle set, O. A funnel F is
said to be in-collision if PS

W(F) ∩ O ≠ ∅, where PS
W(.) is

the projection of funnel down to the workspace.

Assuming obstacles with locally Lipschitz continuous
boundaries, we perform collision-checks between obstacles
and the projected level-sets of a funnel. A bounding-volume
check constitutes as the first pass in collision detection. If it
fails, the individual ellipsoids of the funnel are checked for
collision, in the order given by a Van der Corput sequence
(LaValle 2006). We implement a similar method of forming
a convex hull around the obstacle and checking whether the
extreme points lie within the ellipsoid using Eq. (12). For
a general class of obstacles, one can resort to off-the-shelf
software such as RoboDK (2017), MPK (Gipson et al. 2001)
for collision detection.

Space Features − elements, routines, operations
R+ × Rn funnels, steering, compossibility-check
C-space configurations, sampling, re-planning

Workspace robot, obstacles, collision-checking

5.4 Computing regions of finite-time
invariance, funnels

Determining a closed-form solution to Eq. (3) from a
general class of Lyapunov functions is not guaranteed, and
is computationally intractable. Under certain assumptions
such as polynomial closed-loop dynamics, and quadratic
Lyapunov candidate functions, the problem of computing
the funnels can be reformulated into a Sum-of-Squares
(SoS) program (Tedrake et al. 2010). Consider a quadratic
Lyapunov candidate function centred around a nominal
trajectory, x̄(t) defined using a positive definite matrix, P (t).

V (t,x) = (x− x̄(t))TP (t)(x− x̄(t)) (14)

For the class of piecewise polynomials P (t), we solve the
SoS program using polynomial S-procedure (Parrilo 2003).
The convex optimisation problem of maximising the funnel
volume while satisfying constraints Eq. (3) is solved using
bilinear alternation – improving ρ(t) and finding Lagrange
multipliers to satisfy negativity of (V̇ (t,x)− ρ̇(t)) in the
semi-algebraic sets. This maximises the inner-approximation
of the verified regions of invariance around the nominal
trajectory (Moore et al. 2014).

As noted by Tobenkin et al. (2011), we observe that time-
sampled relaxations in the semi-definite program improve
computational efficiency while closely resembling the actual
level-sets. Therefore, we leverage this result to carry out
optimisations only at discrete time instances between the
knot points along the finite time interval. For M ∈ Sn+, set
of n× n symmetric, positive definite matrices and c ∈ Rn,
Eq. (15) represents an ellipsoid centred around c.

(x− c)TM(x− c) = 1 (15)

The invariant sets, B(t) in Eq. (2) corresponding to the
quadratic Lyapunov function defined in Eq. (14) are the
closed set, i.e. interior and boundary of ellipsoids, E(t)
centered around the nominal trajectory, x̄(t).

E(t) = P (t)/ρ(t) (16)

Prepared using sagej.cls

M Jaffar and Otte 13

The closed-loop system dynamics, as in Eq. (1), is
derived using the feedback control policy, u(t,x,xd) and
the system’s equations of motion. For a desired final state xd,
and finite-time horizon [t0, tf], we calculate the system’s
nominal trajectory, x̄(t) in that time interval by forward
integrating the closed-loop dynamics starting from initial
state, x0. The dynamics are then approximated to polynomial
equations about the finite-time, nominal trajectory using a
Taylor-series expansion of order greater than one.

The region of desired final states, referred to as sub-
goal, Xf is considered to be an ellipsoid, defined by Ef ,
centred at the final state, xf = x̄(tf). We verify that the
desired final state, xd lies within the sub-goal region,
Xf by tuning the feedback-controller, and also the finite-
time horizon. Computing the maximal inner-approximation
of the backward-reachable invariant set to the sub-goal
region is formulated as an SoS program, and the resulting
semi-definite program (SDP) is numerically solved using
optimisation toolkits (Tobenkin et al. 2011). We ensure the
computed funnels can be sequenced together during the
online re-planning phase by specifying the sub-goal region
Xf , in such a way that volume of the inlet, E(to) is larger
than that of the outlet, E(tf). This can be interpreted as
specifying a tighter bound for the set of desired final states,
giving lesser margin for steady-state and tracking errors. For
a more thorough discussion on this, we refer the readers to
Majumdar and Tedrake (2017).

Sample funnels computed for quadrotor dynamics with
nominal control (presented in Section 7.1) have been
illustrated in Fig. 6. Note that the funnels have been projected
from {t} × Rn down to lower dimensional subspace,
{t} × R2 for visualisation. Funnels calculated using above-
mentioned methods have formal guarantees of invariance,
ensuring that robot’s trajectory stays within the backward
reachable set, if it starts within the funnel (see Fig. 6-a).

5.5 Designing the funnel library
Though not required by our algorithm, we make use
of a pre-computed library of funnels to speedup online
computation of optimal funnel-paths. The authors remark
that this exercise is necessitated because Lyapunov-based
methods to compute funnels are computationally intensive,
and impractical for real-time funnel-based replanning.
Pre-constructing such a library is optional, and instead, any
method capable of calculating backward-reachable invariant
sets in real-time can be used.

We consider Lagrangian systems with time-invariant
dynamics a.k.a autonomous systems. Considering the state-
feedback controller, the closed-loop dynamics in Eq. (1)
reduces to ẋ(t) = f(x(t)). Hence, for ease of usage we shift
the initial time of funnels to origin, t0 = 0, and the time
horizon of a funnel becomes [0, tf], where tf ∈ R+ is finite.

The funnel library L, consists of a finite number of
verified trajectories, encapsulating the information of the
certified regions of invariance in the finite-time horizon. Each
funnel, Fi ∈ L, is parametrized by the nominal trajectory,
x̄i(t), the ellipsoidal level-sets, Ei(t) and the final time,
tfi . The trajectories and the ellipsoids are projected from
the state space onto C-space using an appropriate projection
operator, PS

C (.) : Rn → C. The resultant projections of
ellipsoidal invariant sets also take the form of ellipsoids

Figure 7. Funnel library (pre-computed) for quadrotor naviga-
tion, L. The initial configurations (green squares) at t = 0 lie at
an ϵ-distance from 0 (ϵ = 5 m). Desired final-states is a compact
set centered around origin with radius 0.3 m. Using Lb (bottom)
will result in a finer resolution of motion-plan than La (top)

when projected onto the d-dimensional Euclidean subspace
of robot-configurations (Karl et al. 1994),

S(t) = (BTE(t)−1B)−1 (17)

where B is a n× d matrix, consisting of the basis vectors of
the coordinates of the C-space in state space. Additionally,
the funnels in the library are projected down to the robot-
workspace in the pre-processing phase to speedup collision
checking with obstacles during runtime.

The funnel library reduces the amount of computation that
is required online, and acts as a bridge between the offline
stage of invariant set analysis and the online phase of motion
re-planning. Therefore, certain algorithm parameters such as
extend-distance, resolution of the planner, range of obstacle
sizes, etc. are considered while constructing the library.
Meanwhile, the funnel library provides the vital information
of compossibility required during the online phase of motion
planning/replanning.

Fig. 7 illustrates examples of funnel libraries, with
nominal trajectories starting at an ϵ-distance from origin,
at various translational positions and terminating in a
sub-goal region centered around origin at final time, tf .
These invariant sets can be shifted/rotated along the cyclic
coordinates, and time to ensure motion-plan compossibility
(Definition 2). Fig. 7-a depicts a sparser library which would
result in a lesser resolution of the motion plan.

It is worth mentioning that the initial states (inlets) of
the finite number of funnels in the library projected onto
the C-space, along with the appropriate shift operator, Ψc(.)
about the cyclic coordinates should be able to span the entire
C-space. This ensures probabilistic coverage (Tedrake et al.
2010) of the sampling-based feedback motion re-planning
algorithm.

Prepared using sagej.cls

14 Journal Title XX(X)

6 Examples
In this section, we validate our algorithm, PiP-X on two
simulation examples: a cart-pole system and a ground car-
robot. We empirically evaluate the success rate through
repeated Monte Carlo trials in both the example systems
using different workspace scenarios. In the next section
(Section 7), we conduct more experiments on a simulated
6DOF quadrotor system – discussing performance, execution
time and comparative studies of our approach.

6.1 Cart-pole system
The cart-pole system (illustrated in Fig. 8) is a canonical
controls example problem because of its highly nonlinear
dynamics and underactuation. We consider the scenario of
a swing-up maneuver while avoiding moving obstacles (see
Fig. 8). The state space is 4D, with system states being
cart’s position, pole’s angular position and their velocities,
x := [x v θ ω]T ∈ R3 × S1. The control input is force on
the cart along the x-direction, u := F . Under simplifying
assumptions such as the absence of friction, the pole and
cart are point masses, and the pendulum-rod is massless; the
nonlinear equations of motion are,

ẋ
v̇

θ̇

ω̇

 =

v

F +mlω2 sin θ +mg sin θ cos θ

M +m sin2 θ
ω

−F cos θ −mlω2 sin θ cos θ − (M +m)g sin θ

l(M +m sin2 θ)

 (18)

where M is the cart-mass, m and l are the pole’s mass and
length, respectively, and g is acceleration due to gravity.
We consider the following state constraints: |x| ≤ 10 m,
θ ∈ (−π, π] rad, |v| ≤ 1.5 m/s and |ω| ≤

√
4g/l (the

maximum possible angular velocity if cart is fixed).
The force input, |F | ≤ 10 N. The system parameters are
M = 1 kg, m = 0.1 kg, l = 0.5 m, g = 9.81 m/s2.

In the offline stage of our approach, we design a state-
feedback controller and pre-compute a library of funnels.
The control task is to stabilise the (unstable) ‘upright’ fixed
point (xeq = [0 0 π 0]T) and create a dampened attractor
at the ‘hanging’ equilibrium, xeq = [0 0 0 0]T . This is
achieved through an LQR control law by linearising the
system dynamics about the corresponding equilibrium point.
Additionally, we make use of an energy-pumping strategy for
swing-up control of the pole (Åström and Furuta 2000).

u = −ksω cos θ (19)

Using the closed-loop dynamics, we construct a library
of funnels (as outlined in Section 5.4−5.5) starting from
initial angular positions θ0, discretised in steps of 10◦.
For θ0 within ± 150◦ (from the vertically down position),
we use the LQR controller to regulate to the hanging
position, θf = 0. Otherwise, the controller stabilises the pole
to the upright position, θf = π. Whenever the pendulum
starts at the hanging position (i.e. θ0 = 0), we use the
swing-up controller in Eq. (19) to impart energy and increase
the amplitude of oscillations. For computing funnels, we
consider a finite-time horizon of [0, 4] s – sufficient for the
tuned swing-up controller to reach ± 150◦ starting from 0◦,
and also for LQR-based regulation to upright/hanging states.

Figure 8. Part of motion plan executed by PiP-X in a cart-pole
system in a workspace with moving obstacles. The funnel-
path (green level-sets) is projected down to x-subspace and
visualised at the pendulum positions for illustrative purposes.
Trajectory of the pole (magenta) starts from hanging position
(green) and ends in the upright position (red). The time-history
of (circular) obstacles and cart-pole are represented using a
color gradient: darker the color, more recent the time instance.

From the system dynamics as in Eq. (18), it is worth noting
that the non-cyclic coordinates are v, θ and ω. This implies
that for checking inter-compossibility amongst funnels, we
can translate the funnels along the cart’s position (cyclic
coordinate) using a suitable shift operator Ψc(.), and analyse
the sequencibility along the non-cyclic coordinates, [v θ ω].

We use the pre-computed library of funnels in the online
re-planning stage (Section 5.3) of optimally sequencing
the funnels, and recalculating the funnel-path whenever
the obstacle space changes (Algorithm 2). The workspace
is boxed by x ∈ [−10, 10] m, and we consider dynamic
obstacles that move linearly at either top or bottom levels
as illustrated in Fig. 8. The mission objective is to reach a
goal region around the upright configuration (x = 0, θ = π)
at Tmax ∈ [45, 50] s, starting from hanging configuration
(x = 0, θ = 0), while avoiding the moving obstacles.

The obstacles are considered to be circular with radius
within [0.1, 0.2] m. The obstacles are capable of changing
their velocities repeatedly at random from a range of
[−0.1, 0.1] m/s. We instantiate the workspace with 3
obstacles that are randomly at top/bottom levels. It is further
assumed that the re-planner is able to sense and estimate
the obstacles’ position and velocity. We ran 50 trials
with different obstacle space configurations, and found the
algorithm to succeed in 46 of the attempts (92% success
rate). Fig. 8 shows the time-instances of motion plan
executed by the cart-pole in one such successful trial.

Implementation details: The motion planning task
specifies a final-time constraint Tmax, so as to require the
system to avoid the dynamic obstacles for a considerable
amount of time, instead of doing one trivial swing-up to
the goal region (upright configuration). This motivates us
to motion plan/replan along the time dimension as well,
including time in the C-space – configurations q := [x, θ, t],
whereas the workspace comprises of [x, θ]. The ‘closeness’
in neighbor nodes (for iteratively constructing the funnel
network) considers time too, and is determined based
on geodesic distance – a weighted metric considering
linear/angular position and time (LaValle 2006). It is worth

Prepared using sagej.cls

M Jaffar and Otte 15

Figure 9. Time instances (progressing left to right) of a car-robot with finite sensing horizon (shaded circle) running PiP-X in a
random forest environment. Perceived obstacles are in dark gray, whereas dashed circles represent yet-to-be sensed obstacles. The
minimum-cost tree of funnels and the solution funnel-path are represented in light gray and green, respectively. The robot (magenta)
starts at the top, towards the goal location at bottom (red). Note that the funnels are projected down to x-y subspace for visualisation.

mentioning that cost of funnel-edges in Eq. (10) are
defined based on a weighted norm considering x and θ.
The (dynamic) obstacle space is characterized by obstacle-
cylinders in space-time, which can alter as obstacles change
their speed and direction. Collision-checking is performed
by discretizing the funnel-edges along time, and checking
for overlaps with the obstacle set. As noted in Section 5.3.8,
bounding volumes help prune the collision-checks, making
it tractable.

Given the nature of swing-up control law in Eq. (19),
starting from the hanging position (θ0 = 0, ω0 = 0), we
‘warm-start’ the system by injecting a small control
input, u0 = 0.1 N, to generate initial angular velocity. For
computing funnels using SoS programming, the nonlinear
closed-loop dynamics are approximated to polynomial
equations using a third-order Taylor-series expansion about
the nominal trajectory.

6.2 Car robot
The next example we consider is a ground vehicle equipped
with velocity and heading control, navigating through an
initially-unknown forest environment with finite sensing
horizon. The planner’s task is to reach a given goal region
starting from any initial robot-pose, while avoiding obstacles
newly perceived by the robot’s sensor. The state space of the
system is 5D consisting of translational position, orientation,
linear velocity and angular velocity, x := [x y θ v ω]T ∈
R2 × S1 × R2. The inputs to the system are linear and
angular accelerations, u := [a α]T ∈ R2. The nonlinear
open-loop car dynamics is given by Eq. (20).

ẋ
ẏ

θ̇
v̇
ω̇

 =

v cos θ
v sin θ
ω
a
α

 (20)

We consider the state constraints to be: θ ∈ [0, 2π) rad,
v ∈ [−2, 4] m/s, and ω ∈ [−1.5, 1.5] rad/s. The acceler-
ation inputs are bounded as well, |a| ≤ 2 m/s2 and
|α| ≤ 1.25 rad/s2. We derive linear control laws for tracking
desired velocities vdes, and heading angles θdes.

a = kv(vdes − v) α = kp(θdes − θ)− kdω (21)

The control gains, kp, kd and kv are tuned so as to reach
the desired states within tf = 3s. We plug in the feedback
control laws, Eq. (21) into the system’s equations of motion,
Eq. (20) to derive the equivalent closed loop dynamics of the
system: ẋ = f(x,xd), and subsequently construct a library
of funnels offline.

In order to pre-compute the library, we discretize
the desired velocity and orientation space. We consider
initial/final velocities to be from the set: {−2, 0, 2, 4} m/s,
and the desired orientations to be in the range of [0, 2π) rad,
in increments of π/6 (or 30◦). We further constrain the initial
and final angular velocities, ω to be 0 rad/s. Note that position
(x and y) are cyclic states, and one can translate the funnels
along them for motion-plan compossibility (Definition 2).
This gives us a total of 12× 4 = 48 choices for initial and
final states. Hence, the number of funnels in the library is
48× 48 = 2304. We remark that the non-cyclic states are,
xnc = [θ v ω]T , and the inter-compossibility of the funnels
is checked by projecting them onto the subspace formed by
these three states.

For the online re-planning stage, we consider a 2D forest
environment of dimensions 50m × 50m with 25 circular
obstacles of random sizes in the range of [2, 4] m, spawned
at random locations (see Fig. 9). The sensing radius of the
car is 7 m, and the obstacle space (as perceived by the robot)
keeps changing as and when new obstacles are encountered.
We consider the configuration space, C ⊆ R2 × S1 to consist
of the robot pose – [x y θ], while the workspace,W ⊆ R2.

Using the pre-constructed funnel library, we ran 50
trials of PiP-X (Algorithm 2) with different start/goal
configurations and random obstacle locations, and found the
algorithm to successfully navigate the ground vehicle to the
goal region in 48 runs (96% success rate). Fig. 9 shows the
time-instances of motion plan executed by the ground vehicle
in one such successful trial of PiP-X.

Implementation details: The goal region is defined as
a δ-ball with radius 0.1 m around a given goal location.
The obstacle sizes are inflated to account for the robot-
geometry. We sample positions uniformly at random from
the workspace, whereas the orientations are sampled from
the discrete space of angles (with resolution π/6). From the
motion primitives library, we search for velocities from the
discrete-space of {−2, 0, 2, 4} m/s that would drive the
system between sampled configurations and corresponding

Prepared using sagej.cls

16 Journal Title XX(X)

nearest neighbors (similar to shooting methods). Geodesic
distance (for C-space exploration and determining nearest
neighbors) and funnel-edge cost are a weighted metric of
robot-pose – (x, y and θ), accounting for the difference in
units (m and rad). As in the previous cart-pole example, the
system equations are approximated to polynomial dynamics
about the nominal trajectory using a Taylor-series expansion
of order three.

7 Validation in a Simulated Quadrotor

In this section, we test our approach on a quadrotor UAV
in simulations, flying through an indoor space with dynamic
obstacles. We demonstrate the relevance of invariant sets,
and empirically validate completeness and correctness of
our algorithm. This section also compares our algorithm
with RRTX , an online sampling-based geometric re-planner,
and reports execution time. We begin this section by
describing the dynamics of a quadrotor along with a nominal
position controller, and later discuss our experiments with
implementation details.

7.1 System Dynamics & Mission Profile

The equations of motion of a quadrotor UAV are derived
using Newton-Euler formulation (Garcia et al. 2006).
Considering position, ξ = [x, y, z]T and the attitude, η =
[ϕ, θ, ψ]T of the quadcopter defined in an inertial frame, the
dynamics can be written as,

ξ̇ = v

mv̇ = −mge3 +Re3T

η̇ =Wηω

Jω̇ = −ω × Jω − Jr(ω × e3)Ω +M

(22)

where, m is the mass, J the inertia matrix, v the linear
velocity and ω is body angular rates. e3 is

[
0 0 1

]T
, and

Jr is inertia of the rotor. Ω = Ω1 − Ω2 +Ω3 − Ω4 is the net
rotor speed. Ωi denotes the rotational speed of individual
rotors.

R ∈ SO(3) is the rotation matrix from body frame to the
inertial frame. Wη is the transformation matrix for angular
velocities in the body frame to inertial frame. For the specific
configuration of rotors as in Fig. 10, Thrust, T and Moment,

Figure 10. Schematic of a quadrotor with 6DOF (position and
attitude) in inertial, I and body-fixed, B frames of reference

M are defined as,

T = k

4∑
i=1

Ω2
i

M =

Mϕ

Mθ

Mψ

 =

 kl(Ω2
4 − Ω2

2)
kl(Ω2

3 − Ω2
1)

d(Ω2
2 +Ω2

4 − Ω2
1 − Ω2

3)

 (23)

where k is the thrust coefficient, d the counter-moment drag
coefficient and l is the arm length.

The position controller architecture has a cascaded
structure, with a fast inner loop stabilising the attitude and
a outer loop tracking the position or velocities (Jaffar et al.
2019). We implement a nested P-PID loop for attitude-
tracking. Based on the desired angles, the proportional
controller computes the desired angular body rates which
are then tracked using a PID controller. This has been
found to be effective in maneuvers which do not require
large deviations from nominal hover conditions (Luukkonen
2011). The outer loop tracks the desired position setpoints
and is achieved using an LQR controller (Bouabdallah et al.
2004). Equivalently, the inputs to the quadrotor position
controller are the desired setpoints: [xd, yd, zd, ψd = 0]T .

The mission profile is to fly at a set altitude, zd = h
with a zero heading-angle, ψd = 0. Due to the decoupled
yaw-dynamics, we consider only the translational position as
configurations, q := ξ ∈ C ⊆ R3 whereas the state space of
the feedback-controlled quadrotor is 6D, including velocities
as well, x := [ξ v]T ∈ S ⊆ R3 × R3. Owing to a reduced
2.5D workspace, the sampling is in R2, and it suffices to
check for possible collisions in a 2D plane between ellipses
and obstacles. The start configuration and goal region are
defined in the xy-plane. The funnel library is appropriately
constructed, see Fig. 7.

7.2 Experimental setup
The equivalent closed-loop position dynamics of the
quadrotor is derived from repeated trials with various
position setpoints, ξd given as inputs to the system.

ξ̇ = v v̇ = f(ξ,v,u) u = ξd (24)

The system identification of the translational subsystem,
x = [ξ v]T ∈ S, is carried out using SysId toolbox in
MATLAB. The identified equations are then approximated
to polynomial dynamics using a third-order Taylor-series
expansion about the nominal trajectory. An estimate of the
required final time of finite horizon, [0, tf] is obtained based
on the time taken by the system to reach within the defined
goal region of 0.3 m around a desired setpoint. Subsequently,
the invariant sets centered around the nominal trajectory
are constructed using the methods described in Section 5.4.
The Sum-of-Squares optimisation is converted to an SDP
by Systems Polynomial Optimisation Toolbox (SPOT) in
MATLAB and solved using SeDuMi (Sturm 1999).

The reverse-search algorithm requires backward reachable
sets — starting from different initial conditions, the
desired setpoint is given as the origin, ξd = 0. The initial
xy-positions lie on an ϵ-circle centered at origin, with z(0) =
h and ψ(0) = 0, as shown in Fig. 7. All the funnels computed
are stored in a dictionary with a key-identifier based on the

Prepared using sagej.cls

M Jaffar and Otte 17

Figure 11. Time instances of motion plan executed by PiP-X on a quadrotor flying with altitude-hold. The start configuration is in the
lower-right corner, with the goal location at lower-left corner. The quadrotor senses obstacle-walls (solid rectangles) within sensor-
radius (shaded circle), and recomputes motion plans (green funnel-path) accordingly. The traversed funnels and funnel search-tree
are denoted by dark and light gray, respectively. lT denotes the traversed-path length, and t denotes time elapsed. Note that the
robot-trajectory (cyan) with the funnels and obstacles are projected down to x-y subspace

starting location. Each funnel in the library is characterised
by its key, the nominal trajectory, ellipsoidal invariant sets
and corresponding nominal control inputs at each discrete
time-step within the finite-time horizon.

In order to verify the motion plan, we develop a
higher fidelity model based on the equations of motion
in Eq. (22)−(23). In addition to the nominal dynamics,
we incorporate actuator saturations, rotor dynamics and
process noise. We believe that these additions will enable the
simulation model to closely resemble the physical system.
Using the funnel library as in Fig. 7-b, our algorithms are
tested in two different 2D environments, random forest and
maze, with various types of obstacle-changes, described in
the next section.

All the computations are performed on a desktop
workstation with a 6-core, 2.6GHz Intel CPU and 32GB
RAM. We provide a sample implementation code‡ of
our algorithm, PiP-X (for a quadrotor system) in a maze
environment.

7.3 Monte Carlo experiments
A sample run of PiP-X in a user-specified maze environment
is shown in Fig. 11. The robot perceives obstacle-walls of the
maze within a finite sensing radius and updates its motion
plans accordingly. We notice that a considerable amount of
the C-space is explored with fewer samples. Hence, using

volumetric verified trajectories potentially speeds up the
rate of probabilistic coverage. The position setpoints in the
funnel-path to goal, output by the algorithm are given to
the simulation system in real-time, and the system’s actual
trajectory is analysed. It is observed that the trajectory of the
system lies within the solution funnel-path throughout the
course of the mission profile, verifying set-invariance.

In another scenario within the same maze environment
with different start/goal location, we analyse the normalised
Lyapunov function value of the system, Eq. (14)−(16). From
Fig. 12, we notice that the trajectory stays within the level-set
boundary of V = 1 till the quadrotor system reaches the
goal region, empirically proving invariance. The peaks in
the Lyapunov-function value mostly occur in the outlet/inlet
region between subsequent (compossible) funnel-edges in
the solution funnel-path.

Using Monte Carlo experiments, we test our algorithm
in two different kinds of environments – (i) initially
unknown and (ii) dynamically changing – maze and random
forest, across various scenarios and conditions; considering
algorithm success and length of traversed trajectory as
performance metrics. Algorithm failure is defined to be the
robot’s inability to compute a feasible motion plan within a
user-defined timeout, or its collision with an obstacle.

‡ https://github.com/khalid2696/pip-x

Prepared using sagej.cls

https://github.com/khalid2696/pip-x

18 Journal Title XX(X)

0 20 40 60 80 100 120 140 160 180

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

L
y
a
p

u
n

o
v
 f

u
n

c
ti

o
n

 v
a
lu

e Level-set Boundary value = 1

Figure 12. Normalised Lyapunov function value of the system’s state simulated using the higher-fidelity quadrotor model, with
solution funnel-path given by the algorithm across 10 different trials (denoted by different line-colors)

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Random forest environment with robot-sensing

Number of Tree-obstacles, Nt

S
u

c
c
e

s
s
 r

a
te

Number of Tree-obstacles, Nt

0 50 100 150

40

60

80

100

120
Nominal path length = 40 m

T
ra

v
e
rs

e
d

 t
ra

je
c

to
ry

 l
e
n

g
th

 [
m

]

Figure 13. Random forest environment with finite sensing: (a)
mean and standard deviation of success rate (b) mean and range
of traversed-trajectory length, across 30 trials of each scenario

7.3.1 Initially-unknown Maze with limited robot-
sensing: A maze environment with rectangular walls is
designed in a two-dimensional 50m × 50m workspace,
similar to the one in Fig. 11. The robot senses the obstacle-
walls within a finite radius of 12 m. We consider 10 different
scenarios of start/goal configurations, running 25 trials of
each scenario. We observe that our algorithm is always
capable of computing an initial motion plan, and accordingly
replan as new obstacle-walls are perceived, resulting in a
100% success rate across the 10 different scenarios.

7.3.2 Initially-unknown random Forest with finite
robot-sensing: We consider a 2D workspace of dimen-
sions 50m × 50m with circular obstacles of random sizes
within the range of [2, 4] m, and at random locations (see
Fig. 5-c). The sensing radius of the quadrotor is 12 m. Each
scenario is characterised by the number of tree-obstacles,
Nt present in the environment. In each scenario, we vary
the start and goal configurations, and obstacle locations. The
start and goal locations are spaced out 40 m diametrically
apart, for uniformity while analysing performance. The goal
region is defined to be a δ-ball of radius 0.3 m centered at the
goal configuration.

The number of tree-obstacles are varied from 0−150
in increments of one. 30 different trials are run in each
scenario, reporting mean/standard deviation of success rate,
and mean/range of traversed-trajectory length (see Fig. 13).
The nominal path length — if there are no obstacles, and the
robot is holonomic — is 40 m.

0 20 40 60 80 100

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

change-percentage, C [%]

N
u

m
b

e
r

o
f

T
re

e
-o

b
s

ta
c

le
s

,
N

t

Mean Success rate

0 20 40 60 80 100

20

40

60

80

100

120

44

46

48

50

52

54

56

58

60

62

change-percentage, C [%]

Mean traversed-trajectory length [m]

N
u

m
b

e
r

o
f

T
re

e
-o

b
s

ta
c

le
s

,
N

t

Figure 14. Forest environment with dynamic obstacles: mean of
(a) success rate and (b) traversed trajectory length from 25 trials
of each scenario

We observe that the algorithm has 100% success rate until
Nt = 32 (14.4% of workspace being obstacle space). After
that, the success rate drops from 1 to 0 as Nt increases.
The algorithm completely fails for Nt ≥ 134, which
approximately translates to 61.04% of workspace covered
with tree-obstacles. As expected, path length increases with
number of obstacles, until we start encountering algorithm
failure; wherein a few successful trials skew the average
traversed-trajectory length.

7.3.3 Random Forest with dynamic obstacles: Sim-
ilar to the previous workspace, this environment is such
that tree-obstacles are deleted and added at random, emu-
lating a dynamic setup. The changes occur anywhere in the
workspace and the robot is capable of sensing all those
changes. A scenario is described by number of trees, Nt and

Prepared using sagej.cls

M Jaffar and Otte 19

change-percentage, C. For example, a change C = 20% in
a workspace with Nt = 75 implies 15 pre-existing trees are
removed and 15 new obstacles are added – changing location
and size. C = 0% trivially refers to a static environment.

Taking inputs from previous experimental analysis, we
consider the range of Nt to be [5, 135] in increments of 10.
The change-percentage is varied from 0 to 100 in steps of
10. We run 25 trials (different start/goal configurations) and
report mean of success rate and traversed-trajectory length in
the form of a contour plot, Fig. 14.

We observe that algorithm failure and the average length
of traversed trajectory increase with either increasing number
of obstacles, Nt ≥ 45, or higher level of changes, C ≥ 50. It
completely fails when the environment is densely filled with
obstacles or is highly dynamic (upper right triangle of the
contour in Fig. 14-a). Note that trajectory length in static
environments (C = 0%) with Nt ≥ 95 is not visualised
in Fig. 14-b as they are isolated instances of algorithm
successes.

7.4 Discussions
As a general observation from all experiments and scenarios,
most failures are due to idleness time-outs IM , implying the
algorithm’s inability to identify and report that a solution
path does not exist, as is with the case of all sampling-based
motion planning techniques. Another common reason for
failure is the algorithm’s inability to fit a volumetric region
of space in narrow gaps, especially in dense-cluttered
environments. In scenarios with highly-dynamic obstacles,
an obstacle is more probable to appear on the traversing
funnel-edge, inevitably leading to a collision with it.

7.4.1 Computation time analysis: The various modules
of the online phase (lines 9−25) in Algorithm 2 – sensing,
replanning and robot motion have different time complexities
and hence, operating frequencies. We study the frequency of
the replanner (line 14 of Algorithm 2) because that is the
primary scope of this work. In our (possibly unoptimised)
implementation in MATLAB, the time taken (on a PC with 6-
core, 2.6GHz CPU and 32GB RAM) for each iteration of re-
planner in a maze-like environment is in the order of 6.18 ms.
This implies the re-planner is capable of running at∼160 Hz
nominally, comparable with existing real-time planners.

The frequency of the online re-planner varies with density
of obstacles in the workspace. More obstacle-changes —
either due to sensing new obstacles or obstacles moving,
appearing/disappearing — tends to require more graph
rewiring to perform. To study this, we increase the obstacle
density in an initially-unknown 2D forest environment
(similar to Fig. 9) and analyse the worst-case re-planning
frequency. In the challenging scenario with 50% obstacle-
density, the average re-planning frequency (from 100 trials)
we encountered is 85.5 Hz (with the least being 43.7 Hz in
one trial).

Figure 15. PiP-X v/s RRTX in a random forest-like environment:
Comparing distance travelled by a quadrotor with limited
sensing before colliding/freezing. Obstacle density refers to the
proportion of obstacle space with respect to the workspace.
Mean and standard deviation from 20 trials of each scenario.

We analyse the pre-planning time to iteratively build an
RRG of funnels and to keep updating the optimal funnel-
path in it (lines 4−7 of Algorithm 2). We report the total
average execution time with number of new configurations
sampled and added to the funnel-network in Table 1. For
context, we also mention the corresponding volume of the
funnel-network in proportion to that of the C-space. We do
not report the computation time of pre-calculating funnels
since it depends on the underlying optimisation methods and
toolkits used, and is not the focus of our research.

7.4.2 Comparison with RRTX : We compare our
approach, PiP-X with RRTX (Otte and Frazzoli 2016), an
online sampling-based geometric re-planner in the case of
quadrotor flying in an unknown random forest environment
(similar to the one in Fig. 9) while perceiving tree-obstacles
within its sensor range. We obtain the geometric path
from RRTX in real-time and use the same position tracking
controller (as mentioned in Section 7.1) to track the reference
trajectory. By varying the obstacle-density (measured as a
proportion of the workspace), we analyse how far both the
re-planners – PiP-X and RRTX – are able to fly the quadrotor
safely before colliding with the obstacles. The task is to fly
a maximum trajectory-length of 100 m to reach the goal
from a given start configuration. We run 20 trials (different
start/goal configurations) in each environment, characterized
by different obstacle densities. The comparison results are
illustrated as a bar-plot in Fig. 15.

Additionally, we compare the two algorithms, PiP-X and
RRTX in a dynamic maze environment. Similar to the
unknown maze environment in Section 7.3.1, we incorporate
‘windows’ in the obstacle walls that can open (obstacle-
deletion) or close (obstacle-addition) at random, emulating
a dynamic setup. Change-percentage, C refers to the
proportion of windows with respect to the walls, that open
and close at a frequency same as that of the robot’s sensor.
C is varied from 0% (static) to 100% (highly dynamic)

configurations sampled 50 100 150 200 250 300 350 400

% volume of C-space covered 19.73% 35.57% 56.09% 72.05% 85.35% 94.99% 98.99% 99.94%
Execution time [s] 0.891 1.625 2.484 4.504 6.950 12.195 32.954 233.207

Table 1. Execution time of our algorithm’s pre-planning phase (lines 4−7 of Algorithm 2, PiP-X) – iteratively constructing a
funnel-network to probabilistically cover the C-space

Prepared using sagej.cls

20 Journal Title XX(X)

Figure 16. PiP-X v/s RRTX in a dynamic maze environment:
Comparing algorithm success rate. Change percentage refers to
the proportion of obstacles that change in location. Mean and
standard deviation from 25 trials of each scenario.

in increments of 10. Fig. 16 illustrates the comparison of
algorithm success rate between RRTX and PiP-X in the
dynamic maze. Algorithm success is as defined previously
— navigating through the maze without colliding with any
obstacle walls, and reaching the goal location.

We observe that PiP-X outperforms RRTX across all
scenarios with different obstacle densities (in random forest
environment) and change-percentages (in dynamic maze
environment). We believe this is because, RRTX returns
paths that are close to obstacles (due to the cost optimality
of such paths). Tracking errors by the controller can lead
to collisions with obstacles — especially in the dynamic
maze environment (see Fig. 16), where the RRTX planner
presumes the quadrotor can fly through the open ‘windows’
in the maze walls, yet the windows have tight margins of
error such that deviations from the planned path are likely
to end in collisions. Even if the size of obstacles had been
inflated to increase safety, the fact that RRTX does not
consider closed loop dynamics means that there are no
guarantees the vehicle would have access to a controller
capable of tracking the desired trajectory. Whereas, PiP-X
being a feedback motion planner, explicitly considers
system dynamics, and controller performance/limitations,
and computes kinodynamically feasible plans/replans.

We remark that PiP-X is not suitable in all scenarios
and environments. For instance, in the comparative study in
random forest environment, the primary reason why PiP-X
fails to fly the maximum trajectory-length of 100 m is
because of its inability to fit volumetric funnel-edges within
narrow passages of workspaces densely filled with obstacles.

7.4.3 Remarks: PiP-X based on quick graph-based
replanning is able to repair motion plans on-the-fly, ensuring
a sequence of safe trajectories that are dynamically feasi-
ble. The theoretical guarantee of set-invariance enables our
algorithm to rewire controllable motion plans, implicitly
addressing the two-point boundary value problem encoun-
tered during search-tree rewiring in most sampling-based
motion planners. Computing a shortest-path tree rooted at the
goal results in an optimal path with respect to the iteratively-
constructed underlying graph (that represents the volumetric
funnel-network).

8 Conclusions
PiP-X, a novel sampling-based online feedback motion
re-planning algorithm using funnels is presented. A network

(or roadmap) of funnel-edges is iteratively constructed
using sampling-techniques, and concurrent calculation of
the shortest-path subgraph (tree) of funnels rooted at the
goal ensures optimal funnel-path from robot configuration
to the goal region. The use of incremental graph-replanning
algorithms and a pre-computed library of motion primitives
ensure that our method can quickly repair paths on-the-fly in
dynamic environments.

Funnel-connectivity and its inter-sequencibility is mapped
using a directed-graph data structure representation, helping
us leverage algorithmic graph-search methods to compute
safe, controllable motion-plans. Analysing and formally
quantifying stability of trajectories using Lyapunov level-
set theory ensures kinodynamic feasibility of the solution-
paths. Additionally, verifying the compossibility of a funnel-
pair proves to be a ‘relaxed’ alternative to the two-point
boundary value problem, encountered in most single-query
sampling-based motion planners that require rewiring.

Our technique is validated on a simulated cart-pole,
car-like robot, and quadrotor platform in a variety of
environments and scenarios. Performance of the algorithm
in terms of success and trajectory-length is examined.
Our approach combines concepts from invariant set theory,
sampling-based motion planning, and incremental graph-
search to create a single framework that enables feedback
motion re-planning for any general nonlinear robot-system
in dynamic workspaces.

Acknowledgements

The authors are grateful to the Robot Locomotion Group at MIT
for providing an open-source software distribution for computing
funnels. We would like to thank all the anonymous reviewers of this
manuscript, as well as the reviewers of the preliminary version of
this work that appeared in WAFR ‘22 for their insightful comments
and feedback.

The authors thank Sharan Nayak for all the valuable discussions
on this work. We also thank the members of Motion and Teaming
Lab, UMD – Loy McGuire, Alex Mendelsohn, Alkesh K. Srivastava
and Dalan C. Loudermilk for their feedback during the preparation
of this manuscript.

Funding

This work is supported by the Naval Air Systems Command
(NAVAIR) under the grant N00421-21-1-0001.

References

Adiyatov O and Varol HA (2017) A novel RRT*-based algorithm
for motion planning in dynamic environments. In: 2017 IEEE
International Conference on Mechatronics and Automation
(ICMA). IEEE, pp. 1416–1421.

Arslan O, Berntorp K and Tsiotras P (2017) Sampling-based
algorithms for optimal motion planning using closed-loop
prediction. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 4991–4996.

Arslan O and Tsiotras P (2013) Use of relaxation methods
in sampling-based algorithms for optimal motion planning.
In: 2013 IEEE International Conference on Robotics and
Automation. IEEE, pp. 2421–2428.

Arteaga R, Antonio E, Becerra I and Murrieta-Cid R (2021) On
the Efficiency of the SST Planner to Find Time Optimal

Prepared using sagej.cls

M Jaffar and Otte 21

Trajectories Among Obstacles With a DDR Under Second
Order Dynamics. IEEE Robotics and Automation Letters 7(2):
674–681.

Åström KJ and Furuta K (2000) Swinging up a pendulum by energy
control. Automatica 36(2): 287–295.

Bajcsy A, Bansal S, Bronstein E, Tolani V and Tomlin CJ (2019)
An efficient reachability-based framework for provably safe
autonomous navigation in unknown environments. In: 2019
IEEE 58th Conference on Decision and Control (CDC). IEEE,
pp. 1758–1765.

Basescu M and Moore J (2020) Direct NMPC for post-stall motion
planning with fixed-wing UAVs. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
9592–9598.

Becerra I, Yervilla-Herrera H, Antonio E and Murrieta-Cid R
(2021) On the local planners in the RRT* for dynamical
systems and their reusability for compound cost functionals.
IEEE Transactions on Robotics 38(2): 887–905.

Blackmore L, Ono M and Williams BC (2011) Chance-constrained
optimal path planning with obstacles. IEEE Transactions on
Robotics 27(6): 1080–1094.

Borrelli F, Keviczky T and Balas GJ (2004) Collision-free UAV
formation flight using decentralized optimization and invariant
sets. In: 2004 43rd IEEE Conference on Decision and Control
(CDC)(IEEE Cat. No. 04CH37601), volume 1. IEEE, pp.
1099–1104.

Bouabdallah S, Noth A and Siegwart R (2004) PID vs LQ control
techniques applied to an indoor micro quadrotor. In: 2004
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3. IEEE,
pp. 2451–2456.

Bruce J and Veloso MM (2002) Real-time randomized path
planning for robot navigation. In: Robot soccer world cup.
Springer, pp. 288–295.

Burridge RR, Rizzi AA and Koditschek DE (1999) Sequential
composition of dynamically dexterous robot behaviors. The
International Journal of Robotics Research 18(6): 534–555.

Connell D and La HM (2017) Dynamic path planning and
replanning for mobile robots using RRT. In: 2017 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, pp. 1429–1434.

Dey D, Liu T, Sofman B and Bagnell J (2012) Efficient optimization
of control libraries. In: Proceedings of the AAAI Conference on
Artificial Intelligence, volume 26. pp. 1983–1989.

Ferguson D, Kalra N and Stentz A (2006) Replanning with
RRTs. In: Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006. IEEE, pp. 1243–
1248.

Frazzoli E, Dahleh MA and Feron E (2005) Maneuver-based
motion planning for nonlinear systems with symmetries. IEEE
transactions on robotics 21(6): 1077–1091.

Gammell JD, Barfoot TD and Srinivasa SS (2020) Batch informed
trees (BIT*): Informed asymptotically optimal anytime search.
The International Journal of Robotics Research 39(5): 543–
567.

Garcia PC, Lozano R and Dzul AE (2006) Modelling and control
of mini-flying machines. Springer Science & Business Media.

Gipson I, Gupta K and Greenspan M (2001) MPK: An open
extensible motion planning kernel. Journal of Robotic Systems

18(8): 433–443.
Herbert SL, Chen M, Han S, Bansal S, Fisac JF and Tomlin

CJ (2017) FaSTrack: A modular framework for fast and
guaranteed safe motion planning. In: 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). IEEE, pp. 1517–
1522.

Hsu D, Kindel R, Latombe JC and Rock S (2002) Randomized
kinodynamic motion planning with moving obstacles. The
International Journal of Robotics Research 21(3): 233–255.

hwan Jeon J, Karaman S and Frazzoli E (2011) Anytime
computation of time-optimal off-road vehicle maneuvers using
the RRT. In: 2011 50th IEEE Conference on Decision and
Control and European Control Conference. IEEE, pp. 3276–
3282.

Jaffar MKM and Otte M (2023) PiP-X: Funnel-based online feed-
back motion planning/replanning in dynamic environments.
In: International Workshop on the Algorithmic Foundations of
Robotics. Springer, pp. 132–148.

Jaffar MKM, Velmurugan M and Mohan R (2019) A novel guidance
algorithm and comparison of nonlinear control strategies
applied to an indoor quadrotor. In: 2019 Fifth Indian Control
Conference (ICC). IEEE, pp. 466–471.

Karaman S and Frazzoli E (2010) Optimal kinodynamic motion
planning using incremental sampling-based methods. In: 49th
IEEE conference on decision and control (CDC). IEEE, pp.
7681–7687.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The international journal of robotics
research 30(7): 846–894.

Karl WC, Verghese GC and Willsky AS (1994) Reconstructing
ellipsoids from projections. CVGIP: Graphical Models and
Image Processing 56(2): 124–139.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and
Automation 12(4): 566–580.

Khalil HK and Grizzle JW (2002) Nonlinear systems, volume 3.
Prentice hall Upper Saddle River, NJ.

Kleinbort M, Solovey K, Littlefield Z, Bekris KE and Halperin
D (2018) Probabilistic completeness of rrt for geometric
and kinodynamic planning with forward propagation. IEEE
Robotics and Automation Letters 4(2): x–xvi.

Koenig S and Likhachev M (2002) D∗Lite. AAAI/IAAI 15.
Koenig S, Likhachev M and Furcy D (2004) Lifelong planning A∗.

Artificial Intelligence 155(1-2): 93–146.
Kousik S, Vaskov S, Bu F, Johnson-Roberson M and Vasudevan

R (2020) Bridging the gap between safety and real-time
performance in receding-horizon trajectory design for mobile
robots. The International Journal of Robotics Research 39(12):
1419–1469.

Kuffner JJ and LaValle SM (2000) RRT-connect: An efficient
approach to single-query path planning. In: Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 2. IEEE, pp. 995–1001.

Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E and How
JP (2009) Real-time motion planning with applications to
autonomous urban driving. IEEE Transactions on control
systems technology 17(5): 1105–1118.

Prepared using sagej.cls

22 Journal Title XX(X)

LaValle SM (2006) Planning algorithms. Cambridge university
press.

LaValle SM and Kuffner Jr JJ (2001) Randomized kinodynamic
planning. The international journal of robotics research 20(5):
378–400.

Li Y, Littlefield Z and Bekris KE (2016) Asymptotically optimal
sampling-based kinodynamic planning. The International
Journal of Robotics Research 35(5): 528–564.

Luukkonen T (2011) Modelling and control of quadcopter.
Independent research project in applied mathematics, Espoo
22: 22.

Majumdar A, Ahmadi AA and Tedrake R (2013) Control design
along trajectories with sums of squares programming. In: 2013
IEEE International Conference on Robotics and Automation.
IEEE, pp. 4054–4061.

Majumdar A and Tedrake R (2013) Robust online motion planning
with regions of finite time invariance. In: Algorithmic
foundations of robotics X. Springer, pp. 543–558.

Majumdar A and Tedrake R (2017) Funnel libraries for real-time
robust feedback motion planning. The International Journal of
Robotics Research 36(8): 947–982.

Manchester Z and Kuindersma S (2019) Robust direct trajectory
optimization using approximate invariant funnels. Autonomous
Robots 43(2): 375–387.

Mason M (1985) The mechanics of manipulation. In: Proceedings.
1985 IEEE International Conference on Robotics and
Automation, volume 2. IEEE, pp. 544–548.

Moore J, Cory R and Tedrake R (2014) Robust post-stall
perching with a simple fixed-wing glider using LQR-trees.
Bioinspiration & biomimetics 9(2): 025013.

Otte M and Frazzoli E (2016) RRTX: Asymptotically optimal
single-query sampling-based motion planning with quick
replanning. The International Journal of Robotics Research
35(7): 797–822.

Park C, Pan J and Manocha D (2012) ITOMP: Incremental
trajectory optimization for real-time replanning in dynamic
environments. In: Proceedings of the international conference
on automated planning and scheduling, volume 22. pp. 207–
215.

Parrilo PA (2003) Semidefinite programming relaxations for
semialgebraic problems. Mathematical programming 96(2):
293–320.

Penrose M et al. (2003) Random geometric graphs, volume 5.
Oxford university press.

Ratliff N, Zucker M, Bagnell JA and Srinivasa S (2009) CHOMP:
Gradient optimization techniques for efficient motion planning.
In: 2009 IEEE international conference on robotics and
automation. IEEE, pp. 489–494.

Ravanbakhsh H, Laine F and Seshia SA (2019) Real-time funnel
generation for restricted motion planning. arXiv preprint
arXiv:1911.01532 .

Ravankar A, Ravankar AA, Kobayashi Y, Hoshino Y and Peng CC
(2018) Path smoothing techniques in robot navigation: State-
of-the-art, current and future challenges. Sensors 18(9): 3170.

Reist P, Preiswerk P and Tedrake R (2016) Feedback-motion-
planning with simulation-based lqr-trees. The International

Journal of Robotics Research 35(11): 1393–1416.
Richards A and How JP (2002) Aircraft trajectory planning with

collision avoidance using mixed integer linear programming.
In: Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301), volume 3. IEEE, pp. 1936–1941.

RoboDK (2017) Simulation and OLP for Robots. URL https:
//robodk.com/.

Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J,
Patil S, Goldberg K and Abbeel P (2014) Motion planning with
sequential convex optimization and convex collision checking.
The International Journal of Robotics Research 33(9): 1251–
1270.

Singh S, Landry B, Majumdar A, Slotine JJ and Pavone M (2019)
Robust feedback motion planning via contraction theory. The
International Journal of Robotics Research .

Slotine JJE, Li W et al. (1991) Applied nonlinear control, volume
199. Prentice hall Englewood Cliffs, NJ.

Solovey K, Janson L, Schmerling E, Frazzoli E and Pavone M
(2020) Revisiting the asymptotic optimality of RRT∗. In: 2020
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 2189–2195.

Stentz A et al. (1995) The focussed D∗ algorithm for real-time
replanning. In: IJCAI, volume 95. pp. 1652–1659.

Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization methods and
software 11(1-4): 625–653.

Tedrake R, Manchester IR, Tobenkin M and Roberts JW (2010)
LQR-trees: Feedback motion planning via sums-of-squares
verification. The International Journal of Robotics Research
29(8): 1038–1052.

Tobenkin MM, Manchester IR and Tedrake R (2011) Invariant fun-
nels around trajectories using sum-of-squares programming.
IFAC Proceedings Volumes 44(1): 9218–9223.

Verginis CK, Dimarogonas DV and Kavraki LE (2021) Sampling-
based motion planning for uncertain high-dimensional systems
via adaptive control. In: International Workshop on the
Algorithmic Foundations of Robotics. Springer, pp. 159–175.

Verginis CK, Dimarogonas DV and Kavraki LE (2023) KDF:
Kinodynamic Motion Planning via Geometric Sampling-Based
Algorithms and Funnel Control. IEEE Transactions on
Robotics 39(2): 978–997.

Webb DJ and Van Den Berg J (2013) Kinodynamic RRT*:
Asymptotically optimal motion planning for robots with linear
dynamics. In: 2013 IEEE International Conference on
Robotics and Automation. IEEE, pp. 5054–5061.

Zhang X, Liniger A and Borrelli F (2020) Optimization-based
collision avoidance. IEEE Transactions on Control Systems
Technology 29(3): 972–983.

Zucker M, Kuffner J and Branicky M (2007) Multipartite
RRTs for rapid replanning in dynamic environments. In:
Proceedings 2007 IEEE International Conference on Robotics
and Automation. IEEE, pp. 1603–1609.

Zucker M, Ratliff N, Dragan AD, Pivtoraiko M, Klingensmith M,
Dellin CM, Bagnell JA and Srinivasa SS (2013) CHOMP:
Covariant hamiltonian optimization for motion planning. The
International Journal of Robotics Research 32(9-10): 1164–
1193.

Prepared using sagej.cls

https://robodk.com/
https://robodk.com/

	Introduction
	Statement of Contributions
	Outline

	Related Work
	Sampling-based kinodynamic motion planning
	Graph-based motion replanning in dynamic environments
	Feedback motion planning using funnels
	Other related work

	Preliminaries
	Invariant Set Theory
	Verified Trajectory Libraries
	Discrete graph replanning

	Problem Formulation
	Approach
	Outline
	Notes on graph data structure representing the volumetric funnel-network
	Online motion planning/replanning algorithm – PiP-X
	Sampling configurations:
	Exploration:
	Steering (Algorithm 3):
	Constructing the funnel-network (Algorithm 4):
	Funnel-related subroutines:
	Building the shortest-path subgraph (tree) (Algorithm 6):
	Robot motion:
	Collision checking:

	Computing regions of finite-time invariance, funnels
	Designing the funnel library

	Examples
	Cart-pole system
	Car robot

	Validation in a Simulated Quadrotor
	System Dynamics & Mission Profile
	Experimental setup
	Monte Carlo experiments
	Initially-unknown Maze with limited robot-sensing:
	Initially-unknown random Forest with finite robot-sensing:
	Random Forest with dynamic obstacles:

	Discussions
	Computation time analysis:
	Comparison with RRTX:
	Remarks:

	Conclusions

