
Low-level controller in response to changes in quadrotor dynamics

Jae-Kyung Cho1, Chan Kim1, Mohamed Khalid M Jaffar2, Michael W. Otte2, and Seong-Woo Kim1∗

Abstract— The dynamics of all real quadrotors inevitably
differ even if they are the same product. In particular, the
dynamics can change significantly during the flight due to
additional device attachments or overheating motors. In this
study, we focus on training a low-level controller, which operates
in response to dynamics-changes without prior knowledge or
fine-tuning of the parameters, using reinforcement learning. We
randomize the dynamics of quadrotors in the simulator and
train the policy based on dynamics information extracted from
the state–action history through recurrent neural networks
(RNNs). In addition, our experiment demonstrates the diffi-
culties in applying existing actor-critic structures that extract
dynamics information using end-to-end RNNs for unstable
quadrotors; hence, we propose a novel structure with bet-
ter performance. Finally, the excellent performance of the
proposed controller is verified by testing experiments that
stabilize quadrotors with different dynamics. The experiment
videos and the code can be found at https://github.com/
jackyoung96/RNN-Quadrotor-controller.

I. INTRODUCTION

A closed-loop low-level controller for a robot is built by
considering its own dynamics model. Although a fine-tuned
controller for one dynamics model usually operates well
for similar dynamic models, the performance will not be
maintained if the dynamics change significantly. Even if the
robots appear homogeneous in the real world, the dynamics
model of a real robot will be different from the one that
was originally modeled. In the case of quadrotors, the state
transition model continuously changes during flight, motor
performance deteriorates due to overheating, and thrust and
torque can change due to propeller damage. Moreover, the
movement of ancillary items mounted on the quadrotor, such
as gimbal cameras and delivery items, can cause changes to
the center of mass and moment of inertia. All these factors
could disturb the pre-fine-tuned controller from performing
optimally. Therefore, information about the dynamics must
be obtained through continuous interaction with the environ-
ment, and a policy should be enacted that can derive optimal
actions considering different dynamics models.

Deep Reinforcement Learning (DRL) has been used to
solve control problems of quadrotors by collecting data from
interactions with the environment to replace the model-based
controllers. Model-free RL methods [1], [2], [3], and model-
based RL methods [4] have been proposed for training
a controller consisting of feed-forward neural networks to
control quadrotors. Although these controllers, which were

∗Corresponding author
1The authors are with Seoul National University, Seoul, South Korea.

{jackyoung96, chan kim, snwoo}@snu.ac.kr
2The authors are with University of Maryland, Maryland, United States.

{khalid26, otte}@umd.edu

Fig. 1. Comparison of trajectories of controllers directing quadrotors to
their target positions when the performance of one motor is reduced by 30%.
Quadrotors are initialized as flipped status (blue dots) and aim to move to
the goal (red dots).

composed of feed-forward neural networks, could operate
robustly without accurate dynamics information, it was chal-
lenging to achieve customized performance for different dy-
namics models. The use of recurrent neural networks (RNNs)
has been suggested as a method for extracting unknown
dynamics model information through continuous interaction
with the environment [5]. However, the performance of
RNNs has only been verified in relatively stable robots, such
as robotic arms [5], [6]. Accordingly, we were interested in
whether a low-level controller trained by this method could
respond to changes in the dynamics model of the quadrotor.

In this paper, we propose an RNN-based low-level con-
troller for quadrotors that extracts dynamics information
from the state–action history sequence to respond to dynam-
ics model changes. To the best of our knowledge, this is
the first attempt at applying RNN to a low-level controller
for a 3-D quadrotor. We divided the entire policy module
into a dynamic extractor comprising the RNN and an actor
composed of feed-forward networks, instead of using the
conventional method of including an RNN in the actor for the
end-to-end manner. The dynamics extractor module directly
predicts dynamics parameters from state–action sequences
using RNN and the feed-forward actor produces actions
based on the predicted dynamics parameters. We trained
the dynamics extractor and actor-critic separately using the
ground truth of the dynamic parameters, which are explicit
values in the simulator. With the proposed method, it is
possible to maintain the controller performance in response
to changes in dynamics. Fig. 1 displays the improved per-
formance of the proposed method in an example scenario,
which aims to recover from a flipped state and reach the

desired final state (red dot) regardless of the orientation of
the quadrotor, where the quadrotor is flipped and the perfor-
mance of one motor is reduced by 30% due to overheating.
The proposed RNN-based controller exhibits faster recovery
from the flipped state and a shorter trajectory compared to
the feed-forward networks-based controller.

The contributions of this study are summarized as follows:
• We propose a low-level quadrotor controller that op-

erates in response to changes in dynamics without
fine-tuning.

• We propose an RL structure that combines an auxiliary
dynamics extraction module with an actor-critic model
in a quadrotor environment where it would be difficult
to learn using an end-to-end method.

II. RELATED WORK

The aim of a low-level controller is to determine the four
motor signals so that the quadrotor can be controlled from
the current position to the desired position. Li et al. [7]
proposed a PID control method through quadrotor modeling
and Ren et al. [8] presented a quadrotor-specified PID control
method that performs position and altitude control in two
steps. In addition, Faessler et al. [9] proposed a method
to solve the problem of re-initializing drones when they
are thrown or become unstable by an external intervention
that was considered to require complex modeling. Due to
the mathematical modeling of a controller, accurate physical
parameters should be known and laborious fine-tuning was
required.

Neural networks began to be used to approximate complex
non-linear modeling of quadrotor controllers. Mohajerin et
al. [10], [11] trained neural networks that approximate a
quadrotor dynamics model, which maps altitude changes
according to motor speed using RNNs. However, the authors
did not propose a quadrotor controller using the trained
model. Maqbool et al. [12] and Tran et al. [13] proposed
methods for altitude control of quadrotors using feed-forward
neural networks. The neural networks, which map motor
signals from a state of a single timestep of a quadrotor,
were trained for minimizing attitude error. Khosravian et al.
[14] proposed a PID controller that continuously updates
PID gain parameters during flight using RNN. In each
situation, the optimal PID gain values that minimize the
positional error and attitude error were found and then
trained in a supervised-learning fashion. However, these
controllers focused on systems that can adaptively operate on
a single fixed-dynamics model. Furthermore, the non-linear
controllers were approximated by neural networks but still
had to mathematically define the dynamics model well.

Instead of modeling the dynamics model, various methods
using RL that learn based on data obtained through inter-
action with the environment have been proposed. Hwanbo
et al. [1] and Duisterhof et al. [3] suggested methods to
train a low-level controller by model-free RL algorithms that
can perform waypoint tracking as well as stabilization from
harsh initialization. The authors trained the policy in the
quadrotor simulator and then transferred it to a real drone

without any adaptation process. Although RL has made it
possible to avoid complex mathematical modeling and the
fine-tuning process, these methodologies did not consider
the changing dynamics of a quadrotor. Therefore, the con-
trol performance could not be maintained when the actual
dynamics were changed. Lambert et al. [4] used model-
based RL to generate a low-level control policy optimized
for an individual quadrotor. Here, prior dynamics knowledge
was not required because the dynamics transition model was
directly trained from the demonstration data. However, this
method needed actual quadrotor flying data, which requires
either a human demonstration or an alternative low-level
controller. Furthermore, the trained policy only focused on
controlling one quadrotor that was used when acquiring the
data, not quadrotors with different dynamics.

Molchanov et al. [2] applied domain randomization to
generate a robust low-level controller that operated success-
fully with various types of quadrotors when their physi-
cal quantities were unknown. In the data generation step,
physical parameters such as mass, thrust-to-weight ratio,
and the size of drones were sampled from a predefined
physical property distribution for every episode in the sim-
ulator. Although the trained policy consisting of a feed-
forward neural network produced robust actions regardless
of the quadrotor’s dynamics, customized actions were not
produced based on quadrotor dynamics information that was
not known in advance. Fei et al. [15] proposed a novel
method to train a robust controller for drones to recover
from unpredictable physical and cyber attacks. The physical
attacks constituted of situations where the actuator signals
and the sensor values were either missed or replaced with
the wrong values. The aim was to obtain a more robust policy
by applying a random attack in the training process instead of
randomizing the dynamics. However, all of these controllers
focused on the robustness of performance, regardless of
changes in dynamics.

Peng et al. [6] demonstrated that using RNNs can help
the robot controller respond to unknown dynamics. The dy-
namics of robot arms were randomized in the simulation and
an actor-critic model consisting of long short-term memory
(LSTM) was trained using the recurrent deterministic policy
gradient (RDPG) [5] algorithm. Fris et al. [16] applied RDPG
to train a controller that can land a quadrotor on a slope, even
when the mass and moment-of-inertia of the quadrotor are
changed. However, a 2-D quadrotor simulator that was far
from an actual quadrotor was used, and this method could
not respond to changes in dynamics that are critical to the
quadrotor, such as motor performance and propeller status.

In contrast to the previously mentioned research, we first
use an RNN network that can extract dynamics information
on a quadrotor. Then we use a 3-D quadrotor simulator with
air drag effects that make it more likely to apply to real
quadrotors. Finally, we improve learning stability through an
auxiliary training process for the RNN module instead of an
end-to-end approach to directly include RNN in the policy
module proposed in [6].

III. PRELIMINARIES

In this section, we introduce a review and the notations of
RL and the dynamics randomization technique. The standard
RL problem can be described as finding a policy to maximize
a return under the Markov decision process (MDP). Here, the
MDP is defined as a 5-tuple < S,A, pµ ,r,γ > where the terms
refer to state, action, transition probability, reward function,
and discount factor, respectively. The state and action of the
agent at timestep t are respectively denoted by st ∈ S and
at ∈ A. The transition probability pµ(st+1|st ,at) depends on
parameter µ , which is the set of dynamics parameters, such
as mass, body size, and thrust-to-weight ratio. The reward
function r : S×A→ R returns a scalar value that indicates
how valuable the action was taken in the state. For simplicity,
the reward at timestep t is denoted as rt = r(st ,at). The policy
π : S→ A will return the action for a given state, which
is trained to maximize the return Rt = ∑

∞

t ′=t γ t ′−trt ′ , where
γ ∈ [0,1].

To summarize, the objective Jµ(π) for the learning process
on the given MDP was to find an optimal policy π∗ that
maximizes the expected return

π
∗ = argmaxπ Jµ(π),

Jµ(π) = Es0,a0,s1,a1,...[
∞

∑
t=0

γ
tr(st ,at)],

(1)

where the action at ∼ π(·|st) and the next state st+1 ∼
pµ(·|st ,at).

IV. PROBLEM DEFINITION

We focused on training a low-level controller that produces
a raw motor signal from the current state of the quadrotor
as well as the past state and motor signals. The input
state st ∈ R18 consists of relative position from the goal
ot ∈ R3, all elements of rotation matrix Rt ∈ R9, linear
velocity vt ∈ R3, and angular velocity ωt ∈ R3. It should
be noted that all positions used for input state used relative
positions, regardless of the global origin. The reason why
we used the rotation matrix Rt ∈ SO(3) instead of using
quaternions or Euler angles was that this can represent all
attitudes without any discontinuity or uniqueness issue. The
action a = {a1,a2,a3,a4} ∈ R4 is the PWM signal of the
four motors, which should be given as a discrete integer in
the range [0,216−1]4. We scaled the action to a real value
between [−1,1] and regarded it as a continuous action space.

The objective of this study was to train a low-level
controller policy that minimizes the distance from the current
position to the goal and the angular velocity in the shortest
time according to the dynamics of the quadrotor, represented
as follows:

π
∗(a|s,h) = argmax

π

Jµ(π), ∀µ ∈M,

Jµ(π) = Es0,a0,s1,...

∞

∑
t=0
− f (∥ot∥,∥ωt∥),

(2)

where h is the embedding of past state–action sequence,
µ is the dynamics parameter of the environment, M is
the dynamics parameter space, and f is a monotonically

TABLE I
THE RANDOMIZATION RANGE OF DYNAMICS PARAMETERS AND INITIAL

STATE IN GYM-PYBULLET-DRONES ENVIRONMENT

Parameter Range (β = 0.3)
Mass (m) [1-β ,1+β] × moriginal

Center of mass (xcm,ycm) [-β ,β] × body length of the drone
Moment-of-inertia (I′xx,I′yy,I′zz) [1-β ,1+β] × Ioriginal

k f = {ki
f }, i = 1,2,3,4 [1-β ,1+β] × koriginal

f

km = {ki
m}, i = 1,2,3,4 [1-β ,1+β] × koriginal

m
T (∼motor delay time constant) [1-β ,1+β] × 0.15
Initial state Range
Linear velocity [m/s] ∼ [−1,1]3

Angular velocity [rad/s] ∼ [−π,π]3

Rotational matrix ∼ SO(3)
goal position [m] ∼ [−1,1]3

increasing function. It should be noted that the function f
has the same meaning as the negative of the reward function
r, which can be engineered with various function forms, such
as r(st) =− f (∥ot∥,∥ωt∥).

V. METHOD

A. Simulator setting and dynamics randomization

The Gym-pybullet-drones simulator [17] was used to
reproduce situations where the state transition model was
changed, which can occur in the quadrotor, and train the
RL controller. This environment has two advantages: 1) it is
possible to test many RL algorithm baselines easily because
it is composed based on the Gym wrapper environment,
which is a famous RL environment format; and 2) the reality
gap is minimized by accounting for complex physical factors
of quadrotors, such as air drag, downwash, and ground
effects.

Six types of dynamics parameters were randomized in this
simulator: mass, location of the center of mass, moment-
of-inertia, thrust-to-force coefficient k f , thrust-to-momentum
coefficient km, and motor delay time constant T . The fol-
lowing parameters were those that could be changed during
the flight or could have a different value, even in the same
quadrotor product. We independently randomized the XY
coordinates of the center of mass, XYZ components of the
moment of inertia, and the k f and km parameters for all
four motors. Therefore, 15 parameters were randomized and
consisted of values representing µ ∈R15. All the parameters,
except for motor delay T , are already modeled in the Gym-
pybullet-drone simulator, so the values could be easily and
randomly modified. In the case of mass and moment-of-
inertia, we changed the values inside the URDF file, and
the forward kinematics calculation was performed through
the Pybullet physical engine. Terms k f and km represent the
thrust and rotational force generated ratio proportional to
the motor speed, respectively. The final action-to-force and
action-to-momentum values were modeled as follows:

f i = ki
f × (pi)2, τ

i = ki
m× (pi)2, (3)

where pi is the RPM of each motor and i is the index of
each motor i = 1,2,3,4. According to [2], motor delays can

(a) (b)

Fig. 2. (a) The actor of RNNparam consists of the dynamic extractor and
the feed-forward actor. (b) The feed-forward critic of RNNparam uses the
ground truth of dynamic parameters.

occur in real-world motors because the motor signal cannot
be immediately reflected in the RPM, which is an important
factor that can affect performance in real-world applications.
The motor delay time constant T was used as follows:

at+1 =
4dt
T

(at+1−at)+at , (4)

where dt is the control time interval, which was set to 10
ms in our experiment. Table I shows the randomization range
for each parameter.

To train the policy that can acquire information about
dynamics parameters and stabilize the quadrotor in harsh
configurations, we randomly sampled initial attitude, linear
velocity, and angular velocity at the simulation reset step. In
the case of attitude, random sampling was performed in the
entire SO(3). The initial position was set to a point far from
the ground to avoid a situation where the velocity and angular
velocity were zero due to being hit by the ground. The target
positions were randomly sampled from a cube having the
initial position as the center. The range of the initialized state
is demonstrated in Table I. In addition, state random noise
was added to reflect the real-world environments.

B. Actor-critic model

Fig. 2 displays the proposed actor-critic network structure.
In a study that focused on training a policy to handle the
unknown dynamics in the robot arm [6], the RDPG algorithm
was used, which combined LSTM and DDPG. Instead, we
used a soft actor-critic (SAC) [18] algorithm combined with
a gated recurrent unit (GRU) [19], which is a type of RNN.
The reason for using a GRU was that it has higher learning
stability than vanilla RNN and has a smaller model size than
LSTM. It is worth noting that a GRU can be simply replaced
with vanilla RNN or LSTM; hence the general name RNN
is used herein.

In the original dynamic randomization method [6], which
we refer to as RNNfull herein, a recurrent network for
extracting dynamics information was used for both actor
and critic. Although the reason for using RNNs was to
extract information about dynamics from the state–action
history, this can cause a reduction in learning stability and
learning speed. In the actor-critic model, the actor needs to
extract information about the model dynamics through the
RNNs because it is unknown information in the test phase.
However, the critic is not used in the test phase to obtain
the actual action. In the training phase, the ground truth

value for the dynamics parameter µ of the simulator can
be used to train the critic, because all information about
dynamics is fully accessible. Therefore, we employed the
RNNpolicy structure, which uses a feed-forward network and
ground truth dynamics parameters for the critic, as shown in
Fig. 2(b), and only uses RNNs for the actor. This critic,
which does not include the RNN structure, could increase
the training performance and learning speed.

However, the RNN used in the actor still caused a learning
instability problem. This was caused by the state–action
history being too long to estimate dynamics, due to the
control frequency of the quadrotor controller being high. To
solve this problem, we proposed the RNNparam structure,
which separates the entire policy networks into the dynamics
extractor module and the feed-forward actor, as shown in Fig.
2(a). The feed-forward actor and the feed-forward critic were
trained through a SAC algorithm. Since the actor uses the
ground truth of the dynamics parameter µ as a given input,
the trained actor would produce actions by reflecting changes
in dynamics information. The problem of learning instability
with RNNs was also solved because the actor and critic only
consist of feed-forward networks. The dynamic extractor
comprises a combination of a linear layer for embedding, a
GRU layer, and a linear layer for predicting values. Training
of the dynamic extractor is conducted in a supervised-
learning manner that predicts the dynamic parameters from
the state–action sequence through RNNs separately from the
RL training process. The details of the update process of the
RNNparam structure are described in Algorithm 1.

First, the initial state s0 and dynamic parameters µ are
randomized in the range decided in Table I for the beginning
of every episode (line 5). An episode of length T is rolled out
by interacting with the environment, which has the dynamics
model µ (lines 6–8). It should be noted that the action is
created by using the feed-forward actor with the ground
truth dynamics parameters µ . This helps to accumulate high-
quality data in the replay buffer compared to using a less-
trained RNN-structured actor. The created trajectory is stored
in the replay buffer B (line 9).

To update the networks, a minibatch consisting of |B|
number of full episodes is sampled from the replay buffer
(line 9) and loss values for the actor, the critics, and the
dynamics extractor are initialized as zero (line 11). We then
uniformly sample a single timestep t for each episode in the
minibatch (line 13). The reason for the additional random
sampling of single timestep data instead of using the entire
episodes is to maintain the i.i.d. condition for training the
actor and the critic networks, which are comprised of the
feed-forward neural networks. It is noteworthy that every
episode contains the ground truth of dynamics parameters
µ that were randomized for each episode in the simulator.
The SAC algorithm is applied to update the actor and the
critic, considering the dynamics information µ (lines 14–18
and 25–27). The dynamics extractor Dψ , which is composed
of the RNN network, predicts the dynamics parameter µ̂

from every sequence of state–action pairs in the episode
(lines 20–22). The dynamics parameters µ̂t ′ of every timestep

Algorithm 1 SAC RNNparam algorithm
1: Initialize actor πθ (st ,µ), critics Qφ1(st ,at),Qφ2(st ,at),

dynamic extractor Dψ(st ,at−1,ht−1) with parameters
θ ,φ1,φ2,ψ

2: Initialize target networks Q̄φ̄1
, Q̄φ̄2

(φ̄1← φ1, φ̄2← φ2)
3: Initialize empty replay buffer B
4: for episode=1:E do
5: Randomize dynamics parameter µ , initial state s0
6: for t=0:T-1 do
7: st+1 ∼ pµ(·|st ,at) where at ← π(st ,µ)
8: end for
9: B←B∪{(s0,a0,r(s0,a0), . . . ,sT ,µ)}

10: Sample a minibatch of |B| episodes
{(si

0,a
i
0,r

i
0, . . . ,s

i
T ,µ

i)}i=1,...,|B| ∼B
11: Initialize losses Lπ = LQ = LD = 0
12: for i=b:|B| do
13: t ∼ Uniform(0, ,1, . . . ,T −1)
14: âi

t ← πθ (si
t ,µ

i)
15: âi

t+1← πθ (si
t+1,µ

i)
16: qt ← rt +

γ(min
i=1,2

Q̄φ̄i
(st+1, ât+1,µ)−α logπθ (ât+1|st+1))

17: Lπ ← Lπ +Qφ1(st , ât ,µ)−α logπθ (ât |st)
18: LQ← LQ +(qt −Qφi(st ,at ,µ))

2

19: Initialize a−1 and h−1
20: for t’=0:T-1 do
21: µ̂t ′ ,ht ′ ← Dψ(ht ′−1,si

t ′ ,a
i
t ′−1)

22: end for

23: LD← LD +
1
T

T−1

∑
t ′=0

(µ− µ̂t ′)
2

24: end for
25: φi← φi−αφ ∇φi

1
|B|

LQ

26: φ̄i← τφi +(1− τ)φ̄i

27: θ ← θ +αθ ∇θ

1
|B|

Lπ

28: ψ ← ψ−αψ ∇ψ

1
|B|

LD

29: end for

t ′ are predicted based on the hidden output of RNN ht ′−1
and an input state–action pair (st ′ ,at ′−1). The hidden output
of RNN ht ′−1 is an output latent vector for the given
previous state–action sequences (s0,a−1, . . . ,st ′−1,at ′−2). The
dynamic extractor is updated to minimize the mean square
error between all predictions {µ̂t ′} and the ground truth
parameter µ (lines 23 and 28). By using the trained actor and
dynamics extractor module, a low-level controller produces
an action as follows:

at = πθ (st ,Dψ(h−1,s0,a−1, . . . ,st ,a−1)), (5)

which predicts the dynamics parameters by dynamics extrac-
tors and uses them as a given input to produce an action.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate that the
proposed controller achieves good performance, even for

TABLE II
RNNPARAM HYPERPARAMETERS

Hyperparameter Value
Actor Critic Dynamic extractor

number of hidden layers 5 5 3 (2 linear, 1 GRU)
number of hidden units 64 128 64
Activation function ReLU ReLU ReLU
Last Activation function Tanh None Tanh
learning rate 10−4 10−4 10−4

Fig. 3. Learning curve of five different actor-critic structures runs with
five different seeds. The Oracle is the learning curve of FF-norand because
the training was not interfered with by dynamics randomization.

quadrotor dynamics that are changed, compared to existing
methods and other RNN actor-critic structures. We compared
the three RNN-based controllers mentioned in Section V and
three conventional controllers experimentally:
• PID controller, which needed to fine-tune 18 PID gain

values in advance [17].
• FF-rand, which only used feed-forward networks with

dynamics randomization [2].
• FF-norand, which only used feed-forward networks

without dynamics randomization.
• RNNfull, which used RNNs for both the actor and the

critic and trained in an end-to-end manner [6].
• RNNpolicy, which only used RNNs for the actor and

trained in an end-to-end manner.
• RNNparam, which is the proposed method that trains

an auxiliary dynamics extraction module consisting of
RNNs.

All learning-based controllers were basically trained using
the SAC algorithm. To satisfy the possibility of use in a real-
world quadrotor, the following hardware constraints of the
real model of the quadrotor used in the Gym-pybullet-drone
were satisfied: operating ≤10 ms at 168 MHz Cortex-M4
MCU, and limiting model size limit of ≤192 KB. The model
size limit should only be respected by the actor because
the critic is only used during the training process. A larger
critic model was used to sufficiently reflect the complexity
of the environment. This reason that a bigger critic model
can be used is based on the study of Mysore et al. [20],
where even a larger critic than the actor did not affect the
final performance. Therefore, we constructed and trained the
model using the hyperparameters, as shown in Table II.

We used 20,000 trajectories with a step length of 800,
which is 8 s in the simulator running at 100 Hz. The follow-

ing reward function was used to ensure a fair comparison:

r(st) =−(∥ot∥2 +0.5∥ωz
t ∥2), (6)

where ∥ot∥ is the Euclidean distance from the current posi-
tion to the goal position, and ω

z
t is the yaw rate. The weight-

ing for the yaw rate was set at 0.5 as that value showed the
best performance through several experiments. The quadrotor
had to change the direction of thrust by changing the roll and
pitch to control the XY position. In other words, there was
a trade-off relationship in which the roll and pitch rates had
to be increased to reduce the positional errors. We judged
that this trade-off relationship would make learning difficult.
Hence, we designed the reward function to minimize position
error more efficiently by considering only the yaw rate. We
trained five policies for each method with varying seeds,
and the learning curve of the average return of evaluation is
shown in Fig 3. It should be noted that FF-norand is the same
as the oracle learning curve because it is the only one learned
in the absence of dynamics randomization. It will be shown
in later experiment results that the performance of FF-norand
is worse in the dynamics randomization environment, even
if the average return is high in the training process.

It can be observed that the final return of RNNparam was
the closest to the oracle compared to the other methods. In
the case of RNN-included structures, it was evident that the
more RNN was not used in the RL learning process, the
better the learning became. First, it was more stable to only
use the RNN structure for the actor (RNNpolicy) than to use
the RNN structure for both the actor and critic (RNNfull).
Moreover, the RNNpolicy still exhibited a less average return
and high variance, compared to the proposed RNNparam
method. Thus, we conclude that end-to-end learning method
using an RNN structure for both actor and critic is not
suitable for unstable quadrotor settings. This is because it
is difficult to obtain data close to stable flying by random
exploration. In the case of FF-rand, the average return
increased quickly during the early stage of the training.
However, the final return of FF-rand was lower than that
of RNNparam.

We conducted the stabilizing experiment using the con-
troller with the highest average return among them trained
by various seeds. However, RNNfull was excluded from the
experiment because it was not even trained, as shown in Fig.
3. In the stabilizing experiment, the aim was to control the
quadrotor to a random goal position from the randomized
initial state in 8 s, as in Table I. The average position error to
the goal ep and the average magnitude of the yaw rate ∥ωyaw∥
were measured as a metric to represent control and stabilizing
performance. Each controller was tested in an environment
with different degrees of dynamic randomization on 100
random seeds. Table III displays the result of the stabilizing
experiment.

It can be deduced from the large positional error that the
PID controller could not recover a quadrotor from harsh
initialization, even when the dynamics were not randomized.
However, the learning-based controllers exhibited some re-
sponse, regardless of the dynamics. The FF-norand controller

TABLE III
EXPERIMENT FOR STABILIZING FROM RANDOM INITIAL STATE

dynamics
randomize

range (1±β)
PID FF-norand FF-rand RNNpolicy RNNparam

β = 0.0 ep 73.52 0.75 0.91 6.12 0.90
∥ωyaw∥ 0.95 0.01 0.21 10.73 6.71

β = 0.0 ep 84.30 5.83 1.55 10.09 1.04
∥ωyaw∥ 9.02 5.37 0.70 17.45 2.40

β = 0.2 ep 87.88 28.84 5.55 20.89 3.22
∥ωyaw∥ 14.21 21.79 1.25 19.80 2.08

β = 0.3 ep 86.65 58.56 23.54 36.31 11.06
∥ωyaw∥ 21.97 41.52 11.77 18.27 6.89

achieved the best performance when the dynamics were fixed
(i.e., β = 0). However, it did not respond appropriately to
changes in dynamics (i.e., β ̸= 0). For the FF-rand controller,
the larger the value of β , the larger the change in perfor-
mance degradation compared to the RNNparam controller.
In other words, the RNNparam controller achieved superior
performance to the FF-rand when responding to situations
in which the dynamics changed significantly. Moreover,
the RNNparam controller exhibited much smaller positional
errors and angular velocity compared to the RNNpolicy
controller using RNN in the end-to-end manner.

VII. CONCLUSION

In this study, we proposed a new RNN-based actor-critic
structure for learning a low-level controller of a quadro-
tor that can operate in response to the implicit dynamics
changes. We randomly altered the dynamics in the simulator
and trained an actor-critic model using the SAC algorithm
to extract dynamics information from state–action history
using a RNNs. Although there have been studies in which
the RNNs implicitly extract dynamics information in an
end-to-end method, we experimentally demonstrated that
this method is unsuitable for unstable drones. Hence, we
proposed a new possible structure. Through the proposed
controller, it will be possible to control the quadrotor even
in situations where its dynamics change unexpectedly during
flight, such as when the motors overheat or the propellers get
damaged.

ACKNOWLEDGEMENTS

This research was supported by Korea Institute for Ad-
vancement of Technology (KIAT) grant funded by the Korea
Government (MOTIE) (P0017304, Human Resource Devel-
opment Program for Industrial Innovation), in part by the Na-
tional Research Foundation of Korea (NRF) through the Min-
istry of Science and ICT under Grant 2021R1A2C1093957,
and in part by the BK21 FOUR (Fostering Outstanding
Universities for Research) funded by the Ministry of Ed-
ucation(MOE, Korea) and National Research Foundation
of Korea (NRF). The first and corresponding authors have
participated in Integrated Major in Smart City Global Con-
vergence, Seoul National University. The Institute of En-
gineering Research at Seoul National University provided
research facilities for this work.

REFERENCES

[1] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[2] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(multi)-real: Transfer of low-level robust control
policies to multiple quadrotors,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 59–66.

[3] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu,
A. Faust, G. C. de Croon, and V. J. Reddi, “Tiny robot learning (tinyrl)
for source seeking on a nano quadcopter,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
7242–7248.

[4] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra,
and K. S. Pister, “Low-level control of a quadrotor with deep model-
based reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4224–4230, 2019.

[5] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based con-
trol with recurrent neural networks,” arXiv preprint arXiv:1512.04455,
2015.

[6] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[7] J. Li and Y. Li, “Dynamic analysis and pid control for a quadrotor,”
in 2011 IEEE International Conference on Mechatronics and Automa-
tion. IEEE, 2011, pp. 573–578.

[8] J. Ren, D.-X. Liu, K. Li, J. Liu, Y. Feng, and X. Lin, “Cascade pid
controller for quadrotor,” in 2016 IEEE International Conference on
Information and Automation (ICIA). IEEE, 2016, pp. 120–124.

[9] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza, “Automatic re-
initialization and failure recovery for aggressive flight with a monoc-
ular vision-based quadrotor,” in 2015 IEEE international conference
on robotics and automation (ICRA). IEEE, 2015, pp. 1722–1729.

[10] N. Mohajerin and S. L. Waslander, “Modular deep recurrent neural
network: Application to quadrotors,” in 2014 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2014,
pp. 1374–1379.

[11] ——, “Modelling a quadrotor vehicle using a modular deep recurrent
neural network,” in 2015 IEEE International Conference on Systems,
Man, and Cybernetics. IEEE, 2015, pp. 376–381.

[12] U. Maqbool, T. Nomani, and H. Talat, “Neural network controller
for attitude control of quadrotor,” in 2019 Second International Con-
ference on Latest trends in Electrical Engineering and Computing
Technologies (INTELLECT). IEEE, 2019, pp. 1–8.

[13] T.-T. Tran and C. Ha, “Self-tuning proportional double derivative-like
neural network controller for a quadrotor,” International Journal of
Aeronautical and Space Sciences, vol. 19, no. 4, pp. 976–985, 2018.

[14] E. Khosravian and H. Maghsoudi, “Design of an intelligent controller
for station keeping, attitude control, and path tracking of a quadrotor
using recursive neural networks,” International Journal of Engineer-
ing, vol. 32, no. 5, pp. 747–758, 2019.

[15] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 7358–7364.

[16] R. Fris, “The landing of a quadcopter on inclined surfaces using
reinforcement learning,” 2020.

[17] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig,
“Learning to fly—a gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 7512–7519.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[19] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” arXiv preprint arXiv:1409.1259, 2014.

[20] S. Mysore, B. El Mabsout, R. Mancuso, and K. Saenko, “Honey. i
shrunk the actor: A case study on preserving performance with smaller
actors in actor-critic rl,” in 2021 IEEE Conference on Games (CoG).
IEEE, 2021, pp. 01–08.

