
Efficient Collision Checking in
Sampling-based Motion Planning

Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

Abstract Collision checking is generally considered to be the primary computa-
tional bottleneck in sampling-based motion planning algorithms. We show that this
does not have to be the case. More specifically, we introduce a novel way of im-
plementing collision checking in the context of sampling-based motion planning,
such that the amortized complexity of collision checking is negligible with respect
to that of the other components of sampling-based motion planning algorithms. Our
method works by storing a lower bound on the distance to the nearest obstacle of
each normally collision-checked point. New samples may immediately be deter-
mined collision free—without a call to the collision-checking procedure—if they
are closer to a previously collision-checked point than the latter is to an obstacle.
A similar criterion can also be used to detect points inside of obstacles (i.e., points
that are in collision with obstacles). Analysis proves that the expected fraction of
points that require a call to the normal (expensive) collision-checking procedure ap-
proaches zero as the total number of points increases. Experiments, in which the
proposed idea is used in conjunction with the RRT and RRT∗ path planning algo-
rithms, also validate that our method enables significant benefits in practice.

1 Introduction

Sampling-based algorithms are a popular and general approach for solving high-
dimensional motion planning problems in robotics, computer graphics, and syn-
thetic biology [1, 6, 10]. The main idea is to construct collision-free trajectories by
joining points sampled from the state space, thus avoiding computations based on
an explicit representation of the obstacles. The main components of sampling-based

Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli
Massachussetts Institute of Technology, 77 Massachussetts Ave., Cambridge MA 02139,
Joshua Bialkowski e-mail: jbialk@mit.edu, Sertac Karaman e-mail: sertac@mit.edu,
Michael Otte e-mail: ottemw@mit.edu, Emilio Frazzoli e-mail: frazzoli@mit.edu.

1

jbialk@mit.edu
sertac@mit.edu
ottemw@mit.edu
frazzoli@mit.edu

2 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

algorithms are: (i) a sampling scheme; (ii) a collision-checking function that deter-
mines if a point is in collision, given an obstacle set; (iii) a proximity search function
that returns “neighbors” to a point, given a point set; and (iv) a local planning func-
tion that returns a trajectory between two given points.

The vast body of literature on sampling-based motion planning contains many
algorithms that implement the aforementioned four components in different ways.
Arguably, the main paradigms are the Probabilistic RoadMap (PRM) [9] and the
Rapidly-exploring Random Tree (RRT) [12] algorithms, aimed respectively to
multi- and single-query problems. Both PRM and RRT are known to be proba-
bilistically complete, i.e., if a (robust) solution exists, then a solution will almost
surely be found as the number of samples increases. Other algorithms use varia-
tions on PRM and RRT to improve performance, e.g., [7, 5] bias sampling based
on collision-checking results, [4] delay collision checks until needed (LazyPRM),
and [8] provide asymptotic optimality guarantees on path quality (PRM∗ and RRT∗).

Collision checking is widely considered the primary computational bottleneck
of sampling-based motion planning algorithms (e.g., see [11]). Our main contribu-
tion is to show that this does not have to be the case. We introduce a novel collision
checking implementation that has negligible amortized complexity vs. the proximity
searches that are already at the core of sampling-based motion planning. As a con-
sequence, proximity searches are identified as the main determinant of complexity
in sampling-based motion planning algorithms, rather than collision checking.

Traditionally, collision checking is handled by passing a point query to a “Boolean
black box” collision checker that returns either true or false depending on if the point
is in collision with obstacles or not, respectively. In this paper, we place a stronger
requirement on the collision-checking procedure, which is now assumed to return
a lower bound on the minimum distance to the obstacle set. Although computing
such a bound is harder than checking whether a point is in collision or not, lever-
aging this extra information allows us to skip explicit collision checks for a large
fraction of the subsequent samples. Indeed, the probability of calling the explicit
collision checking procedure, and hence the amortized computational complexity
due to collision checking, converges to zero as the number of samples increases.

The rest of this paper is organized as follows: In Section 2 we introduce notation
and state our problem and main results. In Section 3 we present our new collision
checking method. In Section 4 we analyze the expected fraction of samples that
will require a collision distance query and calculate the expected runtime savings
of the proposed approach (e.g., for RRT, PRM, and many of their variants). In Sec-
tion 5 we demonstrate performance improvement when used with RRT and RRT∗.
In Section 6 we draw conclusions and discuss directions for future work.

2 Notation, Problem Statement, and Main Results

Let X = (0,1)d be the configuration space, where d ∈ N, d ≥ 2 is the dimension
of the space. Let Xobs be the obstacle region, such that X \Xobs is an open set, and

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 3

denote the obstacle-free space as Xfree = cl(X \Xobs), where cl(·) denotes the clo-
sure of a set. The initial condition xinit is an element of Xfree, and the goal region
Xgoal is an open subset of Xfree. A path planning problem is defined by a triplet
(Xfree,xinit,Xgoal). For the sake of our discussion, we will assume that sampling-
based algorithms take as input a path planning problem (Xfree,xinit,Xgoal), and an
integer n ∈ N, and return a graph Gn = (Vn,En), where Vn ⊂ Xfree, card(Vn) ≤ n,
and En ⊂ Vn×Vn. The solution of the path planning problem (if found) can be re-
covered from such a graph, e.g., using standard shortest-path algorithms. Sampling-
based algorithms map a sequence of sampled points ω to a sequence of graphs. Let
Gn(ω) = (Vn(ω),En(ω)) denote the output of the algorithm, given ω .

The problem we address in this paper is how to reduce the complexity of
sampling-based motion planning algorithms, i.e., the (expected) number of opera-
tions needed to compute Gn. In particular, we consider incremental complexity—the
expected difference in the total number of operations needed to compute Gn+1(ω)
and Gn(ω). In the sequel, we characterize complexity based on the number of sam-
ples n and the environment description Xobs, while keeping the dimension d of the
space a constant. For convenience, we assume stochastic sampling that draws uni-
formly and independently from X . Our results extend to deterministic and/or non-
uniform sampling procedures, as long as the sampling procedure satisfy the techni-
cal conditions required for probabilistic or resolution completeness [11].

The computational complexity of a sampling-based algorithm can be decom-
posed in terms of the complexity of its primitive operations. The complexity of
drawing a sample is bounded by a constant csample. The complexity of a collision
check is bounded by ccc(Xobs) a function that depends only on the description of the
environment—note that the expected complexity of checking collisions with nobs
convex obstacles is O(log(nobs)

d) [13]. The complexity of (approximate) proximity
searches that return the O(logn) nearest elements to a query point from a set of car-
dinality n is O(logn) [13]. The latter applies to k-nearest neighbor searches (k fixed
or scaling as logn), and range searches among uniform random samples for those
points within a ball of volume scaling as log(n)/n.

The complexity of the local planner is bounded by a constant cplan that does not
depend on the environment description. For convenience we also include in cplan
all other constant time bookkeeping operations (cost updates, graph rewiring, etc.)
that are performed for each new edge. Each candidate path generated by the local
planner must also be checked for collisions, with complexity bounded by cpath(Xobs)
a function that depends only on the description of the environment.

The expected incremental complexity of sampling-based motion planning algo-
rithms can be evaluated by examining the work induced by each new sample:

• RRT: Find the nearest neighbor, generate a new point, check the new point for
collision, and connect the new point to the nearest neighbor.

• k-PRM: Collision check the sample, find and connect to its k-nearest neighbors.
• RRT∗, PRM∗: Collision check the sample, find the neighbors within a ball of

volume scaling as log(n)/n—or, equivalently, the (k logn)-nearest neighbors, for
a fixed k—and connect to them.

4 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

Algorithm Proximity Search Point Collision Checking Local Planning Path Collision Checking
RRT O(logn) ccc(Xobs) cplan cpath(Xobs)
k-PRM O(logn) ccc(Xobs) k cplan k cpath(Xobs)
RRT∗, PRM∗ O(logn) ccc(Xobs) O(logn)cplan O(logn)cpath(Xobs)

Table 1: Asymptotic bounds on the expected incremental complexity of some stan-
dard sampling-based motion planning algorithms.

Table 1 summarizes the main contributions to the expected incremental complexity
of these algorithms, in their standard implementation, based on collision-checking
queries. Note that the local planning and path checking only occur if the new sample
is not in collision with obstacles.

It is important to note that the asymptotic bounds may be misleading. In prac-
tice, the cost of collision checking the new sample and a new candidate connection
ccc(Xobs)+cpath(Xobs) often effectively dominates the incremental complexity, even
for very large n. Hence, collision checking is typically regarded as the computa-
tional bottleneck for sampling-based motion planning algorithms. The cost of colli-
sion checking is even more evident for algorithms such as RRT∗ and PRM∗, where
collision checks are carried out for each of the O(logn) candidate connections at
each iteration. Moreover, the ratio of the incremental complexity of RRT∗ to that of
RRT depends on the environment via cpath(Xobs), and is potentially large, although
constant with respect to n.

In our approach, we replace standard collision checks with approximate minimum-
distance computations. The complexity of computing a non-trivial lower bound on
the minimum distance of a point from the obstacle set is also bounded by a function
that depends on the description of the environment. In particular, we will require
our collision checking procedure to return a lower bound d̄ on the minimum dis-
tance d∗ that satisfies αd∗ ≤ d̄ ≤ d∗, for some α ∈ (0,1]. The computational cost
of such a procedure will be indicated with cdist(Xobs). While (approximate) distance
queries are more expensive than collision checking, the ratio cdist(Xobs)/ccc(Xobs) is
bounded by a constant, independent of n.

The output of the minimum-distance computations is stored in a data structure
that augments the standard graph constructed by sampling-based algorithms. Us-
ing this information, it is possible to reduce the number of explicit collision checks
and minimum-distance computations that need to be performed. As we will later
show, using our approach to modify the standard algorithms results in the asymp-
totic bounds on expected incremental complexity summarized in Table 2, where pcc
is a function such that limsupn→∞ pcc(n) = 0. Again, the local planning and path
checking only occur if the new sample is not in collision with obstacles.

Inspection of table 2 reveals that the incremental complexity of our version of
RRT and k-PRM is less sensitive to the cost of collision checking. Moreover, the
asymptotic ratio of the incremental complexity of our version of RRT∗ and RRT is
a constant that does not depend on the environment.

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 5

Mod. Algorithm Prox. Search Collision Checking Local Planning Path Collision Checking
RRT O(logn) O(logn)+ pcc(n)ccc(Xobs) cplan pcc(n)cpath(Xobs)
k-PRM O(logn) O(logn)+ pcc(n)ccc(Xobs) kcplan k pcc(n)cpath(Xobs)
RRT∗, PRM∗ O(logn) O(logn)+ pcc(n)ccc(Xobs) O(logn)cplan O(logn) pcc(n)cpath(Xobs)

Table 2: Asymptotic bounds on the expected incremental complexity of some
sampling-based motion planning algorithms, modified according to the proposed
approach; pcc is a function, such that limsupn→∞ pcc(n) = 0

3 Proposed Algorithm

Before describing our proposed modification to the collision checking procedure in
Section 3.1, we first formalize its primitive procedures and data structure.

Sampling: Let Sample : ω 7→ {Samplei(ω)}i∈N ⊂ X be such that the random
variables Samplei, i ∈ N, are independent and identically distributed (i.i.d.). The
samples are assumed to be from a uniform distribution, but results extend naturally
to any absolutely continuous distribution with density bounded away from zero on
X .

Nearest Neighbors: Given a finite point set S⊂ X and a point x∈ X , the function
Nearest : (S,x) 7→ s ∈ S returns the point in S that is closest to x,

Nearest(S,x) := argmin
s∈S
‖x− s‖,

where ‖ ·‖ is a metric (e.g., Euclidean distance—see [12] for alternative choices). A
set-valued version is also considered, kNearest : (S,x,k) 7→ {s1,s2, . . . ,sk}, returns
the k vertices in S that are nearest to x with respect to ‖ · ‖. By convention, if the
cardinality of S is less than k, then the function returns S.

Near Vertices: Given a finite point set S ⊂ X , a point x ∈ X , and a positive real
number r ∈ R>0, the function Near : (S,x,r) 7→ Snear ⊆ S returns the vertices in S
that are inside a ball of radius r centered at x,

Near(S,x,r) := {s ∈ S : ‖s− x‖ ≤ r} .

Set distance: a closed set S⊂ X and a point x ∈ X , SetDistance returns a non-
trivial lower bound on the minimum distance from x to S, i.e., for some α ∈ (0,1],

α min
s∈S
‖s− x‖ ≤ SetDistance(S,x)≤min

s∈S
‖s− x‖.

Segment Collision Test: Given points x,y ∈ X , CFreePath(x,y) returns True if
the line segment between x and y lies in Xfree, i.e., [x,y]⊂Xfree, and False otherwise.

Data Structure: We achieve efficient collision checking by storing additional in-
formation in the graph data structure that is already used by most sampling-based al-
gorithms. Specifically, we use the “augmented graph” AG = (V,E,Cfree,Cobs,Dist),
where V ⊂ Xfree and E ⊂ V ×V are the usual vertex and edge sets.The sets

6 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

Cfree ⊂ Xfree and Cobs ⊂ Xobs are sets of points for which an explicit collision check
has been made. For points in Cfree or Cobs the map Dist : Cfree∪Cobs→R≥0 stores the
approximate minimum distance to the obstacle set or to the free space, respectively.
The vertices V and edges E are initialized according to the particular sampling-
based algorithm in use. The sets Cfree and Cobs are initialized as empty sets.

3.1 Modified Collision Checking Procedures

Using the augmented graph data structure allows us to modify the collision check-
ing procedures as shown in Algorithms 1 and 2, respectively for points and paths.
For convenience, we assume that the augmented data structure AG can be accessed
directly by the collision checking procedures, and do not list it as an input.

Point Collision Test: Given a point x ∈ X , the function CFreePoint(x) returns
True if x ∈ Xfree, and False otherwise. When a new sample q is checked for col-
lision, we first check if we can quickly determine whether it is in collision or not
using previously computed information, lines 1.1-1.6. In particular, we use the ver-
tex vnear ∈Cfree that is nearest to q (found on line 1.1). If q is closer to vnear than the
vnear is to an obstacle, then clearly q is collision free, lines 1.3-1.4. Otherwise, we
find the vertex onear ∈ Cobs that is nearest to q, line 1.2. If q is closer to onear than
onear is to the free space, then clearly q is in collision, line 1.5-1.6.

If these two checks prove inconclusive, then a full collision check is performed
using set distance computations. First, one can compute the approximate minimum
distances from q to the obstacle set, and to the free set, respectively indicated with
dobs and dfree, lines 1.7-1.8. If dobs > 0, q is in Xfree and is added to the set Cfree
of vertices that have been explicitly determined to be collision-free, lines 1.9-1.10.
Furthermore, Dist(q) is set to be equal to dobs, line 1.11. Otherwise, q is in Xobs, and
is added to the set Cobs, with Dist(q) = dfree, lines 1.13-1.15.

Path Set Collision Test: Given a vertex set S ⊆ V and point x, the function
BatchCFreePath(S,x) returns a set of edges H ⊆ (V ∪{x})× (V ∪{x}) such that
for all h = (x,y) ∈ H, CollisionFreePath(x,y) evaluates to True. The form of S
depends on the particular planning algorithm that is being used, e.g.,

• RRT: S = {Nearest(V,x)} is a singleton containing the nearest point to x in V .
• k-PRM: S = kNearest(V,x,k) contains up to k nearest neighbors to x in V .
• RRT∗ and PRM∗: S contains O(logn) points—either the points within a ball of

volume scaling as log(n)/n centered at x, or the (k logN)-nearest neighbors to x.

We assume CFreePoint(x) is called prior to BatchCFreePath(S,x), and thus x
is collision-free. For each pair (s,x), s ∈ S, the first step is to check whether the seg-
ment [s,x] can be declared collision-free using only the information already avail-
able in AG, lines 2.2-2.5. Let vnear ∈ Cfree be the vertex in Cfree that is nearest to
x, line 2.2. If both s and x are closer to vnear than vnear is to the obstacle set, then
clearly the segment [s,x] is collision free, lines 2.4-2.5 (‖x− vnear‖ ≤ Dist(vnear)

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 7

Algorithm 1: CFreePoint(q)
1 vnear← Nearest(Cfree,q);
2 onear← Nearest(Cobs,q);
3 if ‖q− vnear‖ ≤ Dist(vnear) then
4 return True

5 else if ‖q−onear‖ ≤ Dist(onear) then
6 return False

7 dobs← SetDistance(Xobs,q) ;
8 dfree← SetDistance(Xfree,q) ;
9 if dobs > 0 then

10 Cfree←Cfree∪{q};
11 Dist(q)← dobs;
12 return True

13 else
14 Cobs←Cobs∪{q};
15 Dist(q)← dfree;
16 return False

Algorithm 2: BatchCFreePath(S,x)
1 H← /0;
2 vnear← Nearest(Cfree,x);
3 foreach s ∈ S do
4 if ‖s− vnear‖ ≤ Dist(vnear) then
5 H← H ∪{(s,x)};
6 else if CFreePath(s,x) then
7 H← H ∪{(s,x)};

8 return H

Algorithm 3:
ApproxCDistPolytope(A,c,q)

1 d← (Aq− c) ;
2 dmin =−||−d||∞ ;
3 dmax = ||d||∞ ;
4 if dmax > 0 then
5 return (False,dmax) ;
6 else
7 return (True,−dmin) ;

is automatic, given that CFreePoint(x) has already been called). If this check is
inconclusive, then a full collision check is performed, lines 2.6-2.7.

Approximate set collision distance: The set distance computation method de-
pends on the choice of an obstacle index. For two dimensional polygonal obstacles, a
segment Voronoi diagram is an index for which set distance computation is efficient
and exact. For obstacles which are polytopes represented as the set {x : Ax ≤ c},
Algorithm 3 is sufficient for calculating a lower bound on the set distance.

Efficient collision checking: We now illustrate how to improve the efficiency of
standard sampling-based motion planning algorithms. As an example, Algorithms
4 and 5 show modified versions of the RRT and PRM∗ (pseudo-code based on [8]).
AG is initialized on lines 4.1/5.1. Standard point collision checks are replaced with
CFreePoint (i.e., Algorithm 1), lines 4.4/5.4. The code generating neighbor con-
nections from a new sample is modified to generate those connections in a batch
manner via a single call to BatchCFreePath (i.e., Algorithm 2), lines 4.6/5.7.

4 Analysis

Suppose ALG is a sampling-based motion planning algorithm. Let Ipoint(n) denote
the indicator random variable for the event that the SetDistance procedure in
Algorithm 1 is called by ALG in the iteration in which the n-th sample is drawn.
Similarly, define Ipath(n) as the indicator random variable for the event that the
CFreePath procedure in Algorithm 2 is called by ALG in the iteration in which the

8 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

Algorithm 4: Modified RRT
1 V ←{xinit}; E← /0; Cfree← /0; Cobs← /0 ;
2 for i = 1, . . . ,n−1 do
3 xrand← Samplei(ω);
4 if CFreePoint(xrand) then
5 xnearest← Nearest(V,xrand);
6 H← BatchCFreePath(

{xnearest},xrand);
7 if H 6= /0 then
8 V ←V ∪ xrand;
9 E← E ∪H;

10 return G = (V,E);

Algorithm 5: Modified PRM∗

1 V ←{xinit}; E← /0; Cfree← /0; Cobs← /0;
2 for i = 1, . . . ,n−1 do
3 xrand← Samplei(ω);
4 if CFreePoint(xrand) then

V ←V ∪{xrand};
5 foreach v ∈V do
6 S← Near(V,v,γPRM(log(n)/n)1/d);
7 H← BatchCFreePath(S\{v},v);
8 E← E ∪H;

9 return G = (V,E);

n-th sample is drawn. Define I(n) := Ipoint(n)+ Ipath(n), and let pcc(n) = E[I(n)].
We prove our main result for algorithms satisfying the following assumptions:

(A1) ALG calls the CFreePoint procedure O(1) times per iteration;
(A2) At the n-th iteration, ALG calls the batch CFreePath procedure with O(logn)

paths, and all such paths lie inside a ball of radius o(n−1/(d+1)) as n→ ∞.

Our main result is stated in the following theorem.

Theorem 1. Suppose ALG satisfies Assumptions (A1) and (A2). Then ALG, imple-
mented using the proposed collision-checking algorithm, has zero asymptotic ex-
pected incremental set-distance complexity, i.e.,

limsup
n→∞

pcc(n) = 0.

Note that all algorithms in Table 2 satisfy Assumptions (A1) and (A2). Hence, the
results summarized in Table 2 can be deduced from Theorem 1.

The rest of this section is devoted to the proof of Theorem 1. The key idea behind
the proof is to divide up the state space into several cells. This particular discretiza-
tion allows us to compute a bound on the expected number of samples that require
Algorithm 1 to call the set-distance procedure. We show that this number grows
slower than n, which implies Theorem 1.

Consider a partitioning of the environment into cells, where the size and number
of cells used in the partition grows with the number of samples n. More precisely,
divide up the configuration space [0,1]d into openly-disjoint hypercube cells with
edge length ln := n−

1
d+1 . Given z∈Zd , we define the cell with index z as the L∞ ball

of radius ln centered at ln z, i.e., Cn(z) :=
{

x′ ∈X : ‖x′− lnz‖∞≤ ln
}
, where ln z is the

scalar-vector multiplication of z by ln, and ‖ · ‖∞ is the infinity norm. Let Zn ⊂ Zd

denote the smallest set for which Cn := {Cn(z) : z ∈ Zn} covers the configuration
space, i.e., X ⊆⋃z∈Zn Cn(z). Clearly, Zn is a finite set, since X is compact.

Let γu denote the maximum distance between two points in the unit hypercube
using the distance metric ‖ · ‖ employed in the SetDistance procedure. For in-

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 9

stance, if ‖ · ‖ is the usual Euclidean metric (L2 norm), then γu =
√

d; if ‖ · ‖ is the
L∞ norm, then γu = 1.

We group the cells in Cn into two disjoint subsets, namely the boundary cells Bn
and the interior cells In. Let B′n denote the set of all Cn(z) ⊂ Cn that include a part
of the obstacle set boundary, i.e., Cn(z)∩∂Xobs 6= /0. Then Bn contains exactly those
cells that are within a cell-distance of at most 2(d(1/α)γue+1) to some cell in B′n,

Bn :=
{

Cn(z) : ‖z− z′‖∞ ≤ 2
(
d(1/α)γue+1

)
for some z′ with Cn(z′) ∈ B

′
n

}
,

where α is the constant in the constant-factor lower bound in the computation of
the SetDistance procedure. Finally, In is defined as exactly the set of those cells
that are not boundary cells, i.e., In := Cn \Bn. The reason behind our choice of the
number 2(d(1/α)γue+1) will become clear shortly.

Let λ (·) denote the Lebesgue measure in Rd . The total number of cells, denoted
by Kn, can be bounded for all n as follows 1:

Kn ≤
λ (X)

λ (Cn(z))
=

λ (X)(
n−

1
d+1

)d = λ (X)n
d

d+1 (1)

Notice the number of cells, Kn, is an increasing and sub-linear function of n.
Let Bn denote the number of boundary cells.

Lemma 1. There exists a constant c1 > 0 such that Bn ≤ c1 (Kn)
1−1/d for all n ∈N.

Proof. This result follows from the fact that the obstacle boundary can be covered
by N(d−1)/d = N1−1/d cells, where N is the number of equal-size cells that cover the
configuration space.

Thus the fraction of cells that are boundary cells can be bounded by

c1 Bn

Kn
=

c1 (Kn)
1−1/d

Kn
= c1 (Kn)

−1/d ≤ c1 (λ (X))−1/d n−
1

d+1 = c2 n−
1

d+1 ,

where c2 is a constant.
We now bound the number of calls to the collision-distance procedure by exam-

ining the number of such calls separately for samples that fall into interior cells or
boundary cells, respectively. Recall that Cfree and Cobs are defined as the vertices
that are explicitly checked and found to be in Xfree and Xobs, respectively. Define
C :=Cfree∪Cobs. Our key insight is summarized in the following lemma, which will
be used to derive a bound on the number of points in C that fall into interior cells.

Lemma 2. Given any algorithm in Table 2, suppose that algorithm is run with n
samples using our collision checking algorithm. Let Cn(z) ∈ In be some interior
cell. Then, there exists at most one vertex from C in Cn(z), i.e.,

1 Strictly speaking, this bound should read: Kn ≤ dλ (X)nd/(d+1)e, where d·e is the standard ceiling
function (i.e., dae returns the smallest integer greater than a). We will omit these technical details
from now on to keep the notation simple.

10 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

|Cn(z)∩C| ≤ 1 for all Cn(z) ∈ In.

Before proving Lemma 2, we introduce some additional notation and establish two
intermediate results. Let Nn(z) ⊆ Cn denote the set of all cells that have a cell dis-
tance of at most dγue+ 1 to Cn(z), i.e., Nn(z) := {Cn(z′) : ‖z′− z‖∞ ≤ dγue+1}.
Nn(z) includes the cell Cn(z) together with all its neighbors with cell distance less
than dγue+ 1. The cells in Nn(z) are such that they exclude points that are suffi-
ciently far away from points in Cn(z) and they include points that are sufficiently
far away from the boundary of the obstacle set. The last two properties are made
precise in the following two lemmas.

Lemma 3. Any point that lies in a cell outside of Nn(z) has distance at least γu ln to
any point that lies in Cn(z), i.e., ‖x−x′‖ ≥ γu ln for all x ∈Cn(z) and all x′ ∈Cn(z′)
with Cn(z′) /∈ Nn(z).

Proof. The claim follows immediately by the construction of Nn(z).

Lemma 4. Any point in a cell from Nn(z) has distance at least
(
d(1/α)γue+1

)
ln to

any point that lies on the obstacle set boundary, i.e., ‖x− x′‖ ≥
(
d(1/α)γue+1

)
ln

for all x ∈ ∂Xobs and all x′ ∈Cn(z′) with Cn(z′) ∈ Nn(z).

Proof. The interior cell Cn(z) has a cell distance of at least 2(d(1/α)γue+1) to any
cell that intersects with the boundary of the obstacle set. Any cell in Nn(z) has a
cell distance of at most dγue+ 1 ≤ d(1/α)γue+ 1 to Cn(z). Thus, by the triangle
inequality (for the cell distance function), any cell in Nn(z) has a cell distance of at
least d(1/α)γue+1 to any cell that intersects the obstacle boundary.

Now we are ready to prove Lemma 2.

Proof (Proof of Lemma 2). The proof is by contradiction. Suppose there exists two
points x1,x2 ∈C that fall into Cn(z). Suppose x1 is added into C before x2. Let xnearest
denote the nearest point when Algorithm 1 was called with x2.

First, we claim that xnearest lies in some cell in Nn(z). Clearly, xnearest is either
x1 or it is some other point that is no farther than x1 to x2. Note that x1 and x2 has
distance at most γu ln. By Lemma 3, any point that lies in a cell outside of Nn(z) has
distance at least γu ln to x2. Thus, xnearest must lie in some cell in Nn(z). However,
Dist(xnearest)≥ (1/α)‖x2−xnearest‖ by Lemma 4; In that case, x2 should have never
been added to C, even when the SetDistance procedure returns α-factor of the
actual distance to the obstacle set boundary. Hence, we reach a contradiction.

The following lemma provides an upper bound on the expected number of sam-
ples that fall into boundary cells, thus an upper bound on the expected number of
points in C that fall into a boundary cell.

Lemma 5. Let Xn denote a set of n samples drawn independently and uniformly
from X. Let Sn denote the number of samples that fall into boundary cells, i.e.,

Sn :=
∣∣{x ∈ Xn : x ∈Cn(z) with Cn(z) ∈ Bn}

∣∣.
Then, there exists some constant c3, independent of n, such that E[Sn]≤ c3 n

d
d+1 .

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 11

Proof. Let Ei denote the event that the i-th sample falls into a boundary cell. Let Yi
denote the indicator random variable corresponding to this event. From Lemma 1
and the discussion following it, the fraction of cells that are of boundary type
is c2n−

1
d+1 . Thus, E[Yi] = P(Ei) = c2 i−

1
d+1 and E[Sn] = E [∑n

i=1 Yi] = ∑
n
i=1E[Yi] =

∑
n
i=1 c2 i−

1
d+1 ≤ c2

∫ n
1 x−

1
d+1 dx, where c2

∫ n
1 x−

1
d+1 dx = c2 (d+1)

d

(
n

d
d+1 −1

)
. Thus,

E[Sn]≤ c3 n
d

d+1 , where c3 is a constant that is independent of n.

The following lemma gives an upper bound on the number of points in C.

Lemma 6. There exists a constant c4, independent of n, such that

E [card(C)]≤ c4 n
d

d+1 .

Proof. On one hand, the number of points in C that fall into an interior cell is at
most the total number of interior cells by Lemma 2, and thus less than the total
number of cells Kn, which satisfies Kn ≤ λ (X)n

d
d+1 (see Equation (1)). On the other

hand, the expected number of points in C that fall into a boundary is no more than
the expected number of samples that fall into boundary cells, which is bounded by
c3 n

d
d+1 , where c is a constant independent of n (see Lemma 5). Thus, we conclude

that E [card(C)]≤ c4 n
d

d+1 for some constant c4.

Finally, we are ready to prove Theorem 1.

Proof (Theorem 1). First, we show that pcc is a non-increasing function of n using
a standard coupling argument. We couple the events {I(n) = 1} and {I(n+1) = 1}
with the following process. Consider the run of the algorithm with n+1 samples. Let
An and An+1 denote the events that the nth and the (n+ 1)st samples are explicitly
checked, respectively. Clearly, P(An+1) ≤ P(An) in this coupled process, since the
first (n−1)st samples are identical. Moreover, P(An) = P({I(n) = 1}) = pcc(n) and
P(An+1) = P({I(n+1) = 1}) = pcc(n+1). Thus, pcc(n+1)≤ pcc(n) for all n ∈N.
Note that this implies that limn→∞ pcc(n) exists.

Next, we show that limn→∞(1/n) ∑
n
k=1 pcc(k) = 0. Clearly, ∑

n
k=1 Ipoint(k) = |C|.

Hence, ∑
n
k=1 E[Ipoint(k)]

n =
E[∑n

k=1 Ipoint(k)]
n ≤ c4 n

d
d+1

n = c4 n−
1

d+1 , where the inequality fol-
lows from Lemma 6. Similarly, limsupk→∞(E[Ipath(k)]−E[Ipoint(k)]) = 0, since all
paths fit into an Euclidean ball with radius o(n−1/(d+1)), which is asymptotically
smaller than the side length of each cell ln = n−1/(d+1). Hence,

limsup
n→∞

∑
n
k=1 pcc(k)

n
= limsup

n→∞

(
∑

n
k=1E[Ipoint(k)]+E[Ipath(k)]

n

)
= limsup

n→∞

E[∑n
k=1 I(k)]

n
≤ limsup

n→∞

c4 n
d

d+1

n
= limsup

n→∞

c4 n−
1

d+1 = 0,

Finally, pcc(n+ 1) ≤ pcc(n) for all n ∈ N and limn→∞(1/n) ∑
n
k=1 pcc(k) = 0 to-

gether imply that limn→∞ pcc(n) = 0.

12 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

5 Experiments

To validate and demonstrate the utility of our method, we compared the perfor-
mance of implementations of the RRT and RRT∗ algorithms, both with and without
our proposed modification for collision checking. Our implementations are single
threaded, utilize a kd-tree [3] for point-proximity (i.e., nearest neighbor and k- near-
est neighbor) queries, and a segment-Voronoi hierarchy [2] for set distance queries.
The experiments were run on a 1.73 GHz Intel Core i7 computer with 4GB of RAM,
running Linux. We performed experiments on an environment consisting of a unit-
square workspace with 150 randomly placed convex polygonal obstacles (see Fig-
ure 1). The goal region is a square with side length 0.1 units at the top right corner;
the starting point is at the bottom left corner.

Figure 1 (Left) shows both the tree of trajectories generated by RRT∗, and the set
of collision-free balls that are stored in the augmented graph. After 2,000 samples,
the collision-free balls have filled a significant fraction of the free space, leaving
only a small amount of area uncovered near the obstacle boundaries. As proved in
Section 4, any future sample is likely to land in a collision-free ball common to both
it and its nearest neighbor, making future collision checks much less likely.

0 20000 40000 60000 80000 100000
number of nodes, n

0

20

40

60

80

100

120

140

160

180

co
m

pu
ta

ti
on

ti
m

e,
t,

(s
)

rrtstar
rrtstar ball
rrt
rrt ball

Fig. 1: (Left) Search tree, black, and balls where explicit collision checks are unnec-
essary, purple, for the modified RRT∗ algorithm with n = 2,000. (Right) Runtimes
for the four algorithms tested, averaged over 30 runs of each algorithm, and using
graph size buckets of 1000 nodes.

To generate timing profiles, both RRT and RRT∗ were run on the obstacle con-
figuration in Figure 1 with and without the use of the new collision algorithm. In
each run, both variants of both algorithms are run with the same initial random seed
for the point sampling process so that the points sampled in each algorithm are the
same (i.e., the sample sequence ω is the same for both algorithms).

Figure 1 (Right) illustrates the wall-clock measured runtime required to reach
various tree sizes for each of these four implementations. Runtimes are averaged

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 13

over 30 runs and in graph-size buckets of 1000 nodes. As expected from the amor-
tized complexity bounds, longer runs enable the proposed approach to achieve
greater savings. For example, the runtime of RRT∗ is reduced by 40% at 10,000
vertices, and by 70% at 100,000 vertices, vs. the baseline implementation. The run-
time of RRT is reduced by 70% at 10,000 vertices, and by 90% at 100,000 vertices.

The increased efficiency stemming from our proposed approach also results in
an effective increase in the rate at which RRT∗ converges to the globally optimal
solution. these implementations. Figure 2 (Left) illustrates the cost of the best path
found in the baseline RRT∗ and the modified RRT∗. In general and on average, the
modified RRT∗ finds paths of lower cost significantly faster than the baseline RRT∗.

Figure 2 (Right) illustrates the average number of explicit checks required for
points which are not in collision vs. different graph sizes. As the number of sam-
ples added to the database grows, the probability of performing an explicit check
decreases. At a graph size of 100,000 nodes, on average only one out of every 100
samples required an explicit check when the implementations reached that point.

0 10 20 30 40 50 60
time, t (sec)

1.36

1.37

1.38

1.39

1.40

1.41

co
st

of
be

st
pa

th

rrtstar
rrtstar ball

103 104 105

graph size, n

10−2

10−1

em
pi

ri
ca

le
st

im
at

e
of
p c

c
(n

)

Fig. 2: (Left) RRT∗ best-path cost vs. time, with and without the proposed method,
averaged over 30 runs and in buckets of 100 time samples. The proposed method
yields significantly faster convergence. (Right) The experimental probability of per-
forming an explicit collision query vs. graph size. Only 1% of new nodes require an
explicit check when graph size is 100,000 nodes.

Figure 3 illustrates the computation of a single iteration of the four algorithms at
various different graph sizes and for two different obstacle configurations. Increas-
ing the number of obstacles increases the average iteration time while the graphs
remain small; as the graph grows, the iteration times for higher obstacle count case
approach those of the lower obstacle count case.

A Voronoi diagram obstacle index makes exact collision distance computation
no more expensive than collision checking, however generating a Voronoi diagram
in higher dimensions is prohibitively complicated. To address this, we compare the
performance of the RRT with and without our proposed modification in a second

14 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

0 20000 40000 60000 80000 100000
number of nodes, n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

it
er

at
io

n
ti

m
e
t

(µ
s)

rrtstar
rrtstar ball
rrt
rrt ball

0 20000 40000 60000 80000 100000
number of nodes, n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

it
er

at
io

n
ti

m
e
t

(µ
s)

rrtstar
rrtstar ball
rrt
rrt ball

Fig. 3: The average computation time of a single iteration vs. algorithm (plot style),
over 30 runs, in a configuration with 500 and 1,000 obstacles (left and right, respec-
tively).

implementation utilizing a kd-tree for point-proximity searches, and an axis-aligned
bounding box tree with Algorithm 3 for set distance queries and collision checking.
Obstacles are generated as randomly placed simplices.

0.0 0.2 0.4 0.6 0.8 1.0
graph size, n ×105

0

10

20

30

40

50

60

70

ru
nt

im
e

(s
)

noball 2D
noball 3D
noball 4D
noball 5D

approx ball 2D
approx ball 3D
approx ball 4D
approx ball 5D

104 105 106

graph size, n

10−3

10−2

10−1

100

ex
pe

ri
m

en
ta

lp
(e

xp
lic

it
)

approx ball 2D
approx ball 3D
approx ball 4D
approx ball 5D

Fig. 4: Mean wall-clock runtime (Left) and experimental pexplicit (Right), over 20
runs, for RRT in a unit workspace X = [0,1]d for several d.

Figure 4 illustrates the measured runtime of this implementation, as well as the
observed frequency of performing an explicit collision check for a unit workspace in
2 to 5 dimensions. For this choice of index, the modified algorithm using an approx-
imate collision distance reaches a given graph size faster in 2 and 3 dimensions, at
the roughly the same speed in 4 dimensions, and slower in 5 dimensions. The num-
ber of explicit collision checks is also shown. There is a significant degradation of
the performance in higher dimensions. However, we note that uniform placement of
obstacles is a somewhat degenerate scenario in higher dimensions. For many prob-
lems of interest, it is likely that obstacles will lie in a lower dimensional subspace,

Eliminating the Collision Checking Bottleneck of Sampling Based Motion Planning 15

which is a fact that the proposed algorithm is not able to exploit. Extensions to
the algorithm that would be able to take advantage of lower dimensionality of the
obstacle are left to future work.

6 Conclusions

In this paper, we have introduced a novel approach to collision checking in sampling-
based algorithms. This approach allows us to demonstrate, both theoretically and ex-
perimentally, that collision-checking is not necessarily a computational bottleneck
for sampling-based motion planning algorithms. Rather, the complexity is driven by
nearest-neighbor searches within the graph constructed by the algorithms. Experi-
ments indicate significant runtime improvement in practical implementations.

The proposed approach is very general but there are some important implemen-
tation details to be aware of when using it. First, we indicate that points which are
sampled in collision are kept in order to characterize the obstacle set (i.e., in addi-
tion to those that are not in collision). While this allows that the expected number of
explicit collision checks goes to zero, the number of points required to truly charac-
terize the obstacle set can be quite large, especially in high dimension. In practice,
strategies for biasing samples away from the obstacle set are likely to be more ef-
fective then keeping points which are sampled in collision. If in-collision samples
are not kept and no biasing is used, the expected number of explicit checks will ap-
proach the proportion of the workspace volume which is in collision. However, even
in such a case, the strategy described in this paper is effective at marginalizing the
extra collision checks in the asymptotically optimal variants of sampling based mo-
tion planning algorithms. As an example, the expected runtime ratio between RRT∗

and RRT will be a constant which does not depend on the obstacle configuration,
even if no in-collision samples are kept.

In addition, we show that calculating a sufficient approximation of the collision
distance of a particular point and obstacle often does not require more computation
than the worst case of performing a collision query. While this is true for a single
obstacle, it is important to note that collision checking is often done using a spatial
index and the choice of index may affect how the efficiency of a collision distance
query compares to a simple collision query.

Also, In practice our method may benefit multi-query algorithms (e.g. PRM) and
asymptotically optimal algorithms (e.g. PRM*, RRT*) more than single-query fea-
sible planning algorithms (e.g. RRT). The latter return after finding a single path,
and thus experience less ball coverage of the free space and proportionately more
explicit checks, in a sparse environment. The multi-query and asymptotically op-
timal algorithms require more collision checks per new node, and so offer more
opportunities for savings.

Lastly, some of the steps leverage the fact that in path planning problems, the
straight line connecting two points is a feasible trajectory for the system. This is

16 Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli

in general not the case for robotic systems subject to, e.g., differential constraints.
Extensions to such systems is a topic of current investigation.

Acknowledgments

This work was partially supported by the Office of Naval Research, MURI grant
#N00014-09-1-1051, the Army Research Office, MURI grant #W911NF-11-1-
0046, and the Air Force Office of Scientific Research, grant #FA-8650-07-2-3744.

References

1. Amato, N., Song, G.: Using Motion Planning to Study Protein Folding Pathways. Journal of
Computational Biology 9(2), 149–168 (2004)

2. Aurenhammer, F.: Voronoi Diagrams — A Survey of a Fundamental Data Structure. ACM
Computing Surveys 23(3), 345–405 (1991)

3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18, 509–517 (1975)

4. Bohlin, R., Kavraki, L.E.: Path Planning using Lazy PRM. In: International Conference on
Robotics and Automation (2000)

5. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for proba-
bilistic roadmap planners. In: IEEE Int. Conf. on Robotics and Automation, pp. 1018–1023
(1999)

6. Cortes, J., Simeon, T., Ruiz de Angulo, V., Guieysse, D., Remaud-Simeon, M., Tran, V.: A
path planning approach for computing large-amplitude motions of flexible molecules. Bioin-
formatics 21(1), 116–125 (2005)

7. Hsu, D., Kavraki, L.E., Latombe, J.C., Motwani, R., Sorkin, S.: On finding narrow pas-
sages with probabilistic roadmap planners. In: P. Agarwal, L.E. Kavraki, M.T. Mason (eds.)
Robotics: The Algorithmic Perspective (WAFR ’98), pp. 141–154. A.K. Peters/CRC Press,
Wellesley, MA (1998)

8. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. Jour-
nal of Robotics Research 30(7), 846–894 (2011)

9. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation
12(4), 566–580 (1996)

10. Latombe, J.: Motion Planning: A Journey of Molecules, Digital Actors, and Other Artifacts.
International Journal of Robotics Research 18(11), 1119–1128 (2007)

11. LaValle, S.: Planning Algorithms. Cambridge University Press (2006)
12. LaValle, S., Kuffner, J.J.: Randomized kinodynamic planning. International Journal of

Robotics Research 20(5), 378–400 (2001)
13. Samet, H.: Foundations of multidimensional and metric data structures. Morgan Kaufmann

(2006)

	Efficient Collision Checking in Sampling-based Motion Planning
	Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Frazzoli
	Introduction
	Notation, Problem Statement, and Main Results
	Proposed Algorithm
	Modified Collision Checking Procedures

	Analysis
	Experiments
	Conclusions
	References

